317 research outputs found

    Stochastic stability research for complex power systems

    Get PDF
    Bibliography: p. 302-311."November 1980." "Midterm report ... ."U.S. Dept. of Energy Contract ET-76-A-01-2295Tobias A. Trygar

    Topics in multiscale modeling: numerical analysis and applications

    Get PDF
    We explore several topics in multiscale modeling, with an emphasis on numerical analysis and applications. Throughout Chapters 2 to 4, our investigation is guided by asymptotic calculations and numerical experiments based on spectral methods. In Chapter 2, we present a new method for the solution of multiscale stochastic differential equations at the diffusive time scale. In contrast to averaging-based methods, the numerical methodology that we present is based on a spectral method. We use an expansion in Hermite functions to approximate the solution of an appropriate Poisson equation, which is used in order to calculate the coefficients in the homogenized equation. Extensions of this method are presented in Chapter 3 and 4, where they are employed for the investigation of the Desai—Zwanzig mean-field model with colored noise and the generalized Langevin dynamics in a periodic potential, respectively. In Chapter 3, we study in particular the effect of colored noise on bifurcations and phase transitions induced by variations of the temperature. In Chapter 4, we investigate the dependence of the effective diffusion coefficient associated with the generalized Langevin equation on the parameters of the equation. In Chapter 5, which is independent from the rest of this thesis, we introduce a novel numerical method for phase-field models with wetting. More specifically, we consider the Cahn—Hilliard equation with a nonlinear wetting boundary condition, and we propose a class of linear, semi-implicit time-stepping schemes for its solution.Open Acces

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF

    Statistical and numerical methods for diffusion processes with multiple scales

    No full text
    In this thesis we address the problem of data-driven coarse-graining, i.e. the process of inferring simplified models, which describe the evolution of the essential characteristics of a complex system, from available data (e.g. experimental observation or simulation data). Specifically, we consider the case where the coarse-grained model can be formulated as a stochastic differential equation. The main part of this work is concerned with data-driven coarse-graining when the underlying complex system is characterised by processes occurring across two widely separated time scales. It is known that in this setting commonly used statistical techniques fail to obtain reasonable estimators for parameters in the coarse-grained model, due to the multiscale structure of the data. To enable reliable data-driven coarse-graining techniques for diffusion processes with multiple time scales, we develop a novel estimation procedure which decisively relies on combining techniques from mathematical statistics and numerical analysis. We demonstrate, both rigorously and by means of extensive simulations, that this methodology yields accurate approximations of coarse-grained SDE models. In the final part of this work, we then discuss a systematic framework to analyse and predict complex systems using observations. Specifically, we use data-driven techniques to identify simple, yet adequate, coarse-grained models, which in turn allow to study statistical properties that cannot be investigated directly from the time series. The value of this generic framework is exemplified through two seemingly unrelated data sets of real world phenomena.Open Acces

    A symplectic view of stability for traveling waves in activator-inhibitor systems

    Get PDF
    This thesis concerns the stability of traveling pulses for reaction-diffusion equations of skew-gradient (a.k.a activator-inhibitor) type. The centerpiece of this investigation is a homotopy invariant called the Maslov index which is assigned to curves of Lagrangian planes. The Maslov index has been used in recent years to count positive eigenvalues for self-adjoint Schrodinger operators. Such operators arise, for instance, from linearizing a gradient reaction-diffusion equation about a steady state. In that case, positive eigenvalues correspond to unstable modes. In this work, we focus on two aspects of the Maslov index as a tool in the stability analysis of nonlinear waves. First, we show why and how the Maslov index is useful for traveling pulses in skew-gradient systems, for which the associated linear operator is not self-adjoint. This leads naturally to a discussion of the famous Evans function, the classic eigenvalue-hunting tool for steady states of semilinear parabolic equations. A major component of this work is unifying the Evans function theory with that of the Maslov index. Second, we address the issue of calculating the Maslov index, which is intimately tied to its utility. The key insight is that the relevant curve of Lagrangian planes is everywhere tangent to an invariant manifold for the traveling wave ODE. The Maslov index is then encoded in the twisting of this manifold as the wave moves through phase space. We carry out the calculation for fast traveling pulses in a doubly-diffusive FitzHugh-Nagumo system. The calculation is made possible by the timescale separation of this system, which allows us to track the invariant manifold of interest using techniques from geometric singular perturbation theory. Combining the calculation with the stability framework established in the first part, we conclude that the pulses are stable.Doctor of Philosoph

    Sample Path Analysis of Integrate-and-Fire Neurons

    Get PDF
    Computational neuroscience is concerned with answering two intertwined questions that are based on the assumption that spatio-temporal patterns of spikes form the universal language of the nervous system. First, what function does a specific neural circuitry perform in the elaboration of a behavior? Second, how do neural circuits process behaviorally-relevant information? Non-linear system analysis has proven instrumental in understanding the coding strategies of early neural processing in various sensory modalities. Yet, at higher levels of integration, it fails to help in deciphering the response of assemblies of neurons to complex naturalistic stimuli. If neural activity can be assumed to be primarily driven by the stimulus at early stages of processing, the intrinsic activity of neural circuits interacts with their high-dimensional input to transform it in a stochastic non-linear fashion at the cortical level. As a consequence, any attempt to fully understand the brain through a system analysis approach becomes illusory. However, it is increasingly advocated that neural noise plays a constructive role in neural processing, facilitating information transmission. This prompts to gain insight into the neural code by studying the stochasticity of neuronal activity, which is viewed as biologically relevant. Such an endeavor requires the design of guiding theoretical principles to assess the potential benefits of neural noise. In this context, meeting the requirements of biological relevance and computational tractability, while providing a stochastic description of neural activity, prescribes the adoption of the integrate-and-fire model. In this thesis, founding ourselves on the path-wise description of neuronal activity, we propose to further the stochastic analysis of the integrate-and fire model through a combination of numerical and theoretical techniques. To begin, we expand upon the path-wise construction of linear diffusions, which offers a natural setting to describe leaky integrate-and-fire neurons, as inhomogeneous Markov chains. Based on the theoretical analysis of the first-passage problem, we then explore the interplay between the internal neuronal noise and the statistics of injected perturbations at the single unit level, and examine its implications on the neural coding. At the population level, we also develop an exact event-driven implementation of a Markov network of perfect integrate-and-fire neurons with both time delayed instantaneous interactions and arbitrary topology. We hope our approach will provide new paradigms to understand how sensory inputs perturb neural intrinsic activity and accomplish the goal of developing a new technique for identifying relevant patterns of population activity. From a perturbative perspective, our study shows how injecting frozen noise in different flavors can help characterize internal neuronal noise, which is presumably functionally relevant to information processing. From a simulation perspective, our event-driven framework is amenable to scrutinize the stochastic behavior of simple recurrent motifs as well as temporal dynamics of large scale networks under spike-timing-dependent plasticity
    • …
    corecore