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ABSTRACT With the rapid advancement of technology and multimedia systems, ensuring security has
become a critical concern. Connected and Autonomous Vehicles (CAVs) are vulnerable to various hacking
techniques, including jamming and spoofing. Global Positioning System (GPS) location spoofing poses a
significant threat to CAVs, compromising their security and potentially endangering pedestrians and drivers.
To address this issue, this research proposes a novel methodology that uses deep learning (DL) algorithms,
such as Convolutional Neural Networks (CNN), and machine learning (ML) algorithms, such as Support
Vector Machine (SVM), to protect CAVs from GPS location spoofing attacks. The proposed solution is
validated using real-time simulations in the CARLA simulator, and extensive analysis of different learning
algorithms is conducted to identify the most suitable approach across three distinct trajectories. Training
and testing data include GPS coordinates, spoofed coordinates, and localization algorithm values. The
proposed machine learning algorithm achieved 99% and 96% accuracy for the best and worst case scenarios,
respectively. In case of deep learning, it achieved as high as 99% for best and 82% for the worst case
scenario.

INDEX TERMS Connected and Autonomous Vehicles, Convolutional Neural Networks, Security, GPS
Spoofing, Support Vector Machine, CARLA

I. INTRODUCTION

THE autopilot system such as autonomous vehicles or
drones are frequently used for surveillance systems,

secure communication and packet delivery. Relying on GPS
measurements aided by precise high definition maps, au-
tonomous vehicles choose shortest and optimized path from
starting point to destination [1]. This is mandatory for such
vehicles in order to operate autonomously as well as cor-
rectly without any sort of human intervention [2]. Thus the
reliability and secure operation of GPS sensor is crucial
factor for the wider acceptance of such vehicles. During
any unforeseen condition, the communication signals that are
exchanged between the autonomous vehicles and the ground
stations can be lost or corrupted by incorporating some cyber-
attacks such as spoofing or jamming [3]. Jamming attacks
refers to the fully blockage of the GPS operation via the
disruptive signal transmission on the same frequency as that

of GPS signals [4]. On contrary to this, spoofing attack refers
to deceiving the user by transmitting the signals possessing
same characteristics just like the legitimate GPS satellite
signals [5].

To resist such cyber-attacks, it is crucial that the au-
tonomous vehicle architecture to be robust. Autonomous
vehicles can be attacked in two forms which includes Denial
of Service attack (DoS) and integrity attack [6]. False data
injection and spoofing comes under the category of integrity
attack while black and gray hole attack and jamming comes
under the category of DoS attack. Global Naviagtion Satel-
lite System (GNSS) spoofing involves manipulating signals
to misguide receivers, potentially causing dangerous conse-
quences. Despite increased interest in GNSS spoofing, there
is a lack of Commercial off the Shelf (COTS) receivers
capable of countering advanced attacks. Addressing this gap
is crucial to ensure the security and reliability of GNSS
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systems [7]. We can categorize the GPS spoofing into two
major classes, refined receiver based spoofers, GPS signal
simulator and receiver based spoofers [6]. In first category, it
is supposed that position and velocity of the victim receiver
are known precisely and such spoofing is quite impossible to
detect using the traditional anti-spoofing techniques. In the
second category, the simulators used to send the GPS signals
which are concatenated with radio signals in order to produce
duplicate GPS signal [8].

For interference detection, signal classification, multipath
detection and data quality assurance, machine and deep learn-
ing is being utilized in GNSS [8]. Various machine learning
as well as deep learning based algorithms are also developed
for the detection of GPS spoofing attack. Most widely used
algorithms for GPS spoofing attack detection are decision
trees, support vector machines and neural networks [8]. Mon-
itoring of cross correlation of multiple GNSS measurements
and observables can be used for the detection of potentially
spoofed signals [9]. The stability and accuracy of the GNSS
absolute solutions in case of autonomous vehicles can be
significantly improved using the multi-layer recurrent neu-
ral networks in combination with long-short term memory
(LSTM) algorithms [10]. The deep learning methods can be
used for the vehicle position prediction based on the multi-
sensors data which includes GNSS, without the redesigning
of the analytical model of every individual sensors on the
autonomous vehicle [11].

The key contributions of this paper are outlined as follows:
• CARLA1 is used in this research to acquire real-time

sensor values, specifically yaw rate (ϕ.), steering angle
(α), wheel speed (v) and GPS receiver data. These
sensor values serve as crucial inputs for training and
evaluating the GPS spoofing attack detection model
enabling realistic simulation environment.

• Novel sensor fusion method is developed for integrating
data from diverse sensors, such as yaw rate (ϕ.), steer-
ing angle (α) and GPS. This sensor fusion approach
enhances the accuracy and reliability of GPS spoofing
detection by incorporating multiple sensor modalities
thus leading to improved detection performance.

• GPS location spoofing attack detection solution is pro-
posed based on machine and deep learning algorithms.
Leveraging the CARLA dataset, the detection system
employs state-of-art techniques, including anomaly de-
tection and pattern recognition to differentiate between
genuine and spoofed signals. The proposed solution is
evaluated in terms of precision, recall, F1 score and
accuracy through multiple scenarios using realistic data.

The rest of the paper is organized as follows. Section II
reviews the related work on GPS location spoofing attacks
and detection techniques. Section III presents the proposed
methodology, explaining the algorithm and framework for
GPS spoofing detection. Section IV describes the experimen-
tal setup, including the utilization of the CARLA dataset.

1https://carla.org/

It also presents the results and analysis, discussing the per-
formance of machine learning and deep learning algorithms.
Section V concludes the paper and suggests future research
directions.

II. RELATED WORK
The most common approaches used for the detection of
GPS location spoofing attacks includes signal processing and
data driven techniques. However, solutions based on signal
processing requires prior knowledge of the expected signal
properties, making them vulnerable to attacks that exploit
such assumptions and also require specialized equipment.
Data driven approach employs machine or deep learning al-
gorithms for pattern detection and anomalies in large datasets
and no specialized equipment is required.

