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1. Introduction and Overview

. 1.1 Project Overview

In [WIL 78], we outlined a research plan aimed
~at the development and study of several mathematical
models for the behavior of complex dynamical systems

"affected by random effects. The models that we

" proposed to study were motivated by an examination

. of the key qualitative features of the long-term

response of an interconnected power system, in

situations initiated by random events.
Among these key fextures were the following:

1) The system equilibrium point has a domain of
attraction that is of finite extent. An ex-
cursion of the system variables outside:of this
domain corresponds to the loss of synchronism

. in one or more generators.

2) TUnpredictable discrete events, e.g. failures of
equipment, external events such as lightning
stroke, cause some abrupt changes in the struc-
ture of the system which may reduce its secur-
ity, thus making it wvulnerable to stress-induced
failures (see (3) below) or to other independent
events.

3) The system may experience abrupt changes that
depend on the system state. A piece of equip-
ment (such as a transmission line) may fail
because a particular varidble (the load on the
line) exceeds a limit (the capacity of the
line). Also, the system is equipped with many
internal discrete controls such as relays and
circuit breakers that respond in an automatic
fashion to certain system conditions (note that
these relays may fail randomly, and such fail-
ures are of the type described in (2) above).

4) A change in system structure by any of the mech-

© anisms described in (2) and (3) leads to a
corresponding change in system dynamics and
hence to a change in equilibrium conditions.

5) The change in dynamics caused by an initiating
event leads to a transient response of the
system during which certain variables may ex-
ceed their limits. This in turn causes some
new changes in the system dynamics which lead
to some new transients that can cause further "
changes. Such a cascade of system failures can
lead to a serious loss of integrity in the power
network.

6] The notion of stability for power systems is

tightly cdnnected with the notion of security.
This means that it is not enough to require the
system variables to be safely within their
limits. The probability of contingencies that
would lead to drastic changes in the mode of
operation of the system should be kept as low as
possible. This implies for example that the
system should have some reserve margins that
would enable it to withstand a reasonable level
of increased demand on it.

7) The system is equipped with a number of human
operators whose decisions may affect directly
the outcome of emergency situations. The opera-
tor is faced with at least two major problems in
carrying out his job. The first of these is the
one of assimilating all the data that he re-
ceives. The information provided to the operator
may contain contradictory pieces of information
and superfluous details, and it may not contain
the most relevant pieces of information for
assessing the system status. The second problem
faced by the operator is the one of deciding
upon the appropriate control action, a choice
which is not always clear for complex power sys-—
tems. :

From these features, we isolated a number of
characteristics that must appear in mathematical
models of power systems and in the formulation of
the stability problem, in order to capture the as-
pects of the behavior of power systems described
above.

A) The models must be nonlinear in order to capture
the nonlinear dynamics of power systems and in
particular, to allow for the consideration of
finite extent domains of attraction and multiple
equilibria.

B) The models must include a continuous part for
those variables that vary continuously (e.g.
machine angles and frequencies), and a discrete
part to model the system structure (e.g. the
topology of the power network) and the abrupt,
discrete changes it can undergc., A logical
structure for such a model is as a feedback in-
terconnection of a continuous~state system, re-
presenting the power system dynamics, and a dis—
crete-state part modeling the system structure.
A class of hybrid models having precisely this
structure was proposed in [WIL 78], and some of
their properties were discussed in [WIL 801. A
large part of this report (see Chapters II and
IV) will be devoted to the study of these models.

C) Stochastic effects must be taken into account in
both the continuous and discrete models. These
effects aim at describing some exogenous, random
events such as lightning strikes, generator and
transmission line outages, load variations, as

" well as some overall system variations due to
unpredictable human responses throughout the
system. When this feature of dynamic models of
power systems is combined with the fact that
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D)

E)

.. F)

-another.

these models must be nonlinear as mentioned in

(A) above, it becomes clear that these models
must be subject to stochastic bifurcations.
That is to say, under the effect of random
events or of a cumulative number of small ran-~
dom changes in the conditions of the system,
the model describing the power system can
change suddenly from one mode of evolution to
This phenomenon is frequently ob-
served in the operation of power systems, and
a detailed analysis of stochastic bifurcation
phenomena will be givne in Chapter 3.

To analyze the stability of power systems, we
must evaluate the security of operation of the
system. To do so, we can compute the diff-
erence between some continuous variables and
the limits imposed on them. In a probabilis-
tic setting, this implies that we should
evaluate containment probabilities, i.e. the
probability that the state is within a certain
region, or expected first passage times out-
side a region describing the safe operation of
the system. Also, since stochastic bifurca-
tions will occur, we want to compute the pro-
babilities that certain chains of transitions
will happen, and among such transitions, which
one is the most likely.

The dynamics of power systems evolve on sever—
al time scales. The continuous states des-
cribing the angles and frequencies of gene-
rators vary very rapidly (on a time scale of
the order of fractions of seconds) whereas

the discrete states describing the topology

of the network change quite slowly (every
hour, or fraction of hour). This motivates
the need for the development of a hierarchy
of models for power systems, depending on
whether we are looking at long-term, mid-term
or short-term phenomena.

The issues described in D) and E) require the
development of methods that could be used to
reduce the number of variables needed to des-
cribe the system dynamics. This would be
particularly useful in helping the system
operator obtain a clear picture of the system
status. Indeed, if the number of variables
needed to describe the system conditions is
reduced, the operator will have a better
chance of choosing the appropriate course of
action in an emergency. We will show in
Chapter 2 that this objedtive can be accomp-
lished by the use of aggregation methods that
replace a detailed, complex model of the power
system by a more approximate one containing
fewer variables.

Our research has been aimed at obtaining a

fundamental understanding of the qualitative be-
" havior of mathematical models with these features.
We have formulated several different classes of
analytical problems that focus on specific aspects

of the power system stability problem.

In parti-

cular, we have devoted a large amount of attention

" to the impact of random effects
of power systems.

1.2,

on the stability

Report Outline

In order to take some of the previous features

of power systems into account, a class of hybrid

models was introduced in [WIL 78] and [WIL 80b].
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This class of models consists of the feedback in-
terconnection of systems involving continuous state
variables with discrete~state systems. However
these models are sometimes quite complex, and in
Chapter 2 we describe an approximation procedure
that can be used to reduce the size of such models.
This procedure uses a hierarchical decomposition of
these models into simpler models operating at vari-
out time scales. By using the nature of these time
scales, some recursive expressions can be obtained
to compute approximate, aggregated models valid at
each time scale. In Chapter 2, we also analyze the
behavidr of hybrid models when they are subjected

to rare events. To do so, we consider a hybrid
model where the continuous state has several equili-
brium points and behaves linearly in the domain of
attraction of each equilibrium point, and where the
discrete process describes the equilibrium location.
Under the influence of a small stochastic driving
term, the continuous state spends most of its time
near equilibrium points with brief transitions to
transient conditions and subsequent change to another
equilbrium point. This natural separation of time
scale between the discrete and continuous parts of
the hybrid model is used to approximation the hybrid
model by a purely discrete process.

Chapter 3 presents a framework for the study of
stochastic bifurcation phenomena in power systems.
Bifurcation is the study of branching in the equili-~
brium behavior of dynamical systems in response to
small changes in the parameters of the system. Such
a bifurcation study is important in the study of
several aspects of the performance and control of
power systems, e.g. the load flow equations, transi-
ent stability and emergency state cortrol. For a
good discussion and relevant research in this dir-
ection, see [ARA 8la], [ARA 81b], [sAs 80], [sas 81].
Nevertheless these methods of deterministic -bifur-
cation are extremely sensitive to the addition of
small amounts of noise. Thus, in systems whose
macroscopic description arises from an aggregation
of microscopically fluctuating dynamics (for example,
the load nodes in a power system), the predictions
of deterministic bifurcation are incorrect. 1In the
research described in Chapter 3, we seek to remedy
this deficiency and develop a theory of stochastic
bifurcation.

In Chapter 4, we consider the problem of analy-
zing and designing control strategies for systems
described by hybrid models., This study is motivated

by the observation that the local nature of control

actions in power systems in a frequent scurce of .
instability. Many of these control actions fail to
anticipate the potential impact of other disturbances
in the network and result in overall instability.
The, work presented in Chapter 4 is aimed at under-~
standing how contorl actions may affect the stabi-
lity of the overall system and how control strategies
may be designed to ensure stability. A control
mechanism that achieves this objective is the one of
hedging: the controller identifies regions of hazar-
dous operation and attempts to steer the system away
from such regions. The increased security that is
achieved by this scheme comes at the expense of per-
formance, but this is a price that one is often
willing to pay when the catastrophic consequences of
a failure of the system are taken into account.

In Chapters 5 and 6 we discuss the issue of
dissipativeness for power system networks and its
impact on the stability problem, This is done in
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P:chapter 5 by studying the thermodynamical properties

.of finite~-state Markov processes and of hybrid
-models, and in Chapter 6 by characterizing stochas-
tic dynamicla systems which are dissipative.

Finally, Chapter 7 discusses the stability
problem for power systems from a deterministic point
of view. The presence of relays and logical devices
in power system feedback loops gives rise to the

% possibility of discontinuous switching behavior for

the control variables of the system. This switching
" behavior is examined, and the stability problem is
discussed in this context.

. Over the three years of the research project
discussed here, the following individuals have

taken part in research activities:

Prof. Alan S. Willsky (Principal Investigator)
" Prof. Sanjoy K. Mitter

Prof. Timothy L. Johnson

Prof. Bernard C. Levy

Prof. Shankar S. Sastry

Prof. John Wyatt :

Dr. David A. Castanon

Dr. Lena Valavani

Mr. (now Prof.) Howard Chizeck
Mr. Marcel Coderch

-Mr. Peter Doerschuck

Mr. Michael Propp

Mr. Roland Shomber

Dr. Mark H.A. Davis

Prof. Steven I. Marcus

Prof. Jan Willems

Prof. Wendell Fleming

consultants

This project has resulted in the Ph.D. Theses of
"H. Chizeck and M. Coderch and in the Master's
thesis of R. Shomber. In addition, Professors

S. Marcus, W. Fleming and Jan Willems, and Dr.
Mark Davis have served as consultants on this pro-
- ject and the papers by them listed in the publi-
cations, sections of this report cover some of the
results of this interaction.
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-of stochastic hybrid models.

. smoothly on a small parameter.

Systems S

2.1 Introduction

As discussed in the previous chapter, the basic
premise of our research effort was to develop analy-
sis methodologies for the study of the properties
These hybrid models
were found to be well-suited for the description
of power systems because they included both dis~
crete-state and continuous-state components.

' However, one of the undesirable properties
associated with such detailed modeling is that the

‘models are so complex that exact analysis of their
‘mathematical properties is seldom feasible.

Our
objective in this chapter is to develop an approxi-
mation methodology which produced simpler models of
the hybrid systems that represent accurately the
behavior of the exact model. :

Based on the properties of these 31mp1ermodels,
we can determine the overall system stability and

performance.

As discussed in Willsky et al [WIL 78], the

‘loss of stability in a large power system may be
‘modeled as a rare event, a large deviation of the
. system state from its nominal behavior.

These
events may be modeled as occurring in a time scale
which is different from the normal time scale of
operation of the system. Our approximation approach

» will try to make use of such time scale separation
"to develop simpler models which are accurate on
"specific time scales.

The first paper, contained in section 2.2,
studied the asymptotic behavior of finite dimen-
sional linear systems whose coefficients depend
The properties of
linear systems are important for - -the understanding

"of stochastic systems, because evolution of the

.. probability density in a stochastic system is des-

_cribed by a linear equation.

"dels operating at various time scales.

In this paper, we
provide necessary and sufficient conditions which
characterize when a linear system can be approxi-
mated as a hierarchical composition of simple mo-
We des-~ s
cribe the nature of these time scales.and provide
recursive expressions which can be used to compute
the approximate, aggregated models valid at each
time scale. The aggregate models are shown to be

' consistent with the approxxmate models as the small

parameter vanishes.
The second paper, contained in section 2.3,
uses the results of section 2.2 to analyze the

"linear models which describe the evolution of the
_probability distribution of finite state Markov

processes. We establish that these linear models

'satisfy the conditions which establish that a valid
-decomposition in terms of multiple time scales

exists. Furthermore, we describe the resulting
simplified models in terms of an aggregation opera-

"tion, which produces reduced-dimension Markov pro-

cess, and a slow evolution. This aggregation opera~-

, tion requires de analisis of stochastically dis-
. continuous Markov processes which have not been .
" studied in the literature.

The third paper, included in section 2.4,
deals with the analysis of hybrid models subject
to rare events. In this paper, the rare events
are modeled by a small intensity Brownian motion
affecting the behavior of a dynamical system opera-
ting in one of several stable modes. The Brownian

Asymptotlc Analysis and Approx1matlon of Hybrld

when adjacent storages £ill up.

.continuous states.

motion occasionally drives the system to switch be-
tween equilibrium points. By properly scaling time,
the process is approximated by a finite state model
which only follows the changes between equilibrium
points. The detailed behavior of the process inside
each domain of attraction is aggregated into a single
state, resulting in a finite-state description simi-
lar to the ones described in section 2,3. :
- The final paper is this chapter, contained in
section 2.5, is an application of the methodology
of sections 2.3 and 2.4 to the study of flows in
some simple networks. The networks are described
by hybrid models, where the continuous variable
represent the levels of storage in the system, and
the discrete variables describe the connectivity
of the network. One of the interesting effects in
this model is that of cascading saturation, observed
Our results provide
a simplified, aggregate model which accurately
approximates the behavior of the original system.

Although the work we have presented in this
section is complete, there are many extensions of
these results which should be investigated. The
results of section 2.3 apply only to the simplest
type of hybrid model, where there are no dynamics
involving continuous states, The hierarchical
decomposition into aggregate models, together with
the algebraic conditions for existence, must be
extended to the case where the hybrid models have
The results of section 2.4 re-
present an initial effort in this direction, serving
to illustrate some of the conceptual differences
between the finite~state and continuous state model.
The next section contains some applications of these
results towards the analysis of bifurcation pheno-
mena in stochastic systems.

The results of section 2.5 should be extended
towards the analysis of general interconnected net-
works, In addition, the special case of power system
networks should be considered, where the conserva-
tion of flow law is amplified by wvoltage considera-
tions. This remains the subject of future investi-
gations.

