28,229 research outputs found

    3D face recognition using multiview keypoint matching

    Get PDF
    A novel algorithm for 3D face recognition based point cloud rotations, multiple projections, and voted keypoint matching is proposed and evaluated. The basic idea is to rotate each 3D point cloud representing an individualā€™s face around the x, y or z axes, iteratively projecting the 3D points onto multiple 2.5D images at each step of the rotation. Labelled keypoints are then extracted from the resulting collection of 2.5D images, and this much smaller set of keypoints replaces the original face scan and its projections in the face database. Unknown test faces are recognised firstly by performing the same multiview keypoint extraction technique, and secondly, the application of a new weighted keypoint matching algorithm. In an extensive evaluation using the GavabDB 3D face recognition dataset (61 subjects, 9 scans per subject), our method achieves up to 95% recognition accuracy for faces with neutral expressions only, and over 90% accuracy for face recognition where expressions (such as a smile or a strong laugh) and random faceoccluding gestures are permitted

    Reference face graph for face recognition

    Get PDF
    Face recognition has been studied extensively; however, real-world face recognition still remains a challenging task. The demand for unconstrained practical face recognition is rising with the explosion of online multimedia such as social networks, and video surveillance footage where face analysis is of significant importance. In this paper, we approach face recognition in the context of graph theory. We recognize an unknown face using an external reference face graph (RFG). An RFG is generated and recognition of a given face is achieved by comparing it to the faces in the constructed RFG. Centrality measures are utilized to identify distinctive faces in the reference face graph. The proposed RFG-based face recognition algorithm is robust to the changes in pose and it is also alignment free. The RFG recognition is used in conjunction with DCT locality sensitive hashing for efficient retrieval to ensure scalability. Experiments are conducted on several publicly available databases and the results show that the proposed approach outperforms the state-of-the-art methods without any preprocessing necessities such as face alignment. Due to the richness in the reference set construction, the proposed method can also handle illumination and expression variation

    MVF-Net: Multi-View 3D Face Morphable Model Regression

    Full text link
    We address the problem of recovering the 3D geometry of a human face from a set of facial images in multiple views. While recent studies have shown impressive progress in 3D Morphable Model (3DMM) based facial reconstruction, the settings are mostly restricted to a single view. There is an inherent drawback in the single-view setting: the lack of reliable 3D constraints can cause unresolvable ambiguities. We in this paper explore 3DMM-based shape recovery in a different setting, where a set of multi-view facial images are given as input. A novel approach is proposed to regress 3DMM parameters from multi-view inputs with an end-to-end trainable Convolutional Neural Network (CNN). Multiview geometric constraints are incorporated into the network by establishing dense correspondences between different views leveraging a novel self-supervised view alignment loss. The main ingredient of the view alignment loss is a differentiable dense optical flow estimator that can backpropagate the alignment errors between an input view and a synthetic rendering from another input view, which is projected to the target view through the 3D shape to be inferred. Through minimizing the view alignment loss, better 3D shapes can be recovered such that the synthetic projections from one view to another can better align with the observed image. Extensive experiments demonstrate the superiority of the proposed method over other 3DMM methods.Comment: 2019 Conference on Computer Vision and Pattern Recognitio
    • ā€¦
    corecore