862 research outputs found

    Principal infinity-bundles - General theory

    Get PDF
    The theory of principal bundles makes sense in any infinity-topos, such as that of topological, of smooth, or of otherwise geometric infinity-groupoids/infinity-stacks, and more generally in slices of these. It provides a natural geometric model for structured higher nonabelian cohomology and controls general fiber bundles in terms of associated bundles. For suitable choices of structure infinity-group G these G-principal infinity-bundles reproduce the theories of ordinary principal bundles, of bundle gerbes/principal 2-bundles and of bundle 2-gerbes and generalize these to their further higher and equivariant analogs. The induced associated infinity-bundles subsume the notions of gerbes and higher gerbes in the literature. We discuss here this general theory of principal infinity-bundles, intimately related to the axioms of Giraud, Toen-Vezzosi, Rezk and Lurie that characterize infinity-toposes. We show a natural equivalence between principal infinity-bundles and intrinsic nonabelian cocycles, implying the classification of principal infinity-bundles by nonabelian sheaf hyper-cohomology. We observe that the theory of geometric fiber infinity-bundles associated to principal infinity-bundles subsumes a theory of infinity-gerbes and of twisted infinity-bundles, with twists deriving from local coefficient infinity-bundles, which we define, relate to extensions of principal infinity-bundles and show to be classified by a corresponding notion of twisted cohomology, identified with the cohomology of a corresponding slice infinity-topos. In a companion article [NSSb] we discuss explicit presentations of this theory in categories of simplicial (pre)sheaves by hyper-Cech cohomology and by simplicial weakly-principal bundles; and in [NSSc] we discuss various examples and applications of the theory.Comment: 46 pages, published versio

    Principal infinity-bundles - Presentations

    Get PDF
    We discuss two aspects of the presentation of the theory of principal infinity-bundles in an infinity-topos, introduced in [NSSa], in terms of categories of simplicial (pre)sheaves. First we show that over a cohesive site C and for G a presheaf of simplicial groups which is C-acyclic, G-principal infinity-bundles over any object in the infinity-topos over C are classified by hyper-Cech-cohomology with coefficients in G. Then we show that over a site C with enough points, principal infinity-bundles in the infinity-topos are presented by ordinary simplicial bundles in the sheaf topos that satisfy principality by stalkwise weak equivalences. Finally we discuss explicit details of these presentations for the discrete site (in discrete infinity-groupoids) and the smooth site (in smooth infinity-groupoids, generalizing Lie groupoids and differentiable stacks). In the companion article [NSSc] we use these presentations for constructing classes of examples of (twisted) principal infinity-bundles and for the discussion of various applications.Comment: 55 page

    The Sierpinski Object in the Scott Realizability Topos

    Get PDF
    We study the Sierpinski object Σ\Sigma in the realizability topos based on Scott's graph model of the λ\lambda-calculus. Our starting observation is that the object of realizers in this topos is the exponential ΣN\Sigma ^N, where NN is the natural numbers object. We define order-discrete objects by orthogonality to Σ\Sigma. We show that the order-discrete objects form a reflective subcategory of the topos, and that many fundamental objects in higher-type arithmetic are order-discrete. Building on work by Lietz, we give some new results regarding the internal logic of the topos. Then we consider Σ\Sigma as a dominance; we explicitly construct the lift functor and characterize Σ\Sigma-subobjects. Contrary to our expectations the dominance Σ\Sigma is not closed under unions. In the last section we build a model for homotopy theory, where the order-discrete objects are exactly those objects which only have constant paths

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the \infty-category of weak \infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak \infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak \infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' \infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an \infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    On Constructive Axiomatic Method

    Get PDF
    In this last version of the paper one may find a critical overview of some recent philosophical literature on Axiomatic Method and Genetic Method.Comment: 25 pages, no figure

    Orbifolds as Groupoids: an Introduction

    Get PDF
    This is a survey paper based on my talk at the Workshop on Orbifolds and String Theory, the goal of which was to explain the role of groupoids and their classifying spaces as a foundation for the theory of orbifolds

    Homotopical Algebraic Geometry I: Topos theory

    Get PDF
    This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry in homotopical and higher categorical contexts (for part II, see math.AG/0404373). In this first part we investigate a notion of higher topos. For this, we use S-categories (i.e. simplicially enriched categories) as models for certain kind of \infty-categories, and we develop the notions of S-topologies, S-sites and stacks over them. We prove in particular, that for an S-category T endowed with an S-topology, there exists a model category of stacks over T, generalizing the model category structure on simplicial presheaves over a Grothendieck site of A. Joyal and R. Jardine. We also prove some analogs of the relations between topologies and localizing subcategories of the categories of presheaves, by proving that there exists a one-to-one correspondence between S-topologies on an S-category T, and certain left exact Bousfield localizations of the model category of pre-stacks on T. Based on the above results, we study the notion of model topos introduced by C. Rezk, and we relate it to our model categories of stacks over S-sites. In the second part of the paper, we present a parallel theory where S-categories, S-topologies and S-sites are replaced by model categories, model topologies and model sites. We prove that a canonical way to pass from the theory of stacks over model sites to the theory of stacks over S-sites is provided by the simplicial localization construction of Dwyer and Kan. We also prove a Giraud's style theorem characterizing model topoi internally. As an example of application, we propose a definition of etale K-theory of ring spectra, extending the etale K-theory of commutative rings.Comment: 71 pages. Final version to appear in Adv. Mat
    corecore