The vulnerability of CAVs to GPS location spoofing at-
tacks is explored in [1]. It proposed a data-driven approach
based on machine learning to detect these attacks, using only
normal location data for training. The solution is tested and
evaluated using realistic data and demonstrates over 98%
accuracy in detecting attacks.

The vulnerability of Unmanned Aerial Vehicles (UAVs) to
GPS signal spoofing attacks is discussed in [3]. The article
proposed a machine learning-based solution using SVMs
to detect counterfeit GPS signals. Experimental analyses
demonstrated the effectiveness of the model in accurately
identifying spoofed signals, surpassing existing techniques.
The proposed solution achieved 96% accuracy in detecting
GPS spoofing attacks.

The use of machine learning in GNSS applications is
explored in [8]. A systematic review of literature is presented,
encompassing various applications of machine learning in
GNSS, including signal acquisition, classification, predic-
tion, and anomaly detection. The article also addresses chal-
lenges and potential future applications of machine learning
in GNSS. Highlighted applications include earthquake warn-
ing systems, hurricane tracking, ice detection and thickness
estimation, as well as soil moisture estimation. The conclu-
sion drawn from the review is that machine learning has the
potential to enhance the accuracy and reliability of GNSS
applications, while also paving the way for further research
and exploration of new possibilities in the field [16].

The proposed paper [9] introduces a machine learning-
based method for detecting potentially spoofed GNSS sig-
nals. The approach involves monitoring the cross-correlation
of multiple GNSS observables and measurements. To val-
idate the approach, both synthetic and real-world spoofing
datasets were utilized. The results demonstrated the effec-
tiveness of monitoring cross-correlation among significant
GNSS observables and measurements in detecting spoofing
signals. SVM classification was employed for the spoofing
detection, achieving an impressive accuracy rate of 97.8%.

The open service (OS) signals of any GNSS core constella-
tion were vulnerable to manipulation, presenting a significant
risk for Safety-of-Life (SoL) applications. Two categories of
data manipulation, namely spoofing and meaconing, were
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TABLE 1: Comparison of Related Work

Algorithms Ref [1] Ref [2] Ref [3] Ref [9] Ref [12] Ref [13] Ref [14] Ref [15] Proposed
Machine Learning ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Deep Learning ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓

identified [4]. Spoofing involved generating and transmitting
manipulated false GNSS signals, while meaconing consisted
of recording and rebroadcasting authentic signals with a
controlled delay. The threat of GNSS signal spoofing esca-
lated with advancements in digital signal processing and the
hardware implementations of Software Defined Radio (SDR)
GNSS-spoofing transceivers. In response, the authors [17]
proposed the GNSS signal post-correlation method along
with machine learning algorithms to detect the presence
of spoofing signals. Previous researchers had successfully
employed SVM-based approaches, achieving success rates
ranging from 94 to 95%.

In [12], the vulnerability of UAVs to GPS spoofing attacks,
which involve attackers disguising themselves as genuine
GPS signals to manipulate the navigation and positioning
of UAVs, was discussed. The article proposed a novel GPS
spoofing attack detection algorithm utilizing LSTM. The
algorithm aimed to predict the flight paths of UAVs and
identify deviations from these paths as potential GPS spoof-
ing attacks. The article asserted that this algorithm outper-
formed existing detection methods in terms of efficiency and
adaptability. To evaluate the algorithm’s performance, it was
tested in a simulation environment. The results demonstrated
its effectiveness in detecting GPS spoofing attacks, with a
detection ratio of 78%. Additionally, the computation time
required for the algorithm ranged from 3 to 5 seconds.

Machine learning-based methodology for the automatic
and accurate detection of amplitude ionospheric scintilla-
tion events, which induce fluctuations in satellite broadcast
signals is explored in [18]. The approach utilized common
GNSS stand-alone receivers observables and achieved a high
detection accuracy of 98% without prefiltering or excluding
low-elevation angle data. It outperformed traditional scin-
tillation detection techniques by reducing false alarms and
missed detections. The authors also provided an overview of
scintillation effects on GNSS signals and analyzed machine
learning algorithms, models, and metrics for performance
evaluation. Decision trees were highlighted as robust, non-
linear learners with the ability to avoid overfitting through
pruning or ensembling techniques. However, it was acknowl-
edged that individual decision trees could be prone to over-
fitting if they memorized the training data by excessively
branching.

Utilization of deep learning models to enhance the mod-
eling of multipath propagation effects on GNSS correlation
outputs is discussed in [19]. A DNN structure was proposed
as a substitute for standard correlation schemes to effectively
model multipath channels. The proposed solution could be
seamlessly integrated into acquisition and tracking receiver

blocks, exhibiting promising performances in time-delay
tracking. The analysis of our proposed model along with the
previous research is shown in Table 1.

III. PROPOSED METHODOLOGY
In this paper, we employed various machine learning and
deep learning algorithms to propose a mechanism for detect-
ing authentic and spoofed GPS location. In machine learning
algorithms, SVM proved valuable for this task. However,
tuning the algorithm and selecting the appropriate kernel for
SVM are critical factors. On the other hand, deep learning al-
gorithms require large amounts of data, significant computa-
tional resources, and extensive hyper-parameter tuning. They
may not perform well on small datasets. The performance of
both machine learning and deep learning algorithms can vary
depending on the characteristics of the data.