In conclusion, this section describes the
foundation of a theory of approximation which can be
used to analyze stochastic hybrid models of power
systems. These approximate models, based on isolat-
ing specific time scales, provide the basis for
stability analysis and control system design.

2.2 Multiple Time Scale Behavior of Singularly
Perturbed Linear Systems

2,2.1 Introduction

In this section, we discuss the problem of
obtaining an accurate approximation cf.. the evolu-
tion of the state of a system described by a linear
differential equation. Our approximation methods
are based on selecting, based on physical properties,
such as weak couplings or slow behavior, a small
parameter € which affects the evolution of the system
state, as:

d

. :
e Ale) x(t) (2.2.1)

It is the purpose of this section to characterize
the behavior of equation (2.2.1) at wvarious time
scales T = €5t for positive values of s. In

;
{




' - particular, our goal is to identify conditions on
A(e) such that the system (2.2.1) has a well-defined
 approximation which is accurate at given time scales
-of operation, as € approaches zero.
The problem of obtaining approximate models of
ordinary differential equations based on time scale
separation has been studied in the literature under
the heading of singular perturbations. A comprehen=
5 .sive review of the literature can be found in the
surveys of Nayfeh [NAY 73] and vasil'eva [VAS 76].
'Most of the previous work in this field has con-
centrated on developing an approximation valid only
at a specific time scale, say T = gt. Campbell

* [caM 78], and Korolyuk and Turbin [KOR 78] have
given algebraic conditions on A(€) which charac-
terize the minimal integer n 2 1 such that an
accurate approximation exists at the time scales

T = B¢, and provide an expression for these
approximation in terms of a reduced-order model.

' These approximations have been used for the synthe-~
~sis of two-level controllers and estimators in the
literature (see[KOK 80] for a collection of papers).

Our results in this section represent a non-
‘trivial extension of the work in [CAM 78], [KOR 78],
in several directions. First, we provide algebraic
conditions which characterize all of the possible
- time scales T = €5t for which a reduced-order
approximate model can be obtained. This extends
the previous results, valid only for the smallest
integer time scale. Based on this characterization,
we develop a hierarchy of aggregated, approximate
‘models which can be grouped together toobtain a
uniformly accurate approximation to the system
(2.2.1), valid for all times t€l[o,®). Furthermore,
we identify conditions where such a uniform de-
composition is not possible, and provide restricted
approximations in these cases.

For the purposes of conciseness, all of the
results are stated without proof. The reader is

" referred to [COD 81], or [COD 82] for the detailed
" proofs of these results.

2.2.2 Reqular and Singular Perturbations

In this paper, we consider semistable linear,
time~invariant (LTI) systems of the form:

ax" (t)

>
% A(e) x (t)

, x°(0) = x, (2.2.2)

. € n .

where €€[0, €], x (t) € R and the matrix A(€)
is assumed to have a power series expansion in €,
i.e.,

o p :
A(e) = ¥ € A (2.2.3)

p=o P

This series can be either a convergent series (and
, we will refer to this as the analytic case), or an
asymptotic series, If (2.2.3) is an asymptotic
series, then we will also assume that rank A(g) is
- constant for €€ (0,£ 1. In both cases we will
" refer to this constant as the normal rank of A(€)
. which we will denote by nrank.
1 Our objective is to analyze the behavior of
x (t) as € ¥ 0 on the time interval [0,®). The -
system (2.2.2) can be viewed as a perturbation of

@)

)
3T = on (t)

o
x (0) = xo (2.2.4?

and one of the obvious questions to be addressed is
that of the relationship between x€(t) and x°(t) for
small €. Specifically, under what conditions is
x (t) a good approximation of x®(t)? If it is not,
how can we construct such an approximation? The
first question is resolved in this subsection and
the rest of the section deals with the second
question., °

The following proposition states that x (t) is
a uniform asymptotic approximation of x€(t) on any
compact time interval [0,T].

Proposition 2.2.1

If A(e) is as in (2.2,3) then

lim : sup

> || exp {Ate1t} - exp {Aot}]I =0
€40 te[0,T] :
for any T < =, }
In general; however, as the next example shows,
it is not true that
lim sup ||exp{a(e)t} -~ exp{Aot}|| =0 (2.2.5)
e+0 t>o

and therefore, in general, xo(t) is not a good
approximation to x€(t) for all times t, no matter
how small € is,

Example 2.2.2
Let A(€) be

A(e) = I?E 'g] .

then we have:

~£t
e o
exp{a(e)t} = _ ’ exp{Aot} =1
o 1

and therefore

1

sup || exp{a(e)t} exp{a t} || =1 o
t>o °

If eq. (2.2.5) is satisfied, we will say that
(2.2.2) is a reqularly perturbed version of (2.2.4) -
otherwise, we will say that is is singularly per-
turbed. In what follows we will deal primarily with
singularly perturbed systems because, as we will
now see, it is the only case where we can talk about
different behavior at different time scales. Let
us formalize the notion of multiple time scale be-
havior.

DRefinition 2.2.3

Let x€(t) be the solution of (2.2.2) and let

o (€) be an order function. We will say that

x€(t) has a well defined behavior at time

scale t/a(e) if there exists a bounded con-

tinuous function y(t), called the evolution of

x€(t) at this time scale, such that: o

lim sup [!xe(t/a(e)) - y(t)l[ = 0 (2.2.6)

e¥0 teld,T] _
for any § > 0, T < ®, x.
Equivalently, we will say that the LTI sYstem
(2.2.2) has awell defined behavior at time scale
t/o(e) if there exists a bounded continuous
matrix Y(t) such that:




lim sup | |expla(e) t/a(s)} - Y(t)ll =0

(€40 teld,T] (2.2. 7)
for any § >0, T < ® : o

According to this definition, the system in
example 2.2.3 has a well defined behavior at time
"scale t/e and its evolution at this time scale is

fogiven byr - e e o " where P_(g) is the eigenprojection for the eigen- ~

y(t) = e (o} x

Although in this example the convergence condition
(2.2.6) is satisfied even for § = o it will become
.clear later on that,in general, an arbitrarily small

interval around zero must be excluded to obtain

.uniform convergence.

: The next proposition shows that <emlstab1e

- reqularly perturbed systems have trivial and unin-

teresting time scale behavior. .
Proposition 2.2.4
If A(€) is a regularly perturbed matrix which
is semistable for €€[0,¢ ] then, for any order
function af(€),

lim sup || expla(e)t/a(e)} - po'H==o (2.2.8)

e¥0  teld,TI]
for all § > o

where P, is the eigenprojection for the zero
elgenvalue of A,r as defined in appendix 2.A. a
It follows from the above proposition that, if
. properly modeled, a system with a non-trivial multi-
ple time scale behavior will result in a singularly
perturbed equation. The next proposition gives
necessary and sufficient conditions on A(g) for
(2.2.2) to be singularly perturbed.
Proposition 2.2.5
The equation (2.2.2), with A(€) semistable for
€€[0,e,] is a singularly perturbed differential
equatlor if and only if rank A(g) 1s discon~-
tinuous at € = 0. (w]
As a consequence of the above proposition
notice that if A, is asymptotically stable then any
perturbation is regular. In effect, if A, is
asymptotically stable so is A(e) for € small enough
and therefore null A, = null A(€) = 0 for €€ [0, € ]
We have so far establlshad that the analy51s
of semistable LTI systems with multiple time scale
behavior corresponds to the study of singularly
- perturbed ordinary differential equations (o.d.e.)
-and that the presence of weak couplings may produce
well defined behavior at several time scales only
_if the perturbation changes the rank of the system
matrix A(€)., To keep this discussion clear we have
only considered systems for which A(€) is semistable
for €€[0,€ 1. BAs we will see in the following
results, this is a necessary (although not suffi-
cient condition for the system to have well defined
. behavior at all time scales. Extensions of the
results derived for semistable systems to some
- classes' of non-semistable systems are considered
. in section 2.2.4.
There is an explicit connectlon between the
. time scale evolution of the system and the eigen-
values of the perturbed matrix A(€). Consider the
© system (2.2.2), assumed semistable for € in [O,Eo].

t <™

- value A, (€) of A(e).

- different orders of magnitude in €.
. is therefore in accordance with the notion of time
' scales as a manifestation of eigenvalue separation.

* tional power of €.

S al(e).

Assume also, for simplicity, that A(€) is diagona-
lizable and let A (), n =0,1,...,s be its dis~
tinct eigenvalues. Using the spectral represen-

. tation of exp{A(e)}t we get:

’ S
exp (a(@)t] = I ()t

n=o

Pn(s) (2,2.9)

It is clear from (2.2.9) and
the semlstablllty assumption that for exp{a(e)t}

. to have a non-trivial, well defined behavior at )
- time scale t/0.(€), it is necessary that there exists

some eigenvalue ln(s) such that Xn(e)/a(e) approach
a finite value U, and € ¥+ 0. Thus, for a system
to have multiple time scale behavior in the sense
of definition 2.2.3, it must have eigenvalues of
Our formulation

This point of view provides some insight into

- our results. First, the existence of eigenvalues

of A(g) that converge to zero as €V0 implies that
zero itself must be an eigenvalue of A, and that
rank A(€) must be discontinuous at zero as stated
by propostion 2.2.5. Second; the eigenvalues of
A(g) have always a power series expansion in frac-
Therefore, it is logical to
conclude that the fundamental time scales of (2.2.9)

. must be sought as t/€9, for some rational g, and

that only a finite number of them can exist.

In addition to the eigenvalue structure, the
existence of the limit of exp{A(e)t/a(e)} as €40
clearly depends on the eigenspaces structure, i.e.,
ca the behavior-as €40 of P_{€) in (2.2.9). For

. example, the eigenprojections P_(€) (and also the

eigennilpotents in the general non-diagonable case)
have algebraic singularities at € = 0 if A_(g) = 0O
(see [KAT 66]1) and therefore the above limit may not
exist even if there are eigenvalues of order

It is this aspect of the time scale problem
that is overlooked in the heuristic view of time
scales as eigenvalue separation and onto which we
will focus our attention in the following sub-
sections.

2.2.3 The Multiple Semistability Case: Complete
Time Scale Decomposition.

Let A (€), €€ [0, € ] be a semistable matrix
with a series expansion ?convergent or asymptotic)
of the form:

® _P
Ab(e) = L€ A (2.2.10)
and normal rank d. For our development we first
need to construct a sequence of matrices Ay (€),
=1,...,m, obtained recursively from A () as
1ndlcated below.

Let P_(€) denote the total projection for the
zero~-group of eigenvalues of A (€). It follows
from Appendix 2A that, if A as semisimple null
structure (SSNS), the matr1QO

A © = P_(E)A_(€) _ A (E)P_(g) _ P_(E)A ()P _(€)
1 € - € - €
(2.2.11)

has a series expansion of the form:




A(e) = I €8a P r o (2.2.12)
1 p=o 1p

If the resulting first order term in (2.2.11), A 107
"also has SSNS we define the next matrix A, (e) as
in (2.2.11),i.e.,

A BLEA(E) P (E)P_(E)A (e)] B
AZ(E) = = 2
€ €
= ¥ ePA (2.2.13)
p=o 2P

where Pl(E) is the total projection for the zero-
'group of eigenvalues of Al(e). The recursion ends
~at '

L(e)a 5 (€)...P_()A_E©)

() p__(e)p
A (e) Q m-1 _ _m-1 m
A m
€ €
(-] P i
=3, A (2.2.14)

~if the matrix A does not have SSNS.
The follow?gg proposition establishes several
basic properties of the matrices Ak(e) and Pk(e)
Proposition 2.2.6
Let Ag(e), k=0,1,...,m, be the sequence of
matriCes constructed above and let P, (€),
k=0,1,...,m, be the corresponding total pro-
jections for the zero-groups of eigenvalues.
Denote Qk(e) = I—Pk(s). Then, for € small
enough, we have:
i) P, (e)P‘. ()

ii) Q (E)Q (&) 0o 1i=j,

iii) -l(Qo(e)) O.... OR(Q () R(P_(e)
...Pk(s)) k=0,1,...,m

Pj(S)Pi(E) i,j=0,1,...,m

i,j=0,1,...,m

iv) rank Qk(s) = rank Ak 0
v) Qk(e)Ao(e) % (e)ek Ak(i-:) =

ekAK(e)Qk(S) A (€19, (€) kK= 0,1,...,m

The following proposition establishes that the
sequence A (€) always terminates at some finite m.

Proposition 2.2.7

Let A (¢), k = 0,1,... be the sequence of ma~

trices defined by (2.2.13~2.2.14). One of

the following two conditions (or both) occur

at some finite m:

i) Am o does not have SSNS

ii) Am+1(€) =0 (~ 0 if (2.2.10)-is asymp-

totic).
In the analytic case, ii) is equivalent to:
m
ii) I rank A = d =
k=o k0

'We will say that a matrix A (€) satisfies the
multiple semisimple nullstructur@ (MSSNS) condition
if the sequence of matrices Ak(s) can be constructed
up to a stage k= m for which condition (ii'%) of
Prop051;10n 2.2.7 is satisfied with all matrices

P, (€)....P _(E)A (g)
Ak' ° = lim k-1 ko 2 k=0,1,...,m
4 €Yo €

time scale behavior of exp{Ao(E)}t .

having SSNS. If A (€) satisfies the MSSNS condition
and in addition all matrices Ay,or k,=0,1,..,m, are
semistable we will say that A (€) satisfied the
multiple semistability (MssT) “condition. Although
we will be interested in matrices which satisfy the
MSST condition, all of the results developed in this
subsection hold for the less restrictive MSSNS con-
dition.

- The following proposition provides some insight
into the structure of the matrices Ak(e)' k=1,...,m,
and into how they relate to A (€). :

Pr09051t10n 2.2.8

If Ay (€) satisfies the MSSNS condition then,

for some el< 0,

i) A (€), k=0,1,...,m have SSNS for €€ [o,elj.
ii) Por £€(0,€ ]:
R(A (e))= R(Qk(e))C)..GBR(Qm(E)) k_o,_,.,m
N(Ak(e))-R(Qo(e))GD..GBR(QR_l(E))+N(A°(€))
N(a (e)) = R(po(e)...P (€)) k=1,...,m,

iii) If A(e) is an eigenvalue of Ak(e) not
belonging its zero-group then € Kx(e) is
an eigenvalue of A,(€) in R(Q,(€)}). Con-
versely, if {1(€) is an eigenvalue of Ay
(€) in R(Q (€)) then €~ p(e) is an eigen-
value of Ak(e) not belonging to its zero-
group.

