7 research outputs found

    Safe experimentation dynamics algorithm for data-driven PID controller of a class of underactuated systems

    Get PDF
    In recent decades, various control strategies for underactuated mechanical systems (UMS) have been widely reported which are derived from the systems’ model. Due to the problem of the unmodeled dynamics, there is a significant disparity between the theory of control and its actual applications, which makes the model-based controller difficult to apply. In recent years, control researchers have been switching to the method of data-driven control in order to eliminate this disparity. The control performance of this method is independent of the plant’s model accuracy to attain the control objective. This is because its controller’s design is founded only on the input-output (I/O) data measurement of the actual plants. In the industry, the proportional-integral-derivative (PID) controller is the control method that has been widely implemented because of its simplicity, the fact that it is more understandable and more reliable to be used for industrial purposes. So far, the tuning methods used for data-driven PID for the underactuated systems are mostly based on the multi-agent-based optimization, which means that the design requires substantial computation time and make it not practical for on-line tuning applications. Therefore, it is necessary to develop a tuning strategy that requires less computation time. Previously, a stochastic approximation based method such as the norm-limited simultaneous perturbation stochastic approximation (NL-SPSA) and global NL-SPSA (G-NL-SPSA) have shown successful results as tools for the data-driven PID tuning. Notably, the SPSA and GSPSA based methods only produced the optimal design parameter at the final iteration while it may keep a better design parameter during the tuning process if it has a memory feature. Hence, a memory-based optimization tool has good potential to retain the optimal design parameter during the PID tuning process. This can overcome the existing memory-based algorithms such as random search (RS) and simulated annealing (SA) which currently produce less control accuracy due to the local minimum problem. Motivated by the limitations of the current methods, there is an advantage to using safe experimentation dynamics (SED) as a tool for optimization. SED offers memory-based features and effectiveness to perform with lesser computation time to overcome a range of optimization problems, even for high-dimensional parameter tuning. Moreover, other than the memory-based feature, SED algorithm has fewer design parameters to be addressed and the independence of the gain sequence in the tuning process. Previously, SED algorithm has been applied in to control scheme of wind farm to optimize the total power production but has yet to be applied in PID tuning. Therefore, it is good to study the effectiveness of SED in PID tuning. In this study, the efficiency of the proposed approach is tested by applying the PID controller tuning to the slosh control system, double-pendulum-type overhead crane (DPTOC) control system and multi-input-multi-output (MIMO) crane control system. The performance was evaluated using numerical examples in terms of tracking performance and control input energy. Thirty trials have been performed to evaluate the SED, norm limited SPSA (NL-SPSA), global norm limited SPSA (G-NL-SPSA), and RS algorithms in each example. Next, when the pre-stated termination condition is fitted, each method is evaluated based on the statistical analysis involving the objective function, the total norm of the error and total norm of the input. Then, the rise time, settling time, and percentage of overshoot of the one best trial out of the 30 trials were observed for each method. In the DPTOC control system, we also present the examples with disturbance. The performance comparison was made only between the SED based method and G-NL-SPSA based method. In addition, the average percentage of the control objective improvement retrieved from the 30 trials for each method was also observed

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur

    Health Monitoring of Nonlinear Systems with Application to Gas Turbine Engines

    Get PDF
    Health monitoring and prognosis of nonlinear systems is mainly concerned with system health tracking and its evolution prediction to future time horizons. Estimation and prediction schemes constitute as principal components of any health monitoring framework. In this thesis, the main focus is on development of novel health monitoring techniques for nonlinear dynamical systems by utilizing model-based and hybrid prognosis and health monitoring approaches. First, given the fact that particle filters (PF) are known as a powerful tool for performing state and parameter estimation of nonlinear dynamical systems, a novel dual estimation methodology is developed for both time-varying parameters and states of a nonlinear stochastic system based on the prediction error (PE) concept and the particle filtering scheme. Estimation of system parameters along with the states generate an updated model that can be used for a long-term prediction problem. Next, an improved particle filtering-based methodology is developed to address the prediction step within the developed health monitoring framework. In this method, an observation forecasting scheme is developed to extend the system observation profiles (as time-series) to future time horizons. Particles are then propagated to future time instants according to a resampling algorithm in the prediction step. The uncertainty in the long-term prediction of the system states and parameters are managed by utilizing dynamic linear models (DLM) for development of an observation forecasting scheme. A novel hybrid architecture is then proposed to develop prognosis and health monitoring methodologies for nonlinear systems by integration of model-based and computationally intelligent-based techniques. Our proposed hybrid health monitoring methodology is constructed based on a framework that is not dependent on the structure of the neural network model utilized in the implementation of the observation forecasting scheme. Moreover, changing the neural network model structure in this framework does not significantly affect the prediction accuracy of the entire health prediction algorithm. Finally, a method for formulation of health monitoring problems of dynamical systems through a two-time scale decomposition is introduced. For this methodology the system dynamical equations as well as the affected damage model, are investigated in the two-time scale system health estimation and prediction steps. A two-time scale filtering approach is developed based on the ensemble Kalman filtering (EnKF) methodology by taking advantage of the model reduction concept. The performance of the proposed two-time scale ensemble Kalman filters is shown to be more accurate and less computationally intensive as compared to the well-known particle filtering approach for this class of nonlinear systems. All of our developed methods have been applied for health monitoring and prognosis of a gas turbine engine when it is affected by various degradation damages. Extensive comparative studies are also conducted to validate and demonstrate the advantages and capabilities of our proposed frameworks and methodologies
    corecore