A. DATA ACQUISITION AND SYSTEM MODEL
The proposed system model is shown in Figure 1. The
proposed methodology involves the acquisition of data from
CAV equipped with a GPS receiver and a specialized device
with Software Defined Radio (SDR) hardware and software.
The CAV moves on a road network, and its true location pk
and velocity uk are represented as

pk =

[
xk

yk

]
, (1)

uk =

[
x′
k

y′k

]
, (2)

where xk and yk represents the x and y coordinates of CAV’s
location at time k respectively. In the same manner x′

k and y′k
represent the horizontal and vertical components of CAV’s
velocity at time k, respectively. The GPS receiver processes
satellite positioning signals to output the GPS location of the
CAV as

pG
k =

[
xG
k

yGk

]
, (3)

where pGk is a two-dimensional vector that represents the
CAV’s GPS location at time k with xG

k represents the CAV’s
latitude and yGk represents the CAV’s longitude. The under-
lying assumption in this work is that a user defined constant
bias is introduced by the attacker in the GPS location Values.
The GPS location of the CAV under attack is modeled as a
Gaussian random variable as

pG
k ∼ N (pk +BA,Σ

G
k ), (4)

ΣG
k = diag(2σG

k ), (5)
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FIGURE 1: GPS location spoofing attack scenario on CAVs

where

BA =

[
bx
by

]
. (6)

BA represents the attack vector with bx and by as the attack
biases, indicating the magnitude of the attack in meters. In
case of attack free scenario, BA = 0. pGk represents the GPS
location of the CAV at time k. pk is the true location of the
CAV at time k, BA is the attack vector, ΣG

k is the covariance
matrix and σG

k is the standard deviation of the GPS location.
A specialized device, equipped with SDR software and

hardware, is integrated into the CAV to monitor signals from
the surrounding connected vehicles and wireless network
infrastructure. This device operates autonomously, without
relying on GPS measurements. At the heart of its func-
tionality lies the Localization Algorithm (LA), specifically
designed to estimate the precise location of the CAV based
on these signals; see [20] for more details of localization.
By using the characteristics of these signals, such as signal
strength, time-of-arrival, or signal propagation patterns, the
algorithm outputs the estimated location pkL of CAV’s which
is denoted as

pL
k =

[
xL
k

yLk

]
, (7)

where pLk represents the CAV’s location estimated by the
localization algorithm at time k. pLk is a two-dimensional vec-
tor that represents the CAV’s location, with xL

k representing
the CAV’s localized x-coordinates and yLk representing the
CAV’s localized y-coordinates. The localization algorithm

uses the information from on-board sensors and more pre-
cisely the yaw rate (ϕ.), steering angle (α) and wheel speed
(v) measurements for the estimated location of CAV’s. The
LA measurements are modelled as Gaussian random variable
and represented as

pL
k ∼ N (pk,Σ

L
k ), (8)

ΣL
k = diag(2σL

k ), (9)

where σL
k is the standard deviations of the LA measurement

and ΣL
k is the covariance matrix.

There are three major steps involved in our proposed
solution; see [2] for detailed overview of such algorithm. The
first step is of prediction in which the reading from on-board
sensors specifically yaw rate (ϕ.), steering angle (α) and
wheel speed (v) are used for the CAV’s location prediction
represented as

p̂k+1 =

[
x̂k+1

ŷk+1

]
, (10)

at time k + 1, where CAV’s previously refined location is
given as

p̂k =

[
x̂k

ŷk

]
. (11)

In the second step, CAV’s location measurements i.e. pLk+1

which are independent from GPS values, are used to update
the values obtained from the first step by means of Bayesian
filtering and output the values of refined location estimate
p̂k+1. In the last step, the GPS location measurements from
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the GPS receiver of the CAV (authentic and spoofed) i.e.
pGk+1& p̂Gk+1 respectively, along with the values obtained in
the second step i.e. p̂Lk+1 are used with their corresponding
labels (0 for spoofed and 1 for authentic) for the training
and testing purposes of our proposed machine and deep
learning model for the detection of location spoofing. The
entire process is represented in Algorithm 1.

Algorithm 1: Data Acquisition from CARLA Simu-
lator: Implementing Spoofing and Localization Algo-
rithm

Input : SensorsData, GPSReceiverData
Output: xG

k , y
G
k , ẋ

G
k , ẏ

G
k , x̂

L
k , ŷ

L
k

pGk ← Fetch GPS Receiver Data
ApplyFixedBiasAttack(pGk , BA):
ṗGk ← pGk +BA

LocalizationAlgorithm(vk, δk, ωk):
Set the initial state of the vehicle: xreal, yreal
for each movement step i from 1 to movementSteps

do
Generate random values for vk, δk, ωk

Update the predicted state using the vehicle
dynamics equations:
xpred = xreal + vk · cos(θreal) ·∆t
ypred = yreal + vk · sin(θreal) ·∆t
Update the process covariance matrix based on the

predicted state and noise covariance
Obtain the current sensor measurements:
xmeasured, ymeasured

Generate random values for measurement noise:
nx, ny

Calculate the innovation or measurement residual:
δx = xmeasured − xpred + nx

δy = ymeasured − ypred + ny

Calculate the innovation covariance matrix:
S = Hk · Ppred ·HT

k +RGPS
Calculate the Kalman gain:
K = Ppred ·HT

k · S−1

Update the state estimate:
x̂L
k = xpred +K[0] · δx

ŷLk = ypred +K[1] · δy
Update the error covariance matrix:
Eest = (I −K ·Hk) · Ppred
Update the real state variables:
xreal = x̂L

k , yreal = ŷLk
end

We conducted an analysis of our machine and deep learn-
ing models using three distinct datasets obtained from the
CARLA simulator as shown in Figure 2. The first dataset
consisted of 1246 samples, the second dataset comprised
2397 samples, and the third dataset contained 5777 samples.
Each dataset contains values of pGk+1, ṗGk+1, p̂Lk+1 and corre-
sponding labels i.e. 0 for spoofed and 1 for authentic data.
The sampling rate we used for these dataset is 40 Hz i.e. the
simulator updates the real world state 40 times per second.

FIGURE 2: Data fetching from CARLA simulator

Additionally, for each dataset, we examined the performance
of our algorithms across three bias values i.e. BA, which
correspond to the detection accuracy of GPS spoofing within
specific distance thresholds. bx & by were set at 3, 5 & 9
meters for each dataset.

