31,282 research outputs found

    Adaptive Traffic Fingerprinting for Darknet Threat Intelligence

    Full text link
    Darknet technology such as Tor has been used by various threat actors for organising illegal activities and data exfiltration. As such, there is a case for organisations to block such traffic, or to try and identify when it is used and for what purposes. However, anonymity in cyberspace has always been a domain of conflicting interests. While it gives enough power to nefarious actors to masquerade their illegal activities, it is also the cornerstone to facilitate freedom of speech and privacy. We present a proof of concept for a novel algorithm that could form the fundamental pillar of a darknet-capable Cyber Threat Intelligence platform. The solution can reduce anonymity of users of Tor, and considers the existing visibility of network traffic before optionally initiating targeted or widespread BGP interception. In combination with server HTTP response manipulation, the algorithm attempts to reduce the candidate data set to eliminate client-side traffic that is most unlikely to be responsible for server-side connections of interest. Our test results show that MITM manipulated server responses lead to expected changes received by the Tor client. Using simulation data generated by shadow, we show that the detection scheme is effective with false positive rate of 0.001, while sensitivity detecting non-targets was 0.016+-0.127. Our algorithm could assist collaborating organisations willing to share their threat intelligence or cooperate during investigations.Comment: 26 page

    I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis

    Full text link
    Revelations of large scale electronic surveillance and data mining by governments and corporations have fueled increased adoption of HTTPS. We present a traffic analysis attack against over 6000 webpages spanning the HTTPS deployments of 10 widely used, industry-leading websites in areas such as healthcare, finance, legal services and streaming video. Our attack identifies individual pages in the same website with 89% accuracy, exposing personal details including medical conditions, financial and legal affairs and sexual orientation. We examine evaluation methodology and reveal accuracy variations as large as 18% caused by assumptions affecting caching and cookies. We present a novel defense reducing attack accuracy to 27% with a 9% traffic increase, and demonstrate significantly increased effectiveness of prior defenses in our evaluation context, inclusive of enabled caching, user-specific cookies and pages within the same website

    Mockingbird: Defending Against Deep-Learning-Based Website Fingerprinting Attacks with Adversarial Traces

    Full text link
    Website Fingerprinting (WF) is a type of traffic analysis attack that enables a local passive eavesdropper to infer the victim's activity, even when the traffic is protected by a VPN or an anonymity system like Tor. Leveraging a deep-learning classifier, a WF attacker can gain over 98% accuracy on Tor traffic. In this paper, we explore a novel defense, Mockingbird, based on the idea of adversarial examples that have been shown to undermine machine-learning classifiers in other domains. Since the attacker gets to design and train his attack classifier based on the defense, we first demonstrate that at a straightforward technique for generating adversarial-example based traces fails to protect against an attacker using adversarial training for robust classification. We then propose Mockingbird, a technique for generating traces that resists adversarial training by moving randomly in the space of viable traces and not following more predictable gradients. The technique drops the accuracy of the state-of-the-art attack hardened with adversarial training from 98% to 42-58% while incurring only 58% bandwidth overhead. The attack accuracy is generally lower than state-of-the-art defenses, and much lower when considering Top-2 accuracy, while incurring lower bandwidth overheads.Comment: 18 pages, 13 figures and 8 Tables. Accepted in IEEE Transactions on Information Forensics and Security (TIFS