It follows from Propositions 2.2.6 and 2.2.8
that, if Ao(e) has MSSNS, the direct sum-

= R(QO(E:))G @R(Qm(e))G)R(Po(e)....

Pm(s)) (2.2.15)

decomposes Ab(s) as follows:

A A ma
Ao(a) = A_(e) ® €A, (€) ®...0¢ A&n(e) @o,
(2.2.16)

where ﬁk(e) denotes the restriction of Ax(€) on
R(Qk(e)). Said in another way,

mo :
e Ak(e) Qk(e) (2.2.17)»

A (g) =

() K=o
The eigenvalues of A (€) can thus be divided into
(m+1l) groups corresponding to the eigenvalues of
A,(€) in each of the invariant subspaces ROk (€)).
Each eigenvalue of A (€) is of order €J for some
integer j 2 o and the eigenvalues of order ek coin-
cide with Ek times the eigenvalues of order one of
Ak (€). Figure 2.2.1 illustrates the structure of
the matrix Ap(€); its null space includes, in addi-
tion to the null space of A (g€), the eigenspaces of
Ao(e) corresponding to all eigenvalues of order
0{1), 0(e),...,0(ek"1) while its range includes the
eigenspaces of A_(€) for all eigenvalues of order
o(eX-1l), The construction of the sequence Ak(e)
can thus be viewed as a way to separate the eigen-
values of A, (€) in different groups according to
their asymptotlc order as €¥0. The actual calcul-
ations required to compute the matrices A (e) will
be discussed later.

The following theorem illustrates the conse-
quences of the MSSNS condition for the multiple




Theorem 2.2.9 o ,y._;:?ﬁxthéfﬁofe.
If Ao(s) satisfies the MSSNS condition then: ST e ‘m
n
R =R(a A NN
( 00) ® OR( m'o) @ (k=° (Ak,o))

m
exp{Ao(e)t} = kgogk(e) exp{Ak(e)e t} + (2.2.19)

Po(e)"'Pm(e) : As the above theorem shows, the sequence of
matrices Ay , k=0,1,...,m, completely determines

_me - P " an asymptoti® approximation to exp{A (€)t} which
- kzoexP{Qk(e)Ak(e) et} - m; : captures its multiple time scale behavior. We now
n ' use Theorem 2.2.10 to show that systems which satisfy
= T expo (e)a (e)g;kt} the MSST condition have well defined behavior at all
k=0  k  k time stales and that the matrices Ay determine a

‘set of reduced-order models of the syStem.

The following corollary gives an explicit form-
ula for the evolutions of exp{a (g)t}.
' Corollary 2.2.11 °

Let A,(€) satisfy the MSST condition and let

m
exp { T Oy (€A (€) ekel}
k=0 i

Theorem 2.2.9 corresponds to the splitting of Ak o Px and 9y, k=0,1,...,m, be the sequence
~the evolution exp{Ao(s)t} according to the direct of ‘'matrices specified in theorem 2.2.10. Then,
sum decomposition of (2.2.15). Under the condition . . ' k V11 '
of MSSNS, this splitting corresponds also to a de- i iig ﬁjng Ilexp{AO(e)t/s }- q’k(t)H"O
composition into parts of exp{Ao(E)t} that evolve -
at different time scales. TFor éxample, Qk(e) exp ¥ >0, ¥T < =
:{Ak(e)ekt} does not change significantly until t is . k=01 -1
of order 1/eX. Theorem 2.2.9 thus gives a consis- “Vrlrees W
- tent spatial and temporal decomposition of eq. ii) lim sup ][exp{A (E)t/em} -9 (tj[[ =0
(2.2.2), which is very convenient to study the multi- €40 §<tw °© n
ple time scale behavior and also to derive uniform % >0
asymptotic approximations of exp{a (e)t}. where@k(t) is any of the following expressions:
As we have proved in Prop. 2.8.1, exp{A{o)t} } :
is a uniform asymptotic approximation to explA(€E)t : _
on any compact time interval [0,T]. It is iuite D (®) = 0y exP{Ak,ot} * PoePx

clear, however, that this approximation does not .
capture the multiple time scale behavior of a sing- = Po-.-.Pk_1 eXP{Ak ot} o
ularly perturbed system. To construct an approxi- ’
,mation which captures this behavior, we have to
require it to be uniformly valid over the infinite
time interwal [0,%).
The next theorem gives the desired approxima-

It is now immediate that the evolutions of
exp{a ()t} at time scales t/ek, ¢y (), k=0,1,..,m
can b8 combined to produce a uniform asymptotic
approximation to exp{A,(€)t} as follows:

tion under the assumption that AO(E) satisifed the m k m-1

MSST condition. exp{a (&)t} = I @ (et)- I P P ...Py + o(1)
Theorem 2.2.10 : . ° k=o k=0 ©
Let A (€) satisfy the MSST condition and let v (2.2.20)

Ag(€)S Pr(€) and Qu(€), k = 0,1,..,m, be the

C . R . b .
sequences of matrices constructed in 2.2,.14. This equation shows that only the behavior at

time scales t/¢, k=0,1,...m, is needed to capture

Then, the main features of the evolution of exp{Ao(E)t}
: ‘ over the infinite time interval [0,®). It is clear
lim sup l‘exp{Ao(E)t} - ¢(t,€)¥|= o (2,2.18) from Theorem 2.2.10, however, that the limit
€¥Y0  t>o .
i 14
where ¢ (t,€) is any of the following expres- éig exp{Ab(s) /ae)}
sions:
m ' X ) exists for any order function a(€). Indeed, if
= = < . = +1 = - -
o(t,e) =T o expli=a € t} +P_ LB > o (€) = o(ek) and ek*l = o(q (€)), k=0,1,...,m-1,
k=o : then )
m k ; ! : :
=L exely e €} - m .. lim expla (e)t/m (e)} = B ...P |
€Yo :
=1l exp{Ak o et} . n !
k=0 and for a(e) = o(e), :
o k :
= exp L Ay et) lim expl{a (e)t/a(e)} = P ...P :
. o o m !
‘with Ak = lim Ak(s), Pk = 1lim Pk(E) and ’ o ’ o
© g0 €40 Thus the system has well defined behavior at all

. = lig Qk(e)' : time scales even though only a finite number of
€ -them, that we will call its fundamental(or natural)




time scales, are required to capture the main fea~-

. tures of the system's evolution. We now show that
"a reduced~order model of (2.2.20) can be associated
‘with each fundamental time scale. To interpret the
matrices Ak, as reduced order models of:

ax® (t)

€ €
rrmie Ao(€) x (t) x (o) = X (2.2.21)

?valid at different time scales, notice that the
“asymptotic approximation

: m K . -
‘exp{AO(e)t} = I o, of t} + P ..-B + o(l)

expla
k=0 k

1

(2.2.22)

éand the direct sum decomposition:
n ——
R =RQ)®..0R(Q) @ R(P_...P)

. imply that if xe(O) € R(Q,), then xe(t) remains in
R(Qy) for all t > o excep% for terms which are
;uniformly negligible as €¥0. Thus R(Qk), x=0,1,,,m
and R(Po...Pm) can be thought of as almost invari-
ant subspaces of the system (2.2.21) [WILL 80].
Furthermore, the parts of x®(t) that evolve in diff-
- erent subspaces do so at different time scales. To
describe the part of x€(t) that evolves at time
scale t/ek to first order approximation, the follow-
ing model can be used: .

dyk(t)

- = Ak,O yk(t) k=0,1,..,m (2.2.23)

If yk(o) = Qkxo then
k € ’
yk(e t) = Qk x (t) + o(1) k=0,1,..,m (2.2.24)

uniformly for t > o, and once again a uniform
approximation of x€(t) can be constructed by com-
bining the solutions of the reduced-order models
(2.2.23) as follows:

€ o x
x (t) =k>;_=° yk(e t) + P .e-B X (2.2.25)
Notice also that
m . .
kio rank Ak,o = rank Ao(e) (2.2.26)

.and therefore the combined dimensionality of the
reduced-order models (2.2,23) equals the dimension
" of the original model. )

This decomposition of (2.2.21) into a set of
reduced-order models is more easily visualized us-
ing an appropriate change of basis. From Theorem
2.2.10 we have:

' ) m :
v n - f

j,r‘z R(Ao’o) ®.... @R(Am’o) o) ‘on N(Ak’.o)) 7
(2.2.27)

. and by the SSNS property of the matrices Ak ° it
fem i ke - - - . Rald

follows that:

N

N(Ak'o) = R(Ao'o) ... R(Ak_l'o) @R(Ak+1,°)

n T
D... @R(Am'o) ® (N N(Aklo))

k=0

™ If we now choose a basis adapted to (2.2:27), ~
the matrix A will have, in this new basis, a
block diagonai form with only one non-zero block.
That is, if T denotes the change of basis matrix,
then

.-.1 .
TAy T = diag {o,0,...,0, X, o,f..,o}

where Xk is a full rank square matirx of dimension
equal to rank A o Using this change of basis we
can write the refult of Theorem 2.2.10 as follows

m
- -1 k
T 1exp{2 T, T e tlT + o(l)

22O k,

]

exp{Ab(e)t}

P -~ ~ I
€ £
Bot, P15t L, 1k 4 o(D)

(2.2.28)

= T-l diag{e

showing that, to first order approximation, the sys-
tem (4.53) can be thought of composed of (m+l)

uncoupled subsystems
dy (t)

3t k=0,1,...,m

=Ry (t
gyk( )
each running at a different time scale.

If the MSST condition is violated, then at least
for some . time scale, t/a(€), the limit

1im exp{A (e)t/a(e)}
€Yo °

does not exist. In this case a complete time scale
decomposition of the type developed in the previous
propositions is not possible. Some partial exten-
sions to systems that violate the MSST condition are,
possible and will be considered later.

Two examples will shed some light as to what
happens when the MSST condition is violated:

Example 2.2.12

Consider the matrix

e o =-2€
A(e) = |le € -2
[e]

1 1 -2:.

It is semistable for €€[0,1] and it has three
real eigenvalues

=.—-€2

2
2 + o(e”)

Ay =0, Ay = =2+ 0(l), A

The matrices A , and Al (see section 3.4.5
for an algorithm to compﬁge them) are given by:

0 0 0 0 -1 0
Ay =0 0 of yay =fo o0 of . i
1 1-2 0 ~1/2 0

and the MSST condition is violated because
A1 .0 does not have SSNS (it is nilpotent), -




pASE—

A direct'com?utation of expon(é)t} gives

- o1
expla_(e)t} =35~

M ;
- N 1
A,-A,) At e(e-A,) . At
__ZE_L‘ - IE (e 1 ~1) Y (e 1 -1)
LM ML
At ALt
0 (X, -2)e t 2ee ©
ALt
L 0 - =Mt (e-Ape
M2 At eM.-e) At |
22 1 = (e 27 i (e 2 -1)
2
At At '
0 (A —€+2)e -2¢ce }
\ At At
0 e 2 (A.-€)e 2
. 2 . o

and we have the following time scale behavior:

lim exp{A (E)tf—

Yo
1 0 0
-~expla t} = |o 1 0.
©.0 -2t -2t
0 (l-e )/2 e -
lim exp{A (e)t/e} =
€40
1 t/2
P, exp{AO'lt} = o 1
0 1/2 01

To see that the limit

lim exp{A (e)t/e 3

€40
does not exist,_.let us look at the entry (1,2)
of exp{Ao(e)t/s }:

-
e-Zt ’ 0 0
. E 2 2

exp{Ao(E)t} = o e € tcoset &€ Fginet
2 2

o] e et sin €t e et cos Et

s e e e e -

) Thls “behavior does not. contradict the stabl-

llty properties of A,(€) because even though
for every e8[0,1]

sup llexp{A (E)t}ll
t>o

K(g) <=2 ¥t >0

the bound K(e) + o as €40, .

‘This example illustrates one reason why
even systems which are semistable for €€[0,€]
may fail to have well defined behavior at some
time scales. The next example illustrates
another such reason. O
Example 2.2.13 :
Consider the matrix

-2 0 0
2
A (g) = 0 =-£ €
[e]
2
0 =€ €

It is semistable for € > o and it has three
eigenvalues

5
= - = - + i
Ao 2, 11'2 € ie
The matrices Ao,o and Al,O for this example
are: :
-2 0 0 0
Ao,o = 0O 0 0} AI,O =10
o 0 O 0-1 0

and the MSST assumption is violated because
Al o has purely imaginary eigenvalues.
A 51mp1e calculatlon gives:-

Clearly the system has well defined behav1or
at time scales t and t/e but exp{a (e)t/e 2}
does not have a limit as €40 because of the
presence of terms of the type e~t sint/e,
This example illustrates that the exis~-
tence of slowly attenuated oscillation (re-
flected as purely imaginary poles in one of
the matrices 2 ) impedes the existence of
well defined bgﬁav1or at some time scale.

2
lzt/e

order 1/¢"as €¥0 and therefore it diverges.
Thus, the ©.d.e. does not have well defined
behavior at time scale t/€2 even though i
has a real negative eigenvalue of erder €.,
This is so because

I exp{Ao(E)t/az} [] » e as €40

cohtructed in (2.2.10)

Ay orec By

are semistable but Az

- (2.2.14). If A

4

is'not, then the limit

lim exp{A (s)t/eq}
€40

t>0

(expfA (E)t/ez}) - [jL (e -1 - € The next theorem established the fact that for
. o 1,2 Az _ 11 an arbitrary A?(E), MSST is a necessary condition
At 2 for eXp{Ao(e)t to have well defined behavior at all
(e 17/ -1)] 1 i time scales.
X2~Al Theorem 2.2.14 ;
Let AO(E), €€[0,€ 1, be a stable matrix with
2 2 a series expansion in powers of € and let
Because A, = - € + o(€”) the first term is of Ay o» k¥ 2 0, be the sequence of matrices

’



g

from A

.flows computations.

does not exist for any £ < g < & + 1. Further-
more, if A has a pole on the imaginary axis
(zero included) which is not semisimple then:

1lim
€40

sup

l]exp{Ao(E)t}Il =
t>o

These results indicate that multiple semistabi-

*“lity is a necessary and sufficient condition for a ’
' system to have
. behavior.

well-defined multiple time scale
The behavior of the system at different
time scales is then determined by the matrices Axg-
We now focus our attention on ways of computing

these matrices.