B. MACHINE AND DEEP LEARNING ALGORITHMS
1) Support Vector Machine
SVM is a powerful machine learning classifier used to clas-
sify future predictions into different classes. As a supervised
learning algorithm, SVM requires a portion of the dataset for
training in order to make predictions on new data. In this
work, SVM is employed to effectively discriminate between
genuine and spoofed instances. To perform the classification
task, we take into account the values xG

k , yGk , ẋG
k , ẏGk , x̂L

k

and ŷLk as input, which determine the dimensionality of the
dataset and can be represented as:

X = xG
k , y

G
k , ẋ

G
k , ẏ

G
k , x̂

L
k , ŷ

L
k (12)

SVM aim to find an optimal hyperplane that separates
the features into different classes with maximum margin. In
a 2D dataset, a line (support vector) can accomplish data
classification with maximum margins. Hyperplane can be
expressed as:

Cx+ w = 0 (13)

To find the optimal hyperplane, we minimize the equation:

1

2
||w||2 + C

n∑
i=1

max(0, 1− yi(w
TΦ(xi) + b)), (14)

subjected to the constraints:

yi(w
TΦ(xi) + b) ≥ 1− ξi, (15)
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where ξi ≥ 0. ||w|| represents the Euclidean norm of
the weight vector w, C is the regularization parameter, yi
is the class label for sample xi, Φ(xi) is the feature vector
transformed using the kernel function, wT denotes the trans-
pose of the weight vector w, b is the bias term, and ξi is
the slack variable. Given a test sample x, we compute the
feature vector Φ(x) and use the trained SVM classifier to
make predictions with the expression:

ypred = sign(wTΦ(x) + b) (16)

The sign function returns −1 for negative inputs and +1
for positive inputs. Xi represents the feature vector which
are xG

k , y
G
k , ẋ

G
k , ẏ

G
k , x̂

L
k , ŷ

L
k , and yi is the label, which is 0 in

case of authentic signal or 1 in case of spoofed signal. It can
also be expressed as:

ypred = sign(wTΦ(x) + b),

=

{
0, spoofed
1, genuine

(17)

SVM also employ different kernels for classification pur-
poses, such as polynomial, RBF, linear, or sigmoid. In this
work, all these kernels are utilized in SVM implementation
as depicted in Algorithm 2, and the results are reported in
Section IV. The hyperparameters used in our proposed SVM
algorithm are depicted in Table 2.

Algorithm 2: GPS Location Spoofing Attack Detec-
tion using SVM

Input : xG
k , yGk , ẋG

k , ẏGk , x̂L
k , ŷLk

Output: accuracy, precision, recall, F1 score, training
time, prediction time, learning curve data

Split data into training and testing sets: Xtrain,
Xtest, Ytrain, Ytest;

Define hyperparameters for tuning: C, kernel, γ;
Perform grid search to find best hyperparameters

using Xtrain and Ytrain;
Obtain best hyperparameters: Cbest, kernelbest,
γbest;

Create SVM classifier with best hyperparameters:
svm_model;

Start timer;
Train svm_model on Xtrain and Ytrain;
Stop timer and calculate training time;
Start timer;
Make predictions on Xtest using svm_model;
Stop timer and calculate prediction time;
Calculate accuracy, precision, recall, and F1 score

using Ytest and predicted labels;
Obtain learning curves using svm_model;
Calculate mean and standard deviation of training

and test scores

TABLE 2: Hyperparameters of ML and DL Algorithm

ML Algorithm Hyperparameters
Cbest 0.05
γbest 0.07

Kernelbest Linear
DL Algorithm Hyperparameters
num_filtersbest 32
kernel_sizebest 3 ∗ 3
pooling_size 2 ∗ 2
hidden_units 128
learning_rate 0.009
batch_size 32
num_epochs 20

2) Convolution Neural Network

Algorithm 3: GPS Location Spoofing Attack Detec-
tion using CNN

Input : xG
k , yGk , ẋG

k , ẏGk , x̂L
k , ŷLk

Output: Accuracy, precision, recall, F1 score, training
time, prediction time, learning curve data

Split data into training and testing sets: Xtrain,
Xtest, Ytrain, Ytest;

Define hyperparameters for tuning: num_filters,
kernel_size, pooling_size, hidden_units,
learning_rate, batch_size, num_epochs;

Perform grid search to find best hyperparameters
using Xtrain and ytrain;

Obtain best hyperparameters: num_filtersbest,
kernel_sizebest, pooling_sizebest, hidden_unitsbest,
learning_ratebest, batch_sizebest, num_epochsbest;

Create CNN model with best hyperparameters:
cnn_model;

Start timer;
Train cnn_model on Xtrain and Ytrain;
Stop timer and calculate training time;
Start timer;
Make predictions on Xtest using cnn_model;
Stop timer and calculate prediction time;
Calculate accuracy, precision, recall, and F1 score
using ytest and predicted labels;

Generate learning curves using cnn_model;
Calculate mean and standard deviation of training
and test scores

By leveraging the power of convolutional layers, pooling
layers, and fully connected layers, CNNs can extract intricate
spatial features from pGk , enabling accurate discrimination
between genuine and spoofed GPS signals. Given a labeled
dataset D comprising of xG

k , y
G
k , ẋ

G
k , ẏ

G
k , x̂

L
k , ŷ

L
k as input fea-

tures and yi is the corresponding class label (0 for no spoofing
and 1 for spoofing), CNNs aim to learn a discriminative
mapping function between the inputs and the class label. The
output feature map of a convolutional layer is computed as:

Fout = conv(Fin,W ) + b, (18)
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where Fin is the input feature map, W is the filter weights,
and b is the bias term. The max pooling operation, which
down samples the feature maps, is represented as:

Pout(i, j) = max
m,n∈pooling region

Pin(m,n), (19)

where Pin is the input feature map and Pout is the output
feature map after pooling. The softmax activation function,
applied in the final layer, converts the logits into a probability
distribution over the classes:

P (y = i|x) = ezi∑K
j=1 e

zj
, (20)

where zi is the logarithm of the odds for the event corre-
sponding to the class i, and K is the total number of classes.
The acquired data, consisting of pGk and p̂Lk , are utilized to
train machine and deep learning algorithms for detecting
GPS spoofing. The model aim to distinguish between legiti-
mate GPS measurements and spoofed GPS measurements by
learning patterns and characteristics from the collected data
as depicted in Algorithm 3. The hyperparameters used in our
proposed CNN algorithm are depicted in Table 2.

