7,084 research outputs found

    Hierarchical variable clustering using singular value decomposition

    Full text link
    In this work, we present a novel method for hierarchically variable clustering using singular value decomposition. Our proposed approach provides a non-parametric solution to identify block diagonal patterns in covariance (correlation) matrices, thereby grouping variables according to their dissimilarity. We explain the methodology and outline the incorporation of linkage functions to assess dissimilarities between clusters. To validate the efficiency of our method, we perform both a simulation study and an analysis of real-world data. Our findings show the approach's robustness. We conclude by discussing potential extensions and future directions for research in this field. Supplementary materials for this article can be accessed online

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Feature selection, optimization and clustering strategies of text documents

    Get PDF
    Clustering is one of the most researched areas of data mining applications in the contemporary literature. The need for efficient clustering is observed across wide sectors including consumer segmentation, categorization, shared filtering, document management, and indexing. The research of clustering task is to be performed prior to its adaptation in the text environment. Conventional approaches typically emphasized on the quantitative information where the selected features are numbers. Efforts also have been put forward for achieving efficient clustering in the context of categorical information where the selected features can assume nominal values. This manuscript presents an in-depth analysis of challenges of clustering in the text environment. Further, this paper also details prominent models proposed for clustering along with the pros and cons of each model. In addition, it also focuses on various latest developments in the clustering task in the social network and associated environments

    An Efficient Fingerprint Identification using Neural Network and BAT Algorithm

    Get PDF
    The uniqueness, firmness, public recognition, and its minimum risk of intrusion made fingerprint is an expansively used personal authentication metrics. Fingerprint technology is a biometric technique used to distinguish persons based on their physical traits. Fingerprint based authentication schemes are becoming increasingly common and usage of these in fingerprint security schemes, made an objective to the attackers. The repute of the fingerprint image controls the sturdiness of a fingerprint authentication system. We intend for an effective method for fingerprint classification with the help of soft computing methods. The proposed classification scheme is classified into three phases. The first phase is preprocessing in which the fingerprint images are enhanced by employing median filters. After noise removal histogram equalization is achieved for augmenting the images. The second stage is the feature Extraction phase in which numerous image features such as Area, SURF, holo entropy, and SIFT features are extracted. The final phase is classification using hybrid Neural for classification of fingerprint as fake or original. The neural network is unified with BAT algorithm for optimizing the weight factor

    Securing Autonomous Vehicles Against GPS Spoofing Attacks: A Deep Learning Approach

    Get PDF
    With the rapid advancement of technology and multimedia systems, ensuring security has become a critical concern. Connected and Autonomous Vehicles (CAVs) are vulnerable to various hacking techniques, including jamming and spoofing. Global Positioning System (GPS) location spoofing poses a significant threat to CAVs, compromising their security and potentially endangering pedestrians and drivers. To address this issue, this research proposes a novel methodology that uses deep learning (DL) algorithms, such as Convolutional Neural Networks (CNN), and machine learning (ML) algorithms, such as Support Vector Machine (SVM), to protect CAVs from GPS location spoofing attacks. The proposed solution is validated using real-time simulations in the CARLA simulator, and extensive analysis of different learning algorithms is conducted to identify the most suitable approach across three distinct trajectories. Training and testing data include GPS coordinates, spoofed coordinates, and localization algorithm values. The proposed machine learning algorithm achieved 99% and 96% accuracy for the best and worst case scenarios, respectively. In case of deep learning, it achieved as high as 99% for best and 82% for the worst case scenario
    • …
    corecore