It is convenient to think of the sequence of
matrices A (€), k=0,1,..,m, constructed in (2.2.10)-

f(2 2.14) as defining a rectangular array of matrices

, i=0,1,..,m, j 2 o, as shown in Fig. 2.2.2. By

gdeglnltlon of the matrices Ax(€), it follows from
‘Appendix 2.A that the (i+1)th row in Fig. 2.2.2 can
"be computed from the it row using the formula:

j+1
RS E NN -nP T s, ®)
’ v =3
1+..+gb 3
k1+..+k‘ l@—l
V.20, k,>0
i i
. : (
sk g (k?’....A. s, Fpr1) (2.2.29)
i i,v, 1 i,v "1 .
1 p
i=01,...m 3>0
where
s, - - p,
i i
k
s, = a*)y* x>0
i i,0
(P; is the projection on N(a, ) along R(A

,O

and Al#o devotes the group pseudé—lnverse of Ay )
Notic&’that the structure of (2.2.29) permits to
grow the array 33,5 triangularly: A is computed
and AOI; A20 requires A and A,q which in
turn involve A , A and A02, in general, to com-
pute the first column up to Ayo involves the mat-
rices Ay;, i=0,...,k, j=0,.., k-i. As we have al-
ready seén, only a finite numb®r of matrices Ay,
need to be computed. It follows from (2.2.29) that
this requires only a finite amount of computational
effort.

Although algorithm (2.2.29) is attrative for
its recursive nature, a closer look at its structure
reveals that it involves a large number of super-
Without addressing the issue
of which is the most efficient way to compute the
matrices A, , we will now give an explicit expres-

‘sion for the matrices Apgr AlO' A20 and A30 in terms

of the first row in Fig. 2.2.2.
Proposition 2.2.15
Let Ap(€) be given by

‘ 2 3 3
vAo(e) =Aj, +EA,, +ETA L +EA, +A<‘>(e )

then the matrices A

X0’ k=0,1,2,3, are given
by:

sive formula for the matrices By, .
‘attempt to derive such a formula nor do we address
‘the question of how (2.2.29) should be computed so

‘sight.

00 -
A10 = PoA01Po
Ayo = PyPy(Agy 2012201 PPy

30 = PaP1Po (Bo3 2o 12dh Aoy AgoAdhRoy *

g
II

- +
2o 2dhR01RrdbP0o1 ~ Po2PioRo2

A#A

AfR - Ro1AdoPorPr P02 T

2022 H2012 %01

a.a¥a af#a a#a

01200%01210201%00%01) PoT1F

o1l2

As shown in Proposition 2.2.15, the computation
of A, , k=0,1,2,3, does not require the construction
of the full triangular array shown in Fig. 2.2.2.
Instead, the first column is directly derived from
the first row. It is reasonable to expect that this
pattern of simplifications goes beyond the third
step and it thus seems possible to derive a recur-
Here we do not

that a minimal effort is required. Let us just
point out that, the different terms are quite simi-
lar and with a good strategy the computational effort
required should not be as large as it seems at first
For example if,

A (€) =A +€B
o [}

‘we have:

Boo = B
AlO = POBPO
A, .=-P.P BA# BP P
20 170 0001
A30 = Pzplp (BA&#OBAJ#OB - BA&#OBA BAd#OB)P P1P2

Notice that perturbations of order £ can result
in ﬂell defined behavior at several time scales
t/€" which is not a commonly recognized fact. 1In
the MSST case, the sequence Ak ends at some m for
which

E rank A

nrank A _(g)
k=0 o

We now derive an upper bound for m, Consider first
the linearly perturbed case A, (€} = A + €B and

let n be the dimension of Aé(e). The eigenvalues
of A () = A+ €B are the Solution of a polynomial
of dégree n with ceefficients that are themselves
polynomials in € of degree < n. A 51mple argument
shows that there can be no elqenvalue. Ale) # 0,

of AO(E) such that A(e) = o(eM). 1In effect, let

n n~1l
+ € + ...
s Pn-l( )s. )

+ pl(E)s,f po(e?_é




’ pe the characteristic polynomial of A + €B.

2

b e

The
coefficients Pn_i(e) are polynomials %n € of degree
.< i, Then,

MM e p () A2 4 L, 4 p (o)

p_(€)
+—=2—=0

M (e)

If A(E) were of order o(sn) and p,(€) # O then
‘p (€)/A(E) > » as € ¥+ 0 and the above equation
-cannot be satisfied. If po(E) = o then the same
-can be set about

A@™ 2 4 p @@ w4y

p, (€)
l 3
: e o °

‘which cannot be satisfied unless p, (€) = 0. Pro-
ceeding in this way it is concludeé that if A(g) =
of€") then A(€) = o. It then follows from Proposi- .

‘tion 2.2.8 that Ak(e) = o for k > n and therefore
'm € n. Similarly, in the case of a non~linear per-
‘ turbation of finite order,

. p .

A()=3X a_ el

o . o]
J=o
we have m € n-p.

In addition to this upper bound on the slowest
time scale the number of fundamental time scales
(i.e., time scales for which # 0) can also be
easily bounded. From the rank conditilon:

m

Z rank A

Ko ko = rank AO(E)

. it follows that the maximum number of nonwzero Ako“s

: A

among AOO

01""Aom is equal to n-nrank Ao(e).

-2.2.4 Partial Time Scale Decomesition

In this subsection we analyze the multiple
time scale behavior of singularly perturbed systems..
that Qg‘ggg_satisfy the MSST condition of section
2.2.3. In general, these systems have well defined

. behavior at some time scales but not at all time
. scales and their behavior over the infinite time

interval [0, ®) cannot be reconstructed from their
evolutions at different time scales. However, it

‘may still be useful to be able to isolate the time

scales at which they have well defined behavior,

- and to compute their evolutions at such time scales.
; This is the problem we address now.

At a first level we distinguish between systems

“which, although they do not satisfy the MSST condi-

tion, they do satisfy the MSSNS condition, and sys-

_ tems which do not satisfy the MSSNS condition. For

- system with MSSNS, the sequence of matrices Ako'

-k =0,1,...,m, can be fully constructed as indicated
. in section 2.2.3.
* if one of these matrices has an eigenvalue A # o
' such that Re) > o.
a partial time scale decomposition of exp{A (e)t}

The MSST condition is violated.

The strategy to obtain at least

:

. is to multiply exp{a ()t} by the progectiong that
. anhilate the evolution of exp{a (£)t

at time scales
where the reduced-order model is not semistable.
For clarity we treat the case where only one

of the matrices Ap, violates the semistability
condition. The following proposition gives the
partial time scale decomposition for this case.
Proposition 2.2.17
Let A, (€) satisfy the MSSNS condition and let
Ay k=0,1,..,m be the matrices defined in
equations (2.2.10) - (2.2.14). Suppose that
Axos k # 2 , are semistable., Then,

1) lim sup | [p,(e) expla_te)e} -

ev0 t>o )
¢ (E lt) l l =0

Qhere

4>9'(e: t) = x2‘2l exp{a,e ) + P o P

el X=o Qy expihy ol " "m
k#L

it) lim sup Iiexp{A (s)t/sk} - ¢k(t)||=0

€40 SSteT °

for all V6 > 0, T < ©

K=0,00.,2

lim

k
sz(e) exp{a (e)t/e } -
€40 §<t<T - °

A'Qk(t)H = o

¥§>0, ¥I < ® k= +1,...,m

where

Qk(t)i =0y exp{Akot} + P .. P

t
=P_...P expla .o} a

~1

; The above result indicates that, under the

- conditions of the Proposition, the multiple time
scale behavior of A (€) up to the time scale where
the MSST condition §s violated is identical to the
MSST case, From there on , however, the projection

- P, (€) must be introduced to anihilate the behavior
at time scale t/eg which involves unstable or
oscillatory modes. It is important to note that,
in.general, the projection P,(€) used in (5.1},

‘“cannot be substituted by its leading term (nor by
any finite number of terms in its power series
expansion). Because of this lack of robustness,
this result is of minor importance for applications;
without some extra conditions, the multiple time
scale analysis of MSSNS systems which violate the
MSST condition at some time scale is feasible only
up to this time scale.

Assume now that the matrix A (€) is stable for

€€ (0,e,]. Stability implies uniform boundedness of
exp{Ao(i)t}‘with respect to t, i.e.,

sup ||exp {Ao(e)t}H = K(g) < ® ®t>o

t>o

but, as shown by example 2.2.12 and the example
below, for singularly perturbed systems K(€) may
become unbounded as €¥0 (even if K(0) is finite
as in.example 2.2.12) .
Example 2,2.18 '~ T o T
Let i

~€ =€
A ==
°..(€,) ; [1 :F]




This is a stable matrix with eigenvalues
= - * i
A1,2 € ive

and a simple computation gives:

Mo e ‘cos/€t - Ve sin Vet
) €t
exp Ab(s)t = - e
1 sin Yet cos VEL
vE .

Due to the entry (1/V€) sin Y€t, the norm of
exp{A (e)t} becomes unbounded as €40, Notice
- that, Ofor this example. the unpertubed system

0 O]
A =27 (0) =
00 [] [1 0]

is not stable and it is therefore clear that

the € perturbation has stabilizing effects. O
‘ The kind of behavior discussed above indicates
~that in some systems the e€~dependence, in addition
to generating eigenvalues of different orders of
magnitude in €, also models near instabilities. As
we have seen the presence of increasingly large
‘amplitudes as €+0 precludes the complete multiple
time scale analysis of these systems. We now ana~-
lyze the multiple time scale behavior of systems
in which the €~dependence does not give rise to
increasingly large amplitudes as €40,

We will say that A (€) satisfies the uniform
stability (US) conditiof if:

[ exp{a_(e)t} [| « x wt2o eel0, e ]

for some K > o and independent of €, The following
proposition states that US is a sufficient condition
for MSSNS.
: Proposition 2.2.19

If A (€) is uniformly stable then it also sat-

isfies the MSSNS condition; if any of the

reduced-order models Rk, has eigenvalues on

the imaginary axis they must be semisimple. O

Uniform stability guarantees MSSNS but not
MSST because some of the matriges Ax, may have
purely imaginary eigenvalues. The following pro~
position shows how to carry out a partial time scale
decomposition for US systems.

Proposition 2.2.20

Let A, (€) be uniformly stable and suppose that,
) all the reduced order models Aky, kK = 0 1,..,m,
i are semistable except Aﬁo' Then:

i) 1lim sup

[p,exp{a (e)t} -
€0 t2o % o

ot 0] =
where
Lie,t) = ’ﬁ‘ fa, e5e} +
o (e,t) = o Q, exp koe
kgt , ]

PoPl...Pm

=~ id) lim  sup {lexp{A (€)t/€k} - @ (t)l|= o
e¥0 8<tsT :
¥ >0, ¥P<® k=0,1,..,%

. ) X
lim sup ]leexp{A (e)ts/e} -
EY0 S<tgT °
e e e @k(t). ”;_o.w e
V‘Q">O, YT < @ k=2,+1'.'.,m
where;

8, (£)

O exp{Akot} + P _...By

= Po...Pk_1 {exp Akot}

It is a simple matter to extend Proposition
2.2.20 to the case where several of the matrices

fail to be semistable.

From the above developments it is clear that
uniformly stable systems may fail to have well de-
fined behavior at certain time scales because of the
presence of oscillatory modes in some of the reduced-
order models A These oscillations become of
infinite frequency when seen at slower time scales.
It is important to notice that the appearance of such
unattenuated oscillations in some of the reduced
order models Ao does not necessarily imply that .the
matrix A, (€) has some purely imaginary eigenvalues.
Instead, they could as well correspond to eigenvalues
with a negative real part that converges to zero
faster then its imaginary part. For example take
A(e) = ~e+i. In this case exp{A(g)t} is seen as a
pure oscillatory mode at time scale t while at time
scale t/c,. when the attenuation effects are beginning
to be felt, the oscillations become of infinite fre-
quency. To avoid this lack of well defined limit at
slower time scales the oscillatory modes must be
excluded fromconsideration; this can be done using
the adequate projections as indicated in Proposition
2,2.20.

The fact that the projections required to anihi-
late the undesired modes are e€«independent makes
Pgoposition 2.2.30 much more useful the Proposition
2,2.18 for applications.

In all the results derived so far, the decom-

~position

exP{A (et} = Z Qk(s){exp A (e)e t}
k=0

+ pyl€)...P (€) (2.2.30)
together with the fact that
; m
X rank Ako = nrank Ao(s) (2.2.31)
k=0

have played a fundamental role. If the MSSNS con-
dition is violated then this decomposition is not
feasible, It is still possible, however, to derive
some multiple time scale results from a reduced
version of (2.2,30). We briefly discuss this case.

' Suppose that A (€) is such that the sequence of
matrices A, (€) constructed in (2.2.10) - (2.2.14)
ends for k' = p because A__ does not have SSNS, and
that po




Sy '},»_.- e e e

t£/eP.

P
I rank Byx_ < nrank A (€) o
0 - ° R
k=0 )

'We can decompose exp{Ab(E)t} as follows:

P
exp{a ()t} = ¢ 9 (€) expfAk(E) ekt}
° k=0 .

+ Po(e)...Pp(E)

"and the multiple time scale analysis developed,for

MSSNS systems can now be performed up to time scale

the factthatkE rank Ay is not equal to
=0

‘nrank Aj(€) indicates, however, that there are

. scale analysis.

elgenvalues of A,(€) that are of ordew o (eP) whose
effect will not be captured by this partial time
Furthermore, systems which violate

: the MSSNS condition at stage p are not unlformly
‘ stable and the limit

lim exp{A ©) /ety

€40
: » +
. can not exist because || exp a (e)t/ef 1‘]] >
‘as €¥0. If A (€) is asymptotically stable it may

. well be possible that the system has well defined

- do not seem adequate to treat this case,

behavior at slower time scales t/e , ¥ > p+l, when
the effects of high amplitude transients have dis-
appeared. The techniques we have used, however,
More work

. is needed in this direction.