The training process involves feeding the xG
k , yGk , ẋG

k , ẏGk ,
x̂L
k , ŷLk values with their corresponding labels (i.e., 0 or 1)

into the model. We evaluate the performance of our proposed
model by analyzing the detection results using a confusion
matrix. The confusion matrix categorizes the results into four
categories: True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). To assess the effec-
tiveness of our attack detection solution, we rely on several
metrics derived from the confusion matrix, including Preci-
sion (P), Recall (R), and F1 Score. P represents the proportion
of correctly identified attacks among all the detected attacks,
including false positives. R measures the proportion of cor-
rectly identified attacks among all the true attacks, accounting
for missed detections (i.e., false negatives). Furthermore, the
F1 Score provides a balanced measure by taking into account
both P and R. It is a weighted average of P and R, serving
as a metric for accuracy on the given dataset. The F1 Score
provides insights into the overall performance of our attack
detection solution, considering both the ability to correctly
identify attacks and minimize FP and FN.

IV. EXPERIMENTAL RESULTS
A comprehensive evaluation of our machine and deep learn-
ing model for each combination of bias value and dataset
is presented in this section. The simulator environment of
CARLA for dataset generation is presented in Figure 2.
The dataset fetched from CARLA simulator comprises of
time, compass, accelerometer readings (x, y, z), gyroscope
readings (x, y, z), geolocation coordinates (x, y, z), GNSS
latitude, GNSS longitude, GNSS altitude, control gear, con-
trol brake, yaw rate (ϕ.), steering angle (α) and wheel
speed (v). Figure 3 illustrates the trajectories along with GPS
noise measurements, providing a visual representation of the
movement patterns of the vehicle. The figure represents the

values of pGk , showcasing the variability and noise inherent
in the measurements. Figure 4 showcases the values of pLk
along with the values of pGk of dataset 1,2 and 3 respectively.
Figure 5 plots the values of pGk along with p̂Gk of dataset 1,2
and 3 respectively. This figure highlights the impact of GPS
spoofing, where attackers manipulate GPS signals to deceive
the localization algorithm and create a false trajectory. In
Figure 6, the box plots showcase the distribution and statis-
tical summary of three distinct datasets. Each box represents
the interquartile range (IQR), encompassing the middle fifty
percent of the data, with the median line demarcating the
center. These box plots offer a visual means of comparing the
data distributions and uncovering any discernible dissimilar-
ities or resemblances present in the three datasets. The box
plot analysis of dataset 1 reveals that the spoofing attack is
more pronounced in the variables xG

k and ẋG
k as compared

to yGk and ẏGk . This indicates that the spoofing attack has
a stronger impact on the GPS coordinates related to the x-
axis and its velocity. On the other hand, when considering
the comparison between xG

k and x̂L
k , there is significantly

less difference observed. This suggests that the localization
algorithm employed shows higher accuracy, as the difference
between the estimated localization xL

k and the actual GPS
location xG

k is relatively small.
The experimental results demonstrate the effectiveness of

machine and deep learning algorithms in accurately distin-
guishing between genuine and spoofed GPS locations. The
evaluation metrics, such as Accuracy (A), P, R and F1-score,
provide quantitative insights into the performance of the
models.

A. MACHINE LEARNING MODEL
The proposed methodology incorporates K-fold cross-
validation to evaluate the performance of the model reliably.
The dataset DA, DB and DC comprises of the values of xG

k ,
yGk , ẋG

k , ẏGk , x̂L
k and ŷLk along with their labels as 0 or 1,

which consists of 1246, 2397 and 5777 samples respectively.
We split DA, DB and DC into K where K = 20 non-
overlapping subsets: D1, D2, ..., D20. For each iteration of
K-fold cross-validation, we select one subset as the test set
and use the remaining K − 1 subsets as the training set.
The index of the current iteration is denoted as i, where
1 ≤ i ≤ K and K = 20. The training set for iteration i is
represented as Ditrain, and the corresponding test set is Ditest.

The model is trained on the training set Ditrain and then
evaluated on the test set Ditest. The performance metrics,
such as A, P, R, and F1 score, are calculated based on the
predictions of the model on Ditest. To assess the performance
of the proposed model across different iterations, the K-fold
cross-validation process is repeated multiple times, varying
the subsets used for training and testing. This helps to mit-
igate the impact of random variations in the dataset splits.
By applying K-fold cross-validation and calculating these
performance metrics, we obtain a robust evaluation of the
proposed model’s effectiveness in detecting the nature of the
signal (spoofed or authentic). Figure 7 shows the results of
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(a) (b) (c)

FIGURE 3: GPS ground truth with noise for dataset 1,2 and 3 respectively

(a) (b) (c)

FIGURE 4: GPS ground truth and estimated location for dataset 1,2 and 3 respectively

(a) (b) (c)

FIGURE 5: GPS ground truth and Spoofed location for dataset 1,2 and 3 respectively

(a) (b) (c)

FIGURE 6: Box plot for dataset 1,2 and 3 respectively
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FIGURE 7: K-fold experimentation when 10% of the dataset
is chosen in each iteration as the training fold

FIGURE 8: K-fold experimentation when 5% of the dataset
is chosen in each iteration as the training fold

K-folds experimentation when 10% of the dataset is chosen
in each iteration as the training fold and Figure 8 shows the
same results in case of 5% training set selection in each fold.
The variations in A observed across folds during K-fold cross
validation is attributed to the potential over-fitting or under-
fitting of the model. To mitigate this issue, the value of K
was chosen appropriately, specifically K = 20 for our GPS
location spoofing attack detection. This choice ensures that
the data is sufficiently diversified and reduces the risk of over-
fitting or under-fitting, thereby enhancing the reliability of the
model’s performance evaluation.