    Automated Website Fingerprinting through Deep Learning

    Full text link
    Several studies have shown that the network traffic that is generated by a visit to a website over Tor reveals information specific to the website through the timing and sizes of network packets. By capturing traffic traces between users and their Tor entry guard, a network eavesdropper can leverage this meta-data to reveal which website Tor users are visiting. The success of such attacks heavily depends on the particular set of traffic features that are used to construct the fingerprint. Typically, these features are manually engineered and, as such, any change introduced to the Tor network can render these carefully constructed features ineffective. In this paper, we show that an adversary can automate the feature engineering process, and thus automatically deanonymize Tor traffic by applying our novel method based on deep learning. We collect a dataset comprised of more than three million network traces, which is the largest dataset of web traffic ever used for website fingerprinting, and find that the performance achieved by our deep learning approaches is comparable to known methods which include various research efforts spanning over multiple years. The obtained success rate exceeds 96% for a closed world of 100 websites and 94% for our biggest closed world of 900 classes. In our open world evaluation, the most performant deep learning model is 2% more accurate than the state-of-the-art attack. Furthermore, we show that the implicit features automatically learned by our approach are far more resilient to dynamic changes of web content over time. We conclude that the ability to automatically construct the most relevant traffic features and perform accurate traffic recognition makes our deep learning based approach an efficient, flexible and robust technique for website fingerprinting.Comment: To appear in the 25th Symposium on Network and Distributed System Security (NDSS 2018

    How Unique is Your .onion? An Analysis of the Fingerprintability of Tor Onion Services

    Full text link
    Recent studies have shown that Tor onion (hidden) service websites are particularly vulnerable to website fingerprinting attacks due to their limited number and sensitive nature. In this work we present a multi-level feature analysis of onion site fingerprintability, considering three state-of-the-art website fingerprinting methods and 482 Tor onion services, making this the largest analysis of this kind completed on onion services to date. Prior studies typically report average performance results for a given website fingerprinting method or countermeasure. We investigate which sites are more or less vulnerable to fingerprinting and which features make them so. We find that there is a high variability in the rate at which sites are classified (and misclassified) by these attacks, implying that average performance figures may not be informative of the risks that website fingerprinting attacks pose to particular sites. We analyze the features exploited by the different website fingerprinting methods and discuss what makes onion service sites more or less easily identifiable, both in terms of their traffic traces as well as their webpage design. We study misclassifications to understand how onion service sites can be redesigned to be less vulnerable to website fingerprinting attacks. Our results also inform the design of website fingerprinting countermeasures and their evaluation considering disparate impact across sites.Comment: Accepted by ACM CCS 201

    k-fingerprinting: a Robust Scalable Website Fingerprinting Technique

    Get PDF
    Website fingerprinting enables an attacker to infer which web page a client is browsing through encrypted or anonymized network connections. We present a new website fingerprinting technique based on random decision forests and evaluate performance over standard web pages as well as Tor hidden services, on a larger scale than previous works. Our technique, k-fingerprinting, performs better than current state-of-the-art attacks even against website fingerprinting defenses, and we show that it is possible to launch a website fingerprinting attack in the face of a large amount of noisy data. We can correctly determine which of 30 monitored hidden services a client is visiting with 85% true positive rate (TPR), a false positive rate (FPR) as low as 0.02%, from a world size of 100,000 unmonitored web pages. We further show that error rates vary widely between web resources, and thus some patterns of use will be predictably more vulnerable to attack than others.Comment: 17 page

    Detection of advanced persistent threat using machine-learning correlation analysis

    Get PDF
    As one of the most serious types of cyber attack, Advanced Persistent Threats (APT) have caused major concerns on a global scale. APT refers to a persistent, multi-stage attack with the intention to compromise the system and gain information from the targeted system, which has the potential to cause significant damage and substantial financial loss. The accurate detection and prediction of APT is an ongoing challenge. This work proposes a novel machine learning-based system entitled MLAPT, which can accurately and rapidly detect and predict APT attacks in a systematic way. The MLAPT runs through three main phases: (1) Threat detection, in which eight methods have been developed to detect different techniques used during the various APT steps. The implementation and validation of these methods with real traffic is a significant contribution to the current body of research; (2) Alert correlation, in which a correlation framework is designed to link the outputs of the detection methods, aims to identify alerts that could be related and belong to a single APT scenario; and (3) Attack prediction, in which a machine learning-based prediction module is proposed based on the correlation framework output, to be used by the network security team to determine the probability of the early alerts to develop a complete APT attack. MLAPT is experimentally evaluated and the presented sy

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146
    corecore