12.2.5 Summary and Conclusions

In this section we have studied the asymptotic

_behavior of exp{a (€)t} over the infinite time in~
‘ terval [o, «) for

A(e) = ¢ X
- €) = £ AOk

k<o

'We have formalized the notion of multiple time

scale behavior and that of reduced order models of

" the system

~valid at different time scales.

ax (t)

T Ab(E) x (t)

We have identi~

; fied several conditions on A: (€) which give rise to

" qualitatively different asymptotic behaviors.

. is visualized in Fig.

The
hierarchical relationship among these conditions
2.2.3,

The most important result is probably the fact

. that multiple semistability is a necessary and

sufficient condition for a system to have well de-

- fined behavior at all of its natural time scales.

. If a system does not satisfy this condition then

. a time scale analysis of it will not be adequate

" to capture all of the different system's features.

. Conversely, if a system has a well defined multiple
. time scale behavior, then, when it is correctly

" modelled, this model must result in a system matrix
" that satisfies the MSST condition.

For MSST systems we have developed a metho- -~

- dology to compute the different reduced-order models

of a system which describe its evolution at

(2.2)32)

'2.3.1.°

dlfferent time scales and we have shown that these
reduced~order models can be combined ‘to approximate
the original system. The usefulness of this model
51mp11f1cat10n technique depends on two counts:

i) It must be shown that problems posed for
the original system can be approximately
solved by combining the solution of some
related problems posed for the reduced

~order models with some reduction in com- -
plexity and

it must also be shown that the calculations
required to compute the reduced-order models
do not exceed the savings in i).

In the next section, we show that for an im-
portant class of systems, the MSST condition is
always satisfied indicating that the results devel-
oped. in this chapter have a wide range of applicabi-
lity.

ii)

i

2,3 _Hierarchical Aggregation of Finite State Markov

‘Process
ZTOcess

Introduction

In this section we apply the results presented
in section 2,2 to the study of Finite State Markov
Processes (FSMP) with rare events,

The presence of rare events in a FSMP is modeled
by introducing a small parameter € in its matrix of
transition rates. As an introductory example, con-
sider the process n€(t) depicted in fig. 2.3.1. 1Its
matrix of transition rates is of the form A (g) =
A + €B and can be thought of as modeling a system
with the following characteristics: it may operate
in two different modes correspondlng to the two sets
of states E; = {% 2} and E, = {4,5}. A rare event
(a failure alarm, for example) puts the system in
state 3 where a fast decision is made whether to
continue operating in the same mode or whether to
change it. While,in state 3, another rare event
(a wrong decision, for example) may put the system
out of operation (state 6). At a first level of
simplification we can imagine a reduced-order model
which only describes changes in the mode of operation
and failures, neglecting the evolution of the system
while in a given mode., An even coarser description
of the system would be provided by a model which
only distinguishes between working and@ non-working
states. Given the structure of the process, transi-
tions between states in E, and states in E, are
likely to occur only for %1mes of order 1/€ while a
failure, requiring two consecutive transitions with
rates of order €, will take place at times of order
1/e2,

It is clear from this example (see, section
2.3.6 for a full development) that the connection
among rare events, multiple time scale behavior and
reduced-order (aggregated) models is intuitively
appealing in FSMP. 1In fact, several authors have,
in different contexts, used aggregation ideas in the
past. Simon and Ande [SIM 61] were probably the
first, Curtois [CUR 77] argues in a somewhat heuris-
tical . way that aggregated models for Markov chains
are useful in the analysis of computer systems while
[DEL 81] use aggregated models to simplify control
problems for Markov chains. The most complete treat-
ment to date is given in [KOR 78] where the results
are not restricted to FSMP but include Markov pro-
cesses with unbounded infinitesimal generators as
well., 'All these works, however, either introduce




- conditions which gquarantee that the process under

consideration has only a two time scale behavior

" {i.e. t and t/€) or restrict their attention to a

" certain time scale.

In any case only one aggre-
gated model is proposed for a given system. In
line with the multiple time scale results presented
in section 2.2, our results extend previous work on

FSMP aggregation by showing that:

i B
#

~{i) FSMP with rare transitions can always be
aggregated.

In general, such processes exhibit multi-
-ple time scales and several aggregated
models are possible, one for each time
scale. .
An approximation to the original process,
which is uniformly wvalid at all times t,
can be constructed by combining the set
of aggregated models.

The probabilistic evolution of a FSMP n® (t)
with transition rate matrix A (€) is completely
determined by its matrix of tPansition probabilities
which is given by:

(ii)

(iii)

PEe) = expon(e)t}

EAn application of the multiple time scale techni-
: ques developed in section 2.2 to the asymptotic
" analysis of PE(t) is carried out in this section.

Specifically, we show that if A5(€) is the matrix

: of transition rates of a FSMP then it satisfies
i the MSST condition (see section 2.2.3) and there-
{ fore PE(t) has well defined multiple time scale

- behavior.

The reduced-order models that describe
the evolution of Pg(t) at each of its fundamental

' time scales are then interpreted as aggregated

models of nE(t) obtained by collapsing several

;states of n (t) into a 51ng1e state of a model
that describes events in n (t) of a certain level

- - of rareness.

Each of the models is a FSMP and

- they can be ordered in a hierarchy, where each
" model describes the evolution of N¥(t) with a
- different degree of detail.

The section is ordered as follows: In 2.3.2,

; 2.3.3 'and 2.3.4 we discuss some preliminary material

on FSMP. The emphasis is placed on stochastically

. discontinuous Markov processes, I.e., processes
- which may undergo an infinite number of instantan-

" eous transitions in a finite time interval.

This

i kind of processes which have received little

attention in the past are very useful in inters

- preting the multiple time scale behavior of PE(t).
- Basically, if n€(t) is analyzed for times of order
»t/ek, all transitions that occur at faster time

scales look as instantaneous and a stochastically

" discontinuous process is adequate to approximate

" terest.

the behavior of n€(t) at the time scale of ine
The existence of aggregated models and a

. method for computing them are discussed in sections

. 2.3.5 and 2.3.6.

One example is given in section

£ 2.3.7.

o 2.3.2.

. taking values in a finite state space X =

Ergodic Projections of Markov Chains

A stationary Markov chain n(t), t=0,1%,,,
1,2,

‘.v..,n} is completely characterized by its trans-

tion probability matrix, P, whose elements are

the one-step transition probabilities:

__._’Pij =p_{n(t) =3 Intt-1) = i} i,§ e x (2.3,1)

A matrlx P is the trans1tlon probablllty matrlx of

-called stochastic.

to it as the ergodic projection of n(t).

a Markov chain if and only if:
(1) P>o (2.3.2)

(ii) P-1 =1 (2.3.3)
where 1l is a vector with all components equal to
one. A matrix satisfying (2.3.2) and (2.3.3) is
For our later -work we will be - .
mainly interested in the behavior of as n > %,
We shall say that a Markov chain n(t) with transi-.
tion matrix P ‘is ergodic if the limit

lim P' =p
n-ee

exists, Notice that in this case PP = PP = P and
that P is a stochastic projection. We shall refer
The follow-
ing theorem specifies a canonical form for the tran-
sition probability matrix of a ergodic chain and for
its ergodic pxojection.
\ Theorem 2.3.1 [KEM 60]*

A stochastic matrix P is the transition pro-

bability matrix of a ergodic chain iff by an

adequate ordering of the states it can be

written in the following form:

L
0 Py ..
P=1}o0 P 0 (2.3.4)
e e . mm
P P
L ‘m+l,l ... . mHl,m Pm+1,m+1-

with the submatrices P i=1,2,...m satisfy-

ing P s 0 for some n, 2 > 1.

Its ergodlc projection then takes the form:

-
P}l 4] .. . 01
Pra - - -
P = i o Pmm 0 (2.3.5)
Pyl P, m+l 0
L .
with Pkk = 1. uk’ k=1,...,m, for some vector
“k > 0 such that “x I =1 and Pk +1 n
Gk . uk for some vector 8 > o such that k?
Gk =1 .

The canonical form (2.3.4) determines a partition of
the state space

m

X = ( )ux (2.3.6)

*Our definition of ergodic chain differs from that
of IKEM 60], Ours is consistent with the notion of
ergodicity used for other processes. [KEM 60] allow
the existence of cyclic classes and therefore in
general no steady state probabilities exist,




>

The sets X, are called,ergcdic classes and X_ is the
set of transient states. Once the process enters a
ergodic class it never leaves it. If the process

‘ starts in a transient state then it leaves X_ in a
finite number of steps w.p.l and X_ is never re-
entered. The vectors Uy k=1,...,m are the exgodic
probabilities of the chain Pkk with state space

Xx and the th.component of the vector ék is the

"% -probability that the chain will get trapped in

ergodic class X, if it starts at the 3D transient
state. For latter developments it is convenient
to write the ergodic projection P in terms of some
of its right and left eigenvectors with eigenvalue
1. Notice that by the structure of P in (2.3.5)
there are at least m linearly independent right
. eigenvectors with eigenvalue 1 given by

T
Tx

T.T

=[0...0 B70...081% kel,..,m

(2.3.7) .

where 1L, is a vector of ones with dimension equal
~to that of the block Pry A complete set of left
. eigenvectors of P with eigenvalue 1 is readily

s constructed as follows:

T

T
2 =10 0

k=1,..,m
(2.3.8)

Let V deonte. the (nxm) matrix whose columns
-are the vectors r_ and let U be (mxm) matrix whose
rows are the RR's. Then we have:

cee 0 Uy 0 ... 0

<
(=}
]

P (2.3.9)

I (2.3.10)

(=
<
]

~We will refer to (2.3.9) as the canonhical product
~ decomposition of a ergodic projection.

2.3.3. Finite State Makov processes Basic
Definitions

A Markov process N(t) taking values in a fin~
ite state space X = {1,2,...,n} is completely.. - .
characterized by its transition probability matrix,
P(t), whose elements are the transition probabiw
lities:

Pij(t) =p_{ne) =3 [ nlo) = i}

i,jex, t>o (2.3.11)

. An (nxn) matrix-valued function P(t), t > o is the
' transition probability matrix of a Markov process
' taking values in X iff the following conditions

- are satisfied:

(i) P() =1 ' (2.3.12)
(ii) P(t) 20, ¥t >0 (2.3.13)
(iii) P(t) 1 =1 (2.3.14)

(iv) P(£)P(T) = P(t+T), ¥t, T > o (2.3.15)

It can be proved ([DOE 38], [DOO 42)] that if P(t)
~is a transition probability matrix then it is .
continuous for t > o and the limit

C1im Py &1
t40

(2.3.16)

always exists., It follows from (2.3.13) ~ (2.3.15)
and the continuity of P(t) that Il satisfies:

>0, .m =1, 0% =T _ (2317

and |
11

i

TP(t) = P(B)T = P(t) (2.3.18)

If T = I then n(t) is called stochastically contin-

uous, otherwise it is called stochastically discon-
tinuous. The following theorem gives a unique chara-
cterization of P(t) in terms of a set of parameters.
Theorem 2.3.2
If P(t) is the transition probability matrix of
a conservative FSMP then

P(t) = T expl{at} t>o (2.3.19)

for a pair of matrices Il and A satisfying:

'4) M0, Mn =1, 0% =1
i4) TA =2l = a
iii) an =0

iv) A+cll 20 for some ¢ > 0.

Conversely any pair of matrices A, Il satisfying
the above properties uniquely determine a FSMP
with transition probability matrix given by
(2.3,19).

We shall refer to the projection II = 1lim P(t)

as the ergodic projection at zero and to tﬁgomatrix

Pft) - T

A= l1lim €

40

as the ‘infinitesimal generator of P(t).
Example 2.3,3
Consider a FSMP n(t) taking values in X = {1,2,
3} with transition probability matrix: .

-
At A ]
Py Py
P(t) = |p At p A 1-e"ME
1 2
0 o] 1

Its initial projection is:

pp P, O

. Me=1limP() = [PL P2 0
40 . L

0 0o 1




and its infinitesimal generator:

o -

“PjA Py
. P(e)-I ‘ ’
A= lim ——— = | -p.\ -P.) A
£40 t higs 24
Pt ?’;.w-—--«* — e v o e S e
0 (o] 0
= -

For stochastically continuous processes the
- elements of the matrix A satisfy a,., 2 0 for i#j
‘and they can be interpreted as trangltlon rates 1n
. the sense that:

Plj(At) = aij - At + o(At) i#j

. If we consider a separable version of the process
n{t) then, as we will see: !

st
pr{n(t) = i, T € [0,t]|n(o) = i} = e IF

" which means that the time of first exit out of
‘state i is exponentially distributed with parameter
- a,. 2 0, The evolution of n(t) can be thought
of as a succesion of stays in different states in
X, each being or random duration and exponentially
distributed with parameter that depends on the
state. The sequence of states forms a Markov chain

" with one—step transition probabilities given by
B. ./a,. and the sample functions of n(t)
aré ea511y3v1suallzed as piecewise continuous func-
tions taking values in X.