Figure 9 depicts the learning curve of the SVM model.
It illustrates the relationship between the training set size
and the model’s training and validation accuracy or loss.
The learning curve demonstrates a consistent and promising
trend. Starting from an initial accuracy of 0.980, the curve
exhibits a steady increase, eventually converging towards a
near perfect accuracy of 1. This trend indicates that as the
model is exposed to additional training examples, it learns

FIGURE 9: Learning curve for SVM

FIGURE 10: Computational time for SVM kernel

from the data and refines its predictions, leading to higher
accuracy. The learning curve’s upward trajectory indicates
that the model is effectively capturing the underlying patterns
in the training, testing and cross validation datasets and suc-
cessfully generalizing its knowledge to achieve near perfect
accuracy showcasing its potential for accurate GPS location
spoofing attack detection. The graph clearly demonstrates
that convergence takes place for both the training and testing
sets at approximately 950 training examples.

Among different SVM kernels, the linear kernel exhibits
the best computational time performance as depicted in Fig-
ure 10. It is the most efficient and fastest. The RBF (Radial
Basis Function) kernel requires more computational time.
The polynomial kernel falls in between, while the sigmoid
kernel has the highest computational time, making it the
least efficient option. For optimal computational efficiency,
the linear kernel is recommended for GPS location spoofing
attack detection.

The analysis of the accuracy achieved by the SVM kernel
when applied to three distinct trajectories is shown in Table 3.
Linear kernel achieves accuracy values ranging from 0.96 to
1 across the different cases. The highest accuracy is observed

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3319514

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3: Accuracy pertaining to SVM kernel for three
different trajectories

Cases Samples b (m) SVM Kernel Accuracy
Linear RBF Poly Sigmoid

Case 1 3 0.96 0.90 0.95 0.54
Case 2 1246 5 0.98 0.97 0.98 0.58
Case 3 9 0.99 0.98 0.99 0.78
Case 4 3 0.96 0.96 0.78 0.46
Case 5 2397 5 0.98 0.96 0.80 0.49
Case 6 9 0.99 0.97 0.83 0.55
Case 7 3 0.96 0.85 0.82 0.61
Case 8 5777 5 0.98 0.86 0.90 0.61
Case 9 9 0.99 0.93 0.95 0.68

in case 6 and case 9 which is 0.99. The accuracy of RBF
kernel ranges from 0.85 to 0.98. The highest accuracy is
observed in case 9 i.e. 0.93, while the lowest is in case 7 i.e.
0.85. For polynomial kernel, the accuracy ranges from 0.78
to 0.95. Case 9 has the highest accuracy of 0.95, and case 4
has the lowest accuracy of 0.78. In case of sigmoid kernel, the
accuracy values vary from 0.46 to 0.68. The highest accuracy
is observed in case 9 which is 0.68, while the lowest is in case
4 i.e. 0.46.

The results of all SVM kernel are demonstrated in Table
4. The comparative analysis of SVM models reveals that
the linear kernel outperforms other kernel functions in terms
of P, R and F1 score and generalization, making it the
most suitable choice for GPS location spoofing attack detec-
tion. The RBF kernel demonstrates competitive performance.
However, it falls slightly behind the linear kernel in accuracy
and computational efficiency. The polynomial kernel proves
effective in handling nonlinear relationships and intricate
patterns, particularly in datasets with polynomial charac-
teristics. It requires careful hyper parameter tuning and is
computationally demanding for large datasets. The sigmoid
kernel shows moderate performance, being capable of han-
dling certain non-linearities but struggling with complex and
high-dimensional datasets. Parameter sensitivity and careful
tuning are necessary for optimal results.

Table 5 illustrates the confusion matrix of the SVM algo-
rithm with different kernels. The confusion matrix provides a
detailed breakdown of the model’s predictions, showing the
TP (correctly classified spoofed signal, TN (correctly classi-
fied spoofed signal), FP (misclassified authentic signal) and
FN values (misclassified spoofed signal). The SVM linear
kernel achieves perfect accuracy, almost correctly classifying
all authentic and spoofed signals in the dataset. It has the
highest number of TP and TN indicating excellent perfor-
mance. The SVM RBF and polynomial kernels also show
high accuracy, with a majority of authentic and spoofed sig-
nals being correctly classified. However, they have a slightly
higher number of FN and FP compared to the linear ker-
nel. The SVM sigmoid kernel demonstrates relatively lower
accuracy compared to other kernels with a higher number
of misclassifications for both authentic and spoofed signals.
Based on these observations, the SVM linear kernel performs
the best among the evaluated kernels, achieving the highest

FIGURE 11: K-fold experimentation when 10% of the
dataset is chosen in each iteration as the training fold

FIGURE 12: K-fold experimentation when 5% of the dataset
is chosen in each iteration as the training fold

accuracy and lowest misclassification rate for authentic and
spoofed GPS location.

B. DEEP LEARNING ALGORITHMS
The experimentaional results in case when 10% and 5%
of dataset is chosen for each iteration as training fold are
shown in Figure 11 and 12, respectively. The experimental
results demonstrates that employing a 5% training fold in
each iteration of the GPS location spoofing attack detection
model leads to higher accuracy compared to using a 10%
training fold. This finding suggests a reduction in over-
fitting, indicating that the model is better able to generalize
to unseen data. Additionally, utilizing a smaller training fold
enables a better balance between bias and variance resulting
in improved accuracy. These results highlight the importance
of considering the appropriate training fold size to mitigate
over-fitting and achieve optimal performance in GPS location
spoofing attack detection.