The sample functions of stochastically dis-

" continuous processes are much more irregular. As
we will now see, these processes have instantaneous
states, i.e., states in which the process spends no

_ time with probability one but in spite of that the
process, in general, spends a non-zero amount of
time switching among instantaneous states. The
sample functions have therefore pieces where they
are nowhere continuous. To classify the states of
a process N(t) with ergodic projection Il at zero
and infinitesimal generator A, consider a separ-
able version of the process and let A be a separa-
ting set. For t > o and n = 0,1,,.. take 0=
< tln .o < t t in such a way that the sets

A {ton' tln??..,t } increase monotonically and

UA = ANT[o,t].
n

3

Then we have;
prin(r)=i, 1€ [Ot]|n(O)=i =
i Prin(t)=i,7T e [0,t] NA|n(O)=i} =

lim Pr {n(1)=1, 1€ [0,t] N A_[n(0)=i} =

I
n=-1 P
lim I (t -t, ) =
nhm k=0 k+1l,n k,n
. . n-1 S T ) L
i P - (2.3.20
exp {iiz kio log ll(tk+l,n tk,n) (2.3.20)

}where»lai(t) are the diagonal elements of P(t) =

I explat},

To compute (2.3,20) when o < "ii

1f T, = ¢ o (the dlagonal elements of H)

then %%8 P i) it and therefore

prin(t) = i, 1€ lo,t]|nlo)=i} =

< 1 write:

P..(n

11 =1+ 21y h + o(h)
T, . .

ii ii

‘which gives,

243
+ ;——-h + o(h)
ii

P =
log ii(h{ log wii

‘and therefore:

t

prin(t) = i, te [o,tl|n(o) = i} =

nEl aii
exp{%i: [n log w i + k=0 F—_'[ k+1,n k,n
+ o(tk‘i-l‘.n t n)]]} =
0 ifm,, <1
. i1 -
o (2.3.21)
exp {a,.t} ifmw,, =1
ii ii

A state.i will be called instantaneous if 733 < 1
and regular if T, 1. An instantaneous state i
will be called e%%nescent if my jii = ©- The sojourn
time in instantaneous states is zero with probability
one, as indicated by (2.3.21), while for regular
states it is exponentially distributed with rate
=~ aj; 2 0. In stochastically continuous processes
all states are regular. In example 2.3.3 states
{1,2} are instantaneous while 3 is regular. Notice
that even though the duration of stays in instantan-
ous states is zero w.p.l, there is, in general, a
non~zero probability of finding the process in an
instantaneous state at any given time as seen in
example 2.3.3 for states 1 and 2. The structure of
the sample functions for this example is shown in
Fig, 2.3.2, )

Notice that if the process Nn(t) of example
2.3.3 is aggregated by merging states {1,2} into a

_single state, then the aggregated process fi(t) de-
fined as:

. 1 if n(t) e {1,2}
n) =
2 if n(t) = 3

'is a Markov process with transition probability

matrix P(t) given by:

R e-xt 1_e-lt

0 1




The aggregated process A(t) is therefore stochasti-
cally continuocus. In the next section we show that
every stochastically discontinuous process uniquely
determines a stochastically continuous process
obtained by collapsing groups of instantaneous

. states of the original process into a single state

of the aggregated process and conversely that every
stochastically discontinuous process is completely

> determined by its aggregated, stochastically con-
. tinuous version.

2,3.4, Exgodic projections, state space partitions

and aggregation of stochastically dlscon—
tinuous FSMP,

We prove here that all the probébilistic pro-

-perties of a stochastically discontinuous process
i can be derived from an aggregated version- of the
' process that is stochastically continuous.

Let P(t) = T exp{at} be the transition pro-

_bability matrix of a FSMP 1 (t) taking values in X,
"It follows from (2.3.17) that the ergodic projec-
“tion at zero, II, is also the ergodic projection of
' some Markov chain and therefore it has the form:

I O 2 ¢ ¢ 00esese0
T eceeeess O
rr
TI= 0 -.-....H 0 (2.3.22)
m,m
II1,m+l nﬁ,m+l 0
m

. Let X =~(k§£ X°.) U X? denote the partition of X

into ergodic classes and the set of transient states
determined by (2.3.22). The first group of states

"in (2.3.22), corresponding to the identity block

(i.e., absorbing states of I}, are the regular

. state of N(t). States in Xp » i.e., transient

states of the chain II, are the evanescent states

- of n(t) which, as we will now see, can be pruned
"without affecting the finite dimensional distri-

butions of the process. In effect,

CP(t) =1 exp {at} =1 exp {at} I (2.3.23)

~and given the structure of II, it follows that:

pr {n(t) € %3 Into)=i} = o ¥t > o0, Wiex
(2.3.24)

Evanescent states can thus be neglected in the sense

" that there exists a version of the process n(t)

that has the same finite dimensional distributions
but does not take values in XS .

The blocks H;;, i=r,..,m determine groups of
non-evanescent instantaneous states. Such instan-
taneous states cannot be neglected but each ergodic
class can be consolidated into a single state of a
stochastically continuous process as stated in the

- following theorem.

Theorem 2.3.4

Let P(t) = II exp{at} be the transition pro-
bability matrix of a FSMP n(t) taking values
in X = {1,2,...,n} and let m be the number of
ergodic classes at zero. Let Il = V.0 be the
ganonical product decomposition of H

JA}constructed in sectlon 2 3. 2 Then-
Py EuPv = exp {vavt} (2.3.25)

is the transition probablllty matrix of FSMP
n(t) taklng values in ¥ = {1 2,...,m} and

P(t) ==VP(t)U vt >0 . (2.3.26)
g »

The above theorem states that every stochasti-
cally discontinuous FSMP uniquely determines a stoch-
astically continuous FSMP in a smaller state space
and shows how their transition probability matrices
are related. We now show that Ai{t) is in fact ob-
tained by neglecting evanescent states and merging
states of n(t) belonging to a ergodic class at zero
into a single state of N(t). Let j € X be an arbit-
rary state of n(t) belonging to X$, i.e.,, to the LER
ergodic class at zero, and let Xﬁ be any ergodic
class at zero, Denote uk [Oi lOID.TfOI [0]T
Also let 1, be the vector with the Jth component
equal to ljand the rest equal to zero. Then we have:

) o == = T =
prin(t) € Xklﬂ(o)—]} 1 Pee) u
T A
15 vP () Uuy (2.3.27)

and by construction of Vv and U (remember j € XE),

1, v=1
3 L
(2.3.28)
U uk = 1k
P
thus giving:
prin(t) € x;ln(o)=j} = By, (£) = prin(r) =
k[hto) = 2} ®w>o (2.3.29)

~
The process N(t) is therefore an aggregated
version of n(t), i.e.,

A(t) =k if n(t) € X2 k=1,2,...,m (2.3.30)

Notice that, in principle, there is an uncertainty
in defining 1n(t) as in (2.3.30) because no value is
assigned to Nn(t) whenever n(t) € X°. As we have
said, however, there is a version of n(t) which does
not take values in X°. Using this version (2.3.30)
completely determines nt).

In addition to the aggregated probabilities
(2.3.29), the aggregated process fi(t) also determines
pij(t), i,j € X as follows:

Cprln(e) = jln(o)=i} = 1? P -1 =

1'3? vP (£) U1 (2.3.31)

i




e B

~ . R(Il) that is continuous at zero.

By construction of V and u:

-3

(k)

wi ifie X; some k=1,..,m
1, =
i
ce s °
o ifie XT
S T g T T T e e e e o
1, vs= lj if i ¢ XT
- where Hgk) is the iSE»entry of any row of Ilkk

. (see (2%3.22), that is the ergodic probability at

. zero of state i belonging to~class X;. We thus
. have:
s i1 _mlk) o~ o
pringe) = j[no)=i} = ;¥ B 400 =
m}) prlfice) = 2lfico) = x) (2.3.32)
> i °
vt (o] ie Xk
jexs

We will refer to (2.3.25) as the aggreg;tion
operation and to (2.3.26) as the disaggregation
operation. These operations can also be inter-
preted from a geometrical point of view. Notice
that the stochastically discontinuous transition
probability matrix P(t) = Il exp{at} satisfies:

P(t)f = exp{latlf for t € RUI):D R(A) (2.3.33)

and therefore it defines a transition matrix on

Let m be the

number of ergodic classes at zero then rank II =

The matrix V: R * R maps R m:i.nto R(I) in a

one-to-one basis and U: R + R maps R(Il) back
m

into R also one to one.

ing diagram:

RV L rm

exp{at}

N
P(t) R(I)
44

m
R

" From this point of view the state space aggre-

‘ gation is interpreted as a restriction in the do-
"main of definition of the transition probability
‘matrix.

We next give an example of a stochastically

discontinuous process and its aggregated version.

Example 2.3.5

Let n(t) be a FSMP taking values in X = {1,2,

...,6} with ergodic projection at zero given
~ by: : -

We thus have the follow~

"o 0 0 0 0 0]
0 «1/8 ~1/8 1/8 1/8 0
0 «1/8 <l/8 1/8 1/8 0
A=lo 18 1/8 -1/8 -1/8 0
o 1/8 1/8 -1/8 -1/8 O
0 <116 <1716 1/16 1/16 O

T o o o o o]
0 12 1/2 0
0 172 172 0
I=]o o o 172 172 o
o o0 o0 172 1/2 o0
7 7 Lo 174 1/4 174 174 0] T

and infinitesimal generator:

There is a regular state, {1}, an evanescent
state, {6}, and two ergodic classes of instan-
taneous states, (2,3} and {4,5}.

Notice that A is not a matrix of transi-
tion rates of a stochastically continuous FSMP
because it has negative elements in off-diagonal
positions. However, A + II > 0 and the pair of
matrices A and Il define a FSMP. For this ex-
ample the matrices V and U are given by:

-

1 0 0o

o 1 o 1 0o 0 0 o0 0O

0 1 of u=Jo 1/21/2 0 0 o©
“lo o 1 o 0 0 1/21/2 ©

0o 0 1

0 1/2 1/2]

Notice that the matrix V includes all the in-
formation about which states belong to what
ergodic class at zero while the matrix U gives
the ergodic probabilities for each class.

The matrix of transitions rates A = U A V is
is thus given by:

0 0 0
A=vuav= |0 -1/4 1/4
0 174 -1/4

“

The aggregation operation corresponds to con-
solldation of states {2,3} and {4,5} into two:
states of N{t). The reqular state {1} remain
unaffected and the evanescent state {6} is
pruned. The consolidated rates are obtained by
averaging the coefficients in A corresponding to
transitions between states in different ergodic
classes against the ergodic probabilities at

at zero for each ergodic alass.

From the above discussion it is clear that all

relevant information about a stochastically discon-
tinuous process is contained in its aggregated ver-
sion and its initial projection, and therefore the




study of such processes can be reduced, using
- theorem 2.3.4 to the well known stochastically conw~
tinuous case. ]
: We analize now. the behavior of P(t) = I exp{at}
as t + ©, We will say that a PSMP Nn(t) is ergodic
at ® if lim P(t) exists. The following theorem

. extends %gmthe stochastically discontinuous case a
... . result that for stochastically continuous processes
“” is well known. Namely, that all FSMP are ergodic

‘at ®,

‘ Theorem 2,3.6
If P(t) is the transition probability matrix
of a FSMP with ergodic projection I} at zero
and infinitesimal generator A, then:

: lim P(t) =P
o0
f always exists and satisfies:
P2 =P
P20,P.01 =1
PP(t) = P(t)P = P
Pl =1Ip=P
PA = AP =0

The projection P = lim P(t) will be referred

\

to as the ergodic project?gn-at ©,

2.3.5 The MSST Property of Singularly Perturbed
Finite State Markov Processes.

‘ Consider now a stochastically continuous FSMP
n€(t) taking values in X = {1,2,...,n} with transi-
. tion probability matrix

Ps(t) = exp{Ao(e)t} t 2o (2.3.34)
and infinitesimal generator of the form:
oo
AO(E) p=o € Aop eelo, eol (2.3.35)

It follows from Thm. 2.3.6. that A, (€), eelo, eo],

is a semistable matrix and, as we have seen in

section 2.2.2, if rank A (€) is discontinuous at
€ o then °©

1im sup ||P%0) - PPw)l] # 0 (2.3.36)

€0 t>o

! which means that in thig case no(t) can not be a
- good approximation of N (t) no matter how small €
is. Accordingly, if

'n rank A_(€) # rank A_(o) (2.3.37) .

we will say that ns(t) is a singularly perturbed
FSMP. Because null A, (€) equals the number of
ergodic classes of n€(t) at ®, Prop. 2.2.5 has the
following probabilistic interpretation:

Lo ae

it is semistable.

Proposition 2.3.7

- A FSMP n€(t), €€ [0,e 1, is singularly perturbed
if and only if the number of ergodic classes at
© ig discontinuous at € = o. )

The process in Fig. 2,5.1 is singularly per-
turbed because for € > o it has one ergodic class
while for € o there are three ergodic classes.

For singularly perturbed FSMP a complete multi-~
ple- time scale analysis of (2.3.34) is always possi-
ble.. In effect, it follows from (2.3.13) and
(2.3.14) that

lexp {a,@r¢}]] = 1

‘and therefore Proposition 2.2.19 guarantees that
hbﬁgf satisfies the MSSNS condition.

Let AOO' A b,
: Am be the sequence of matrices constructeé
from A {e) as in section 2.2.1. It is readily seen,

by ind%ction, that these matrices are all semistable.

Ffrst; because Agp = A (o) is the infinitesimal gene-
rator of the stocgastically continuous process T (t),
Suppose now that Ao PR

A

’

sz ho are all semistable then by Coroglar§02.2.11
we %éve

1im PE(r/ed) =
[ 2¢]

Al t
My e ™ AP L)

2 t > o (2.3.38)

where II, is a projection such that I, A, = A l'[z =
A, . Notice that P,(t) satisfies thé semigroug
property Pl(t) PQ(T¥ = P, (t+T), and that PE(t) > o,
PE(t) I ="1 imply Po(tY 20 and Py(t) I = 1.

Thus, Pl(t) is the transition probability matrix of

It then follows from Theorem 2.3.6 that
is also semistable., This proves the following
Proposition 2.3.8

If Ao(e) is the infinitesimal generator of a
FSMP then it satisfies the MSST condition.

This result implies that a complete multiple
time scale analysis is always possible for signularly

some FSMP.
A

‘perturbed FSMP in the sense that the limit

k
1im PS(t/eh)
Y0
exists for any integer K. 1In fact it-is not diffi-

cult to prove that the same result holds for any
uniformly stable positive LTI system,

©2.3.6. Aggregated Models of Singularly Perturbed

Finite State Markov Processes.

In this section we give a probabilistic in-
terpretation of the multiple time scale and reduced-
order modelling results presented in section 2.2.2
when the matrix A (€) is the infénitesimal generator
of a singularly pgrturbed FSMP n (t) taking values
in X = {1,2,...,n}.