The impact of increasing epochs on the accuracy of CNN
is shown in Figure 13. By systematically increasing the num-
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TABLE 4: Analysis of proposed work corresponding to SVM with different Kernels

SVM Kernel
Cases Linear RBF Poly Sigmoid

P R F1 P R F1 P R F1 P R F1
Case 1 0.98 0.97 0.98 0.85 0.93 0.90 0.97 0.92 0.95 0.57 0.37 0.48
Case 2 0.99 0.97 0.98 0.93 0.95 0.97 0.97 0.93 0.98 0.62 0.39 0.48
Case 3 0.99 0.98 0.99 0.98 0.97 0.96 0.99 0.97 0.98 0.45 0.45 0.57
Case 4 0.91 0.95 0.98 0.89 0.92 0.95 0.88 0.65 0.75 0.45 0.26 0.32
Case 5 0.96 0.97 0.98 0.92 0.94 0.96 0.91 0.72 0.82 0.50 0.32 0.39
Case 6 0.99 0.98 0.99 0.97 0.96 0.98 0.94 0.74 0.84 0.58 0.44 0.50
Case 7 0.97 0.99 0.97 0.83 0.86 0.85 0.85 0.78 0.81 0.64 0.46 0.54
Case 8 0.98 0.99 0.98 0.84 0.89 0.87 0.92 0.88 0.90 0.68 0.47 0.58
Case 9 0.99 0.99 0.99 0.95 0.90 0.93 0.98 0.91 0.94 0.71 0.49 0.65

TABLE 5: Confusion Matrix of SVM Algorithm

Total No. of Predicted Authentic Predicted Spoofed

Test Samples Signal Signal
Linear

Actual 880 3Authentic Signal

Actual 2 849
Spoofed Signal RBF

Actual 843 40Authentic Signal

Actual 82 768
Spoofed Signal Poly

Actual 867 16Authentic Signal

Actual 77 773
Spoofed Signal Sigmoid

Actual 659 224Authentic Signal

Actual 453 397
Spoofed Signal

FIGURE 13: The impact of increasing epochs on CNN

ber of epochs during training, the analysis aims to uncover
any patterns or trends in the model’s performance metrics.
The results shed light on the relationship between epoch
count and metrics such as accuracy, loss, and convergence
rate, providing insights into the optimal number of epochs
for achieving optimal model performance. The findings con-
tribute to the understanding of the training dynamics and
help in fine-tuning the training process to maximize the deep
learning model’s predictive capabilities.

As epochs increase, evaluation metrics such as A, P, R,
and F1 score tend to exhibit certain trends as shown in Figure
14. Initially, as epochs increase, we observed improvements

FIGURE 14: The impact of increasing epochs on evaluation
metrics

in the model’s evaluation metrics. This indicates that the
model is learning and refining its predictions by iteratively
adjusting the weights and biases during training but with
the increased number of epochs, computational time also
increased which is not suitable for our GPS location spoofing
attack detection problem. The results in Figure 15 focuses on
the impact of increasing epochs on both computational time
and accuracy in CNN algorithm. As the number of epochs
increases, the computational time required for training the
model also increases due to the extended duration of forward
and backward passes through the neural network. Therefore,
a trade-off needs to be considered between computational
time and accuracy when determining the optimal number
of epochs for a deep learning model. It is crucial to strike
a balance where the model achieves satisfactory accuracy
without significantly increasing computational time. Proper
model evaluation and monitoring techniques, such as early
stopping, can help identify the point of optimal performance
to mitigate the risk of over-fitting and unnecessary computa-
tional burden. For our GPS location spoofing attack detection
model, we conducted the training process using 20 epochs.
This choice aimed to achieve a reasonable level of accuracy
while managing computational time effectively.

Figure 16 illustrates the learning curve of CNN model. It
demonstrates the relationship between the training set size
and the model’s training and validation accuracy or loss. The
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FIGURE 15: The impact of increasing epochs on computa-
tional time and accuracy

FIGURE 16: Learning curve of CNN

learning curve visually depicts the convergence behavior of
the CNN model during the training process. By analyzing the
learning curve of the CNN model, we determined that the ac-
curacy remains almost constant after 620 training examples.
This information is valuable for fine-tuning the model and
improving its performance in GPS location spoofing attack
detection.

Figure 17 represents the computational time of the CNN,
LSTM and DNN algorithm. The chart displays the time mea-
surements for each model variant: CNN, LSTM, and DNN.
The values indicate the duration in seconds for algorithm to
process. As observed, the CNN model consistently exhibits
the shortest computational time, followed by the LSTM and
DNN models.

Table 6 presents the accuracy results obtained from various
deep learning algorithms for three different trajectories. The
table provides a comparative analysis of the algorithms’
performance in terms of accuracy. As observed in Table 6,
it is evident that increasing the bias values leads to noticeable
improvements in terms of A, P, R, and F1 for each trajectory.

FIGURE 17: Computational time of deep learning models

TABLE 6: Accuracy pertaining to deep learning algorithms
for three different trajectories

Cases Samples b (m) DL Algorithm Accuracy
CNN LSTM DNN

Case 1 3 0.87 0.65 0.58
Case 2 1246 5 0.95 0.68 0.60
Case 3 9 0.99 0.71 0.74
Case 4 3 0.82 0.95 0.76
Case 5 2397 5 0.84 0.95 0.77
Case 6 9 0.99 0.97 0.77
Case 7 3 0.86 0.95 0.63
Case 8 5777 5 0.96 0.95 0.65
Case 9 9 0.99 0.97 0.96

The observed improvement is attributed to the clear distin-
guishability between authentic and spoofed GPS locations
at bias values of 9. However, as the bias values decrease,
the proximity between authentic and spoofed GPS signals
increases, posing a greater challenge in differentiation. The
analysis presented in Table 7 evaluates the proposed work
using different deep learning models: CNN, LSTM, and
DNN. Performance metrics, including A, P, R, and F1, are
evaluated for each model across multiple cases. Consistently,
the CNN model outperforms the others across multiple cases,
achieving high P, R, and F1. Notably, in Case 2, the CNN
model demonstrates superior performance with a P, R and
F1 of 0.94, 0.97, and 0.96 respectively. However, the LSTM
and DNN models also exhibit competitive performance in
specific cases. For instance, in Case 4, the LSTM model
achieves a P, R and F1 of 0.78, 0.81, and 0.78 respectively,
accurately detecting and classifying GPS spoofing attacks.
Similarly, in Case 9, the DNN model achieves P, R and F1 of
0.96, 0.96, and 0.96 respectively, indicating its effectiveness
in spoofing detection. The performance of all models may
vary across different cases due to varying data characteris-
tics and patterns, impacting detection accuracy. Overall, the
results underscore the CNN model’s efficacy in achieving
higher accuracy and robustness in detecting GPS location
spoofing attacks. Meanwhile, the LSTM and DNN models
exhibit promising performance in specific scenarios.
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TABLE 7: Analysis of proposed work corresponding to dif-
ferent deep learning models

Deep Learning Models
Cases CNN LSTM DNN

P R F1 P R F1 P R F1
Case 1 0.93 0.80 0.86 0.59 0.83 0.72 0.55 0.78 0.67
Case 2 0.94 0.97 0.96 0.62 0.84 0.74 0.56 0.79 0.71
Case 3 0.99 0.98 0.99 0.65 0.88 0.75 0.72 0.80 0.76
Case 4 0.86 0.93 0.84 0.78 0.81 0.78 0.79 0.55 0.70
Case 5 0.87 0.99 0.86 0.85 0.89 0.82 0.80 0.57 0.72
Case 6 0.99 0.99 0.99 0.95 0.96 0.96 0.95 0.59 0.73
Case 7 0.95 0.75 0.84 0.94 0.65 0.81 0.64 0.89 0.72
Case 8 0.99 0.91 0.95 0.94 0.89 0.92 0.68 0.93 0.74
Case 9 0.99 0.98 0.99 0.99 0.95 0.97 0.96 0.96 0.96

TABLE 8: Confusion Matrix of DL Algorithms

Total No. of Predicted Authentic Predicted Spoofed

Test Samples Signal Signal
CNN

Actual 879 4Authentic Signal

Actual 14 836
Spoofed Signal LSTM

Actual 864 19Authentic Signal

Actual 44 806
Spoofed Signal DNN

Actual 846 37Authentic Signal

Actual 38 812
Spoofed Signal

Table 8 illustrates the confusion matrix for the deep learn-
ing models: CNN, LSTM, and DNN. The confusion matrix
provides a comprehensive summary of the models’ perfor-
mance, including FN, FP, TN, and TP for each class. By ex-
amining the confusion matrix, we can evaluate the accuracy
and misclassification patterns of the deep learning models
across different classes. Regarding the CNN algorithm, the
matrix reveals that out of the total number of test samples,
879 were correctly classified as authentic signals, while only
4 were mistakenly classified as spoofed signals. Similarly,
for spoofed signals, 836 were accurately identified, with
14 being misclassified as authentic signals. For the LSTM
algorithm, the matrix demonstrates that 864 authentic signals
were correctly predicted, while 19 were misclassified as
spoofed signals. For the spoofed signals, 806 were correctly
identified, and 44 were misclassified as authentic signals.
Lastly, for the DNN algorithm, the matrix reveals that 846
authentic signals were correctly predicted, while 37 were
misclassified as spoofed signals. Among the spoofed signals,
812 were correctly identified, and 38 were misclassified as
authentic signals. Based on these observations, the CNN
performs best among LSTM and DNN, achieving the highest
accuracy and lowest misclassification rate for authentic and
spoofed GPS location.

TABLE 9: Comparison of proposed work with existing ones

Algorithms Accuracy Precision Recall F1
Proposed 0.99 0.99 0.98 0.99
Ref [2] 0.97 0.95 0.99 0.97
Ref [3] 0.96 0.99 0.93 0.97
Ref [9] 0.97 0.97 0.96 0.96
Ref [12] 0.96 0.96 0.98 0.96
Ref [13] 0.88 0.90 0.92 0.90
Ref [14] 0.87 0.88 0.90 0.86
Ref [15] 0.85 0.81 0.88 0.89

C. COMPARATIVE ANALYSIS
In Table 7, we conducted a comparison between our proposed
work and existing studies. In [2], the authors have used bias
measurements of 5, 9, and 12 meters, whereas we focused
on bias measurements of 3, 5, and 9 meters. Despite the
lower bias measurements, higher accuracy was achieved. The
proposed algorithm presented in [2] attained an accuracy of
97.57% in the best case, while our approach achieved an
accuracy of 99% in both machine learning and deep learning
algorithms. Additionally, we performed a similar comparison
with the methodologies proposed in papers [3], [9], [12],
[13], [14], [15] and the results are included in Table 9.

V. CONCLUSION
In conclusion, this research work addresses the critical se-
curity concerns associated with CAVs by proposing a novel
methodology that uses DL and ML algorithms. Specifically,
CNN and SVM are utilized to protect CAVs from GPS loca-
tion spoofing attacks. The proposed solution has undergone
extensive experimentation and analysis, utilizing real-time
simulations in the CARLA simulator. The performance eval-
uation encompasses different learning algorithms applied to
three distinct trajectories, considering metrics such as A, P, R,
F1, and computational costs. The results strongly indicate the
effectiveness of the proposed approach in mitigating the risks
associated with GPS location spoofing attacks on CAVs. By
harnessing the power of DL and ML algorithms, the proposed
solution demonstrates great potential in fortifying the secu-
rity of CAVs and reducing potential hazards to pedestrians
and drivers. This research makes a significant contribution
to the existing knowledge by conducting a comprehensive
evaluation and comparison of various learning algorithms in
the context of GPS location spoofing detection. The findings
highlight the superiority of the proposed methodology over
existing solutions, emphasizing the importance of incorpo-
rating advanced technologies to safeguard the integrity and
security of CAVs. Looking ahead, future research could ex-
plore additional ML and DL techniques, as well as real-time
implementation and testing on physical CAVs. Continued
efforts in this field will play a crucial role in bolstering the
security of CAVs, ensuring the safe and reliable deployment
of autonomous transportation systems in the future.
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