From Corollary 2.2.11 and our discussion in .

section 2.3,5 it follows that

lim Pe(t/ek) = 1im exp{a (E)t/ek} =
€40 e40 °©

A Pk(t) t > o, k=0,1,..,m

t>o0,k>m (2.3.39)




_where II =I,Hk=P,P.“ﬁbrkﬂqu”m
~and m i some integer smaller than or equal to the
-number of ergodic classes of no(t). The limiting
matrices Py(t), k=0,1,...,m, are the transition
probability matrices of a collection of FSMP nk(t)
"which, except for n_(t) = no(t), are stochastically
discontinuous. The stochastically discontinuous
nature of the limiting transition probability
» matrices P, (t) has a simple intgrpretation in this-
; context. The time scaling in P (t/ek) indicates -
. that we focus on rare events, those that are likely
to occur only for times of order t/eX. 1In the
limit as €40, all transitions that occur at faster
time scales become instantaneous and their net
- effect on the events that occur at time scale
.t/ek is condensated in the ergodic projection at
- zero Hk.

As we have seen in Theorem 2.3.4, each of
. limiting matrices Pk(t) can be written as

P ) = V‘k?k(t) U, kLZ...m (2.3.40)

where Vk.and Iﬁ<are matrices obtained from the
“canonical product decomposition of 1, (i.e. Hk=
Vi Uk } and ' ’

Sl

Pk(t) = exp{u 2 Vk} k’=1','2,'...._,m

k ko

is the transition probability matrix of a stoghasti-
cally continuous FSMP that we denote by . (t).
Accordigg to our discussion in section 2.3.4,
the process n]ét), witili transition probability ‘
matrix Ak==Uk A ka is an aggregated version of
the stochastically discontinuous process TN (t).
We will now see that Ny(t) is also an approximate,
aggregated model of nE(t) that describes events
. in n€(t) which have non-vanishing probability
(as €40) only in intervals of size [0, T/€¥]. Each
of the projections Ty* k=1,...,m, determines a
partition of X as follows:

m, k :
X = (pgf E‘P')UE%{ k=1,...,m (2.3.41)

where E1ﬂ k=1l,...,n are the ergodic classes at
zexro ofpn]ét) and EX is the set of transient
states. We have m dif?erent partitions of X
" determined by the process nf(t) through the con-
struction indicated above. For each of these
partitions define an aggregation mapping as follows:

A:x+x =1{1,2,...,n} (2.3.42)
'k k k :
A (i) = j if i e EF
k J J
A (i) arbitrary if i € EX
k T
“and an aggregated version of ns(t): o
A £
ni(t) A Ak (n-(t)) (2.3.43)

- gated processes 7

" The process A% (t) takes values in X = {1,2....,nk}

and it changes only when N (t) jumps from one ergo-
dic class EX to anothér ER rémaining constant while
nE(t) evolvés inside one df the ergodic classes
Eg.h In general, hﬁ(t) will not be a Markov process
but, as the following theorem states, it can be
approximated by a FSMP in the limit as €40.

* "Theorem 2.3.9 ’

-~ “Let A, , k=z1,...,m be the aggregation mappings
defined in (2,3.42). Then

lim ny(t/e) = Ak(ne(t/ekn =f, )

€40

(2.3.44)
k=1,2,...,m

the convergence being in the sense of finite
dimensional distributions,
This theorem has the following implications:

&

i)

pr{n® (t1e z’j‘Ine(o) = 2 %} =
: (2.3.45)

p'r{ﬁk(ekt) = jtﬁk(o)=i} +0(e) ¥t 3o

That is, the transition probabilities among
classes E, for the process N (t) are asymptotically
markoviandin the limit as €40 and they converge to
the tran§itign probabilities among states of the
process N (et).

‘In teérms of the transition probability matrices
this can be written as:

€ _ Ak
gPie v = exp{zsk et} + 0(e) (2.3.46)

uniformly on [0: T/Ek].

ii) The collection of partitions (2.3.41) de-
termine a classification of events in n®(t) into a
rarity hierarchy. Transitions among classes 1
i=l,...,n , may occur on time intervals of the type -

.10, T/ek] but not on shorter time intervals, i.e.,

lim 2e{n€(t) ¢ EX some t € [0,7/eY]
€Yo .
) e E.J;‘_'} =aQ

Ve > k (2.3.47)

In view of Theorem 2.3.9 and the above interpre-
tations we will say that nk(t) is an aggregated

N N .
model of ne(t) valid at time scale t/eX.
We have thus seen that for a singularly per-

~ turbed FSMP it is always possible to construct a

sequence of aggregated models each valid at a diff-
erent time scale.. These models form a hierarchy in
the sense that the number of states of the aggre-
(t) decreases as k goes from 1

to m and consequently the partitions used in the
aggregation mappings 4\ are increasingly coarse.

In effect, N, (t) takes values in = {1,2,...,nk}
and the number of states n is given by:




OO O

(2.3.48)

= dimR (Hk) = dimR (POPI. . 'Pk‘-l)
R=1,...,m
it then follows that:’
R .‘kil e e e
n,=n- p=o rank Ako (2.3. 49)
Also, because
Hk . Hz = H2 2>k k=1,...,m

if i and j are two states in X that are aggregated
;ogether at stage k then they remain in the same
aggregated state at all stages 2>k, i.e.,

é Ak(i) = Ak(j) => Al(i) = Az(j) ¥l > k

(strictly speaking this is true only if i and j
belong to
States which belong to some ergodic class at one
stage k may become transient states at a posterior
stage % in which case the aggregation A, is not
defined for these states. Nevertheless, the: hier-,
archical relation among the mappings Ak’ k—l,....m,
remains true). The number of states of NE(t)
aggregated into a single state of ﬁ (t) cannot
decrease as k goes from 1 to m. In the next section
we present two examples that illustrate the con-
struction of the aggregation mappings and of the
aggregated models,
) Each of the aggregated models A (t), x=1,...,m,
~4is a simplified model of the process n€(t) which
accurately describes events that occur at a cer-
tain time scale t/€™., It is clear, however, from
our discussion in section 2.2, that no single aggre-
" gated model can accurately describe the evolution
of n (t) at all times t. For this it is necessary
to combine all them as showed in the following.
Theorem 2.3.10

PE(t) = Z o Vx exp{A ek} ¥,
- :
R AEIC) (2.3.50)

uniformly for t € [0,%).

The transition probabllxty matrix of the singu-
larly perturbed process nf(t) is in (2.3.50) uni~
formly approximated by combining the tran51tlon
probability matrices of the aggregated models n;gt),
R=0,1,...,m (here N (t) = no(t), and in (2.3.50)

a A (o), V. =1U O= I). Theorem 2.3, 10 can also
be 1nterprete8 as an approximation of n€(t) by a
set of smaller dimensional, independent processes
suggesting that events that take place at different
time scales can be considered asymptotically in-
dependent.

This asymptotic independence of events occuring
‘at different time scales provides the foundation for

some ergodic class at both stages k and %.

'2.3.1.

approximation techniques based on using aggregated-
models of a complex system. The use of hierarchical
aggregation methods in the simplification of filter-
ing and control problems for singularly perturbed
FSMP with a large number of states is presently
under study and the findings will be reported in
[cop 82].

'2-3:7_HVE}(81“E18 av e e e e i e e e e

In this section we present an example that

"illustrates the use of the techniques developed in

this chapter for the construction of aggregated

‘models of singularly perturbed FSMP.

Example 2.3.11
Consider the process n (t) depicted in fig.

It has a matrix of transition rates of the
form A (e) = A+ €B with
: [ [<]
(-1 1 o o ]
1 -1 0 0
Ao = 0 1 =2 0 0
v 0 0 -1 1l 0
0 0 1 -1 0
0 0 0 0
o -
0 0 o o 0]
0 -1 0 0
B = 0 0 -1 0 1
0 0 -1 0 0
0 0 0 0 0
b0 0 0 (o} 0 |

The unperturbed process no(t) with matrix of transi-

tion rates A_ is shown in figure 2.3.3. It follows
from (2.3.39) that
Alot
lim exp{A (e) t/e} = Hl e
€40
where Hl is given by:
- -
1/2 1/2 [¢] 0 (o] C
1/2 1/2 0 (o} 0 0
At
T, = line® = 1/4 1/4 0 1/4 1/4 ©
oo 0 o] 0 1/2 1/2 0
0 0 0o 1/2 1/2 O
| o 0 0 0 0 1]
and
[-1/8 -1/8 0 1/8 1/8 o']
~-1/8 -1/8 0 1/8 1/8 o]
Bg=T, BT, = 0 0 0 0 0 o©
1/8 1/8 0 -1/8 -1/8 0
1/8 1/8 o -1/8 -1/8 0
| © 0 o o o of




ffTo‘déﬁermine the aggregated model of na(t) valid at
~‘time scale t/g, tht), notice tﬂat II; determines the
following partition of X = {1,2,...,6}:

x = {1,2}U{4,5}u{6}U {3}

1 1 1

‘ 1
e e A E; U.E, U E;

" into three ergodic classes and a class with one
" transient state and that the.canonjcal product
decomposition of Hl (see section 2,2,3) is:

:111 é Vl'Ul_= L | i
1 o o) [i/21/20 0 o o
1 o o 0 0 .0.1/2 1/2 0
-= 172 172 o] o o0 0.0 o0 1
0 1 o
0 1 o
o o 1)
(2.3,51)

Ehe aggregated process ﬁ (t}) thus takes values in
%, = 1{1,2,3} and it has a matrix of transition
rates given by:

~1/4 1/4 0
“1/4  -1/4
0 0

o

R TS

(o]

~ The state 1 of ﬁl(tl corresponds te the set of states
El = {1,2} of n€(t) and similarly the state 2 corres=
ponds to the set E% = {4;5} while the state 3 of
fi; (t) corresponds to state 6 of nf(t]., Only for
time intexvals of order 1l/€, are transition be-
tween the classes {1,2} and 14,5} likely and in
the limit as €¥0 they follow a markovian law with
"rate €/2. Transitions to state 6 are of negligible
probability on this time scale.
The next’levgl of aggregation corresponds to
~the behavior of n (t) at time scale t/e2 which is
given by: *

lim exp{a (e)t/az} =1, e
Y0 ©
‘ where

Alot

I, = lim Hl e

2 o0

and A_ '= ~1_ B A# BIl,. The determine the aggre-
_gation partition £Or tifie scale t/€2 and the corres-
ponding aggregated models it is first necessary to
compute [I. This computation can be simplified

by noticing that: ’

The limit fi, 4 lim e

U ET - U w .

178 14 o 1/4 174 0]

A 1/4 14 0 1/4 1/4 o0
L, =v, ﬁl u, = |14 174 o 14 14 o
1/4 1/4 0 174 1/4 0

1/4 1/4 o0 1/4 1/4 0

o -0 o o o 1

1 is the ergodic projection of

-0

.the aggregated model ﬁl(t) which is.readily seen to
‘be: .

1/2 172 0
o= Ji2 12 o

0 0 1

and combined with (2,3.51) gives

The aggregation partition determined by H2 is

x = {1,2,3,4,5} U {6}

2 2
E1 U E2

and, therefore the aggregated model ﬁz(t) takes values
in X, = {1,2}. The canonical product decomposition
of I, is given by:

"1 o] [14a 172 0 174 174 o
10 o o o o0 o0 1
= A
II2 =11 0 = v2~u2

10 (2.3.52)
10

0 1

- -

and to compute the matrix of transition rates of
nz(t), i.e.,

#
2—UZA20V2—-u2H28AoBH2V2

-U, B A% B V
o

2 2

 we still need Ag which is computed as follows:




1
po -
-1/4 14 0 o0 0 0
1/4 -1/4 0 ©O0 0 © : :
= | 1/4 0 -1/2 0 1/4 O} (2.3.53)
SU 0. — 0. ~1/4 1/4 ©
0 0 174 -1/4 0
| o 0 o o o o}

Finally by combining (2.3.52) and (2,3.53) we get: .

-1/4 174

0 0 :

rThe state 1 of . (t) .correspond to the set of states
= {1,2,3,4, 5} of n (t) corresponds to the state
6 of n€{t). For time intervals of order 1/62 the
probability of n (t) getting absorbed in state 6 is
" of order one as €V0.
It is clear from the structure of n (t) that
t, t/€ and t/e2 are the only fundamental time
scales. This fact can be readily verified checking
that : i

+ rank A

rank Ao + rank AlO 20

= 5 = rank A _(€)
°

Once the time scale decomposition and aggre-
gation of n (t) has been carried out, we can con-
struct a uniform asymptotic approximation to its
transition probability matrix PE(t} = expla (g)t}

“using Theorem 2.3.10 which only requires thg ex-
ponentiation of three (2x2) matrices instead of
the exponentiation of the (6x6) matrix Ao(e).

2.4 Aggregation of Diffusion Processes with
Multiple Equilibrium Points

2.4.1 Introduction

When a dynamical system with multiple equili-
brium points is perturbed by centinuous acting wide-
band additive noise, it is known that transitions

. between different equilibrium points occur with
" probability one. An important problem associated
with the analysis of these systems is the statisti-
" cal characterization of the jump process which
. represents the transitions between different domains
of attraction, in limiting situations. A phy51ca1
- example of a system where multiple equilibrium
points are common are interconnected power systems,
where the swing equations [EVA
‘78], Anderson, Fouad [AND 77] represent a dynamical
system driven by the power flow eguation towards
equilibrium, A detailed study of the power flow
equation [ARA 80] establishes that there are many
possible equilibrium angles in an interconnected
network; these angles are defined by a power balance
. between electrical supply and demand. When the de-
.mand fluctuations and unmodeled effects are re~
presented as random, the resulting system has the

structure described above.

In this paper, we study the long-term behavior
of a subclass of models with multiple equilibrium
points and additive white-noise disturbances. These
models are characterized by the presence of a para-
meter € in the description of the process, related
to the frequency of transitions between equilibrium
points. :

- - The objective of the paper is to obtain a simp-

llfled aggregate model of the process. Consistency
of the model is established by showing that, in a
limiting sense as the parameter € approaches zero,
the detailed model converges to the aggregate model.
The parameter value € is thus a measure of the accu-

rary of the approximation.

‘2,4.2 A Diffusion with Small Noise Intensity

Let x(t) be a diffusion process described by the

differential equation.

ax(r) = £EE) ae 4 pay (2.4.1)
where
f(x) = sign x - x (2.4.2)

and a, b > 0, and w is a standard one-dimensional
Wiener process. :

For any values of a, b, the process glven by
equation (2.4.1 - 2.4.2) defines a unique probabi-
lity measure on the space of continuous functions
[STR 79]. 1In addition, the solution o equation
(2.4.1) is pathwise unique in the sense of Yamada-
Watanabe [YAM 71]. Thus, it can be interpreted as
a measurable relation between paths of the Wiener
process and the trajectories of x.

For any fixed a and b, there are two domains of
attraction, corresponding to the equilibrium points

+1, Transitions occur between these domains, as a

gets small, the rate of transitions decreases, and
the process spends most of its time in small neigh-
borhoods of *1. As b gets large, the rate of transi-
tions increases. We seek a balance between a and b
so .that the process, in the limit, has a steady state
distribution concentrated on *1, yet it has a con-
stant rate of transitions between these two points.
The steady state distribution of the process
is obtained from the Fokker-Planck equation [WON 71]
by solving, for x > O,

2
(x~1) g—%+p+£ab2d—2 =0

(2.4.3)
2 dx2
with the boundary conditions
p(x) > 0 as x > (2.4.4)
Using the substitution y = E:}-. equation (2.4.3)
becomes b/a
®,5+1 8B .
dy tp+ 2 2 0
dy,mA,,4.

ply) *0as y >

This implies that

e e e S Tl
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- x~1
p(""“) »
wa
'so that if b Ya + 0, the density p(x) is concentra-:
'ted on % 1.
To -analyze the transition between regions, let's

; compute the mean exit time u(x) from (0,®), starting
at an initial point x> 0. From Friedman [FRI 75],

* % this can be obtained from the boundary value pro-,

- blem:

1-x du Ei dzu - . 1\
a dx 2 dx2
u(0) =0 > (2.4.5)
du )
—
ax 0 as x + » )
It is easy to verify that
. (z-l)2
B Va b4 2 L - 2 :
u(x) = 2b 2 eab eY dydz (2.4.6)
z=1
b/a

2 .
v As ab =+ 0, the expression for u(x) is nearly
~constant, except for a small boundary layer near
zero. Hence for some & > 0,

u(x) = u(l), §<x<e

We now proceed to evaluate u(l) for small abz.

Lemma 2.4.1: As ab2 = 0,
2
u(l) a3/2b el/ab

The mean exit time in Lemma 1 suggests the

hatural scaling choices for a and b. These
choices are
2 .
a2 M/ Ly (2.4.7)

With this scalifig between a and b, the fre-
quency of transition betwgen domains of attrac-
tion remains constant. Furthermore, by letting
ab? approach zero, the distribution of x(t)
concentrates. about the points *¥l. Our objec~ -
tive is to derive an aggregate model for the
transitions between domains of attraction as a
jump process between two finite states. - This
result is formalized in Theorem 2.4.2.

Theorem 2.4.2: As ab? + 0, with a,b satisfying
(2.4.7), the finite dimensional distributions
of the process sign x(t) converge to the finite
dimensional distributions of a jump process
y(t) with two states, #1, and transition rates

]

pr {y(t+d) = 1]y(t) = -1} = XA+ o(d)

pr {y(t+d) = -1| y(v) =1} = A4 + o(d)

Notice that the statement of Theorem 2 is not a
statement about the convergence of the x(t) process
to a finite jump process. Rather, it looks at the
finite state transition process associated with x(t)
and establishes convergence to a jump process. It
is also possible to study the x(t) process itself.
This is the object of Corollary 2.4.3.

Corollary 2.4.3.: Let y(t) be the Markov pro-

cess in R, defined as follows: :

If y(0) = o, ylo+) = 1 with prob. 1/2, y(0%)

-1 with prob. 1/2.

If y(0) > 0, then y{(0+)
If y(0) < O, then y(0+)

1
-1,

For times t > 0, the transitions of the y(t)
process agree with the jump process defined in
Theorem 2.4.2.

As (ab2)n = 0 satisfying (2.4.7), the fin-
ite dimensional distributions of the x,(t) pro-
cess converge to the finite dimensional distri-
butions of y(t).

Corollary 2.4.3 provides an aggregation result.
The original multiple equilibrium process can be
studied in terms of a finite state jump process.

Note that the results of Theorem 2.4.2 and
Corollary 2.4.3 are as strong as can be stated.
one attempts to establish weak convergence of the
xn(t) processes to the y(t) processes, the fact that
x_(t), as a process, has excursions of at least size
1"from *1 preclude weak convergence in the standard
spaces one considers.

As a application of this result, consider the
process

If

dx(t) = £(x(t))dt + € dw(t) (2.4.8)

with f£(x) sign x-x. The excursions of this process

between domains of attration are a rare event, for

€ small. By compressing the time scale with a.

transformation
T = g(e)t

’

we can study the properties of the excursions of the

process. Equation (2,4.8) becomes
axm=f(’fg)) + —E— awin) (2.4.9)
' g /g(€)

Comparing (2.4.9) and (2.4.1), we see that (2.4.7)
is satisfied when the time scale is given by:

(2.4.10)

On this time scale, the results of Theorem 2.4.2 and
Corollary 2.4.3 apply, so that the finite dimensional
distributions of the x(T) process converge to those
of a jump process as described in Corollary 2.4.3.

2.4,3. The General Scalar Case

Consider the diffusion equation in a one




-, dimension

g

- function e e e

dgt = f(xt)dt +v€ dwt (2.4.11)

“where £(x_) is piecewise continuous with a finite
number of "discontinuities. Define the potential

e - S — [

X

F(x)" = j - £(x) dx (2.4.12{
° I

i

"Assume that, as x * % o,

Fx) 2 [k x°

"and that F(x) > o for all x. The first assumption
guarantees the existence of an ergodic density for
(2.4.11), whereas the second assumption represents
. no loss of generality due to the arbitrariness of
the zero reference point.

Equation (2.4.11) can be viewed as the evolu-
tion of a Brownian particle in a very steep poten-
tial well F(x)/€2, when a time transformation T=€t
is applied. The purpose of this section is to con-
struct a finite state approximation to the evolu-
tion of the process at longer time scales, which

' captures the transitions of the Brownian particle
between equilibrium states.

Assume that the function F(x) has a finite
number of local maxima and minima. Denote by
X, , x3,...,x2n_‘l the local maxima of the function
F%x), and X _, X, ,...X the local minima. We will
provide an approximatlgn to the evolution of
(2.4.11) as a finite-state process whose states are
X,, i=0,:.,,2n, Before we are capable fo doing so,

" we must perform certain preliminary calculations.

For £ = 1,...n-1, consider the graph of F(x)
between x_, . and TR E Figure 2.4.1 represents
a typical graph. We want to compute the transi-
tion rates from x to le— and le 1" We pro-
ceed as in the previous sec%ion, by Sefining a
related boundary value problems.

The mean exit time from x € in [xzz_l, x

1

. is given as the solution of 28+1
2 2 R
%?.é_l + £(x) %§.= -1 (2.4.13)
ax
V(xpg-1) = ViXpe4) =0
The probability of exiting through x is
. . 22+1
~given as a solution of
2 2
£ 92y Peo (2.4.14)
ax .
wlxyg) = ©
Blxoge) =1

‘in closed form.

Solutions to these problems are easy toqwrité )
The solutions are closely related:
to the scale and speed measures of the diffusion

process. In terms of these solutions, we define
the transition rates
u(x,,)
22
A22,22+1 Tovix,,) (2.4.15)
TR
N _ l-u(xzz)
2%,2%-1 v(le)

Consider now the local graph of F(x) near a
local maximum X501 £=1,..,n. Figure 2.4.2 jillu-
strates a typica% sﬁape of that graph. We are in-
terested in computing the probability of exit from
.a neighborhood of the point x4 ,, starting at
Xy9_yr @S indicated in Fiqure 2.4.2. The probability
b% exXiting through b satisfies equation (2.4.15)
subject to

u(a)

fl
0

u(b)

]
[

Denote this probability -as Pogn1.28° Define
’

1l (2.4.186)

Pag-1, 20-2 T 7 7 Page1,20

We are now ready to state the main Theorem.
Denote by 0 the index which minimizes

zg = min (Flx)p 1) = Flxyp)s Flxyp 1 FlxyD)

Denote by Ta the mean exit time from (x2u_1,x2a+1)-

starting at x Define a time scale transformation

2a°

Theorem 2.4.4 In the time scale T, the finite
dimensional distributions of the process x
converge as € > o to the finite dimensionai dis-
tributions of a stochastically discontinuous
finite state Markov process, with states x _,x...

X, . The odd states x deesXy g are instantan-
eous states with transition proéabilities given
by
Prix = 22 | x, = 2041} = Poge1, 20
Prix,, =22 + 2| x, =204 =1 -pye. 50
Prix_, = k|x, = 2241} =0, k # 20, 20+2

The even states are regular states, with transi-
tion probabilities .given by

22} = Ay g1

Prix . 22+1]xt

- TA+0(h)

20} = A

2g,20-1 T4+ 0 4)

Pr{xt+A = Zl-llxt




Pr{xt+A - klxt =22, x_=korx_ =kor

s € [t,t+Al} = 0o if k # 2%+1 or 2%-

The quantities in the description of .t

x, = 2%,
1.
he fin-

ite~state Markov process of Theorem 2.4.4 can be

~ : computed exactly. For instance, the exact

tion of equation (2.4.13) assuming that F(x

solu- .

22-1'

< F(x22+1), is given by
- x 2 rx, 2
2 -
vi = 2 2Py /e f 2041 ~2F (2) /€7 4 o
& g1 Y
2 [%2p41  2r(y)/e® (%2 41 -2F(2) 42
- !-—2- e - e dz dy .
e *2p-1 ‘ y
% 2
. ezP(y)/e_ dy
X
xzz-l (2.4.17)
22+1 2
. S2F ) /e ay
28-1
Similarly, equation (2.4.14) is solved by
X 2
eZF(x)/e ax
X
ulx) = xzz’l 5 (2.4.18)
J 2041 2F(x)/€”
*20-1
The expressions (2.4.17) and (2.4.18) can be
approximated asymptotically as € - o, yielding
expressions which depend on the local nature of
F(x) around the critical points XorXy = Xy . We
do so here for the case where F(x) iS5 twiCe con-
tinuously differentable and F"(xx) # o for
£ =0,1,..,2n.
From the assumptions about F, in a neighbor-
hood of le_l' :
F(x) = F(x ) + é-F"(x ) (x-x )2
) 2%-1 2 22-1 28-1
- 3
+ 0(x-x22_1) (2.4.19)

From (2,4.16) and (2.4.18), and figure 2.4.2,

Ixzz-l

a

2
e2F(x)/e ax = 1/2

Py = .
T a-L,2e ~Jb e2F(x)/e2 ax
a

due to the even approximation (2,4.19).

- A similar approximation yields

P A 2
a o2F (x2g-1)/€

2
eZF(x22+1)/€

)

e

u(x

B + celFxy _4)/E

where =~

® F"(x )22/52
A= e 22-1 dz
o .
i 2,2
" ¢
B= f F Xy )2 /e g,
o

® F"( ) 2 2
C= J e *3 _1,? /& dz
o

The expressions (2.4.17) and (2.4.18) can be
approximated asymptotically as € + 0, yielding ex-
pressions which depend on the. local nature of F(x)
around the critical points x_, x, - x, . We do so
here for the case where F(x)ois twice continuously
differentable and F*(x,) # 0 for £ = 0,1,...,2n.

FProm the assumptions about F, in a neighborhood

of X22—1,
F(x) % F(x,, ) + = F"(x,, .) (x=X,, )2 + 0(x-x., )°
T T T 2 22-1 22-1 ’ 22-1
(2.4.19)
and
2 2F(xpp.q) /€% "
vix,,) ® %5 e 29-1 D\E
24 L2
e
400 2 N 2,2
b= I 2 (xp/€” -FU(xgq) 2°/67
-00
* 2.2
E = f eF"(xzz_l)z /€ dz
o .
where F(le—l) < F(x22+1)
Using the formula
o 2
I e-ax = vYwv/a ,
-00
we get

ag-1) " Flx50)) o
CTEOgea) FUkg)

e2/ez (F(x

v(le)w




1

Notice that the expected exit time is a function of
the depth of the potential well F(x).

In terms of the scale function T , we have
that &

b

v(xzz) =c Ta

-for some constant b > 1, and c > o, e -

Furthermore
u(x,,)
22" . 1 2
V(xzz) - 2(F(x22) - F(x22+1))/e ..
/F"(*2£+1) “F"(x22)

If the differences in potential levels were
normalized to occur in integer steps (that is,
F(ng_ ) -~ F(s,,) = nK for some integer n, all 2,_
and some constant k), the resulting transition

‘rates for the approximate finite state Markov pro~
cess will be of the form

A=Als) = Al s+ L+ sS4 ...

- 2
where s =(e—2/e )k

Finite state Markov processes with this re-
gular dependence on a small parameter s were studied
in section 2.2 and 2.3. The resulting Markov pro-
cess can be further approximated by a hierarchical
sequence of simpler models, as described in sections
2.3 and 2.4.

2.4.4 Discussion

The results of section 2.4.3 can be geheralized

to diffusions with multiple equilibrium points in

- several dimensions. The major difference in the
many dimensional case is that closed form solutions
to the partial differential equations of exit times
and probabilities are difficult to obtain. However,
it is possible to obtain asymptotic estimates for
these quantities, as described in Matkowsky and
Schuss [MAT 77] and Schuss and Matkowsky [SCH 79].
Using these estimates, a finite state model of the
multiple equilibrium process is obtained.

The reason for using instantaneous states in
the description of the finite-state Markov process
in Theorem 2.4.4 is that setting € = o in equation
(2.4.11) does not accurately capture the evolution
of the process (2.4.11) as € * o for times of order
1. This is due to. the singular nature of the per-
turbation of the spectrum of the differential oper-~
ator associated with (2.4.11) [KAT 66]. However,
the deterministic flow, together with the instantan-
eous transition out of the unstable equilibrium
states, does capture accurately the limit of the

_process in (2.4.11) as € > o, for times of order 1.

The aggregation operation associated with the
approximation of Theorem 2.4.4 collapses each do-
main of attraction onto each equilibrium point x,;
hence, unstable equilibrium points have only thelr
relative domains of attration (in one dimension,
only the points) as their aggregate sets.

Another finite state approximation has been N

' proposed by Ventcel and Friedlin [VEN 1970} in
order to compute the ergodic distribution of
- (2.4.11). Their approximation was based on

~ Gershwin and Berman [GER 81]).

constructing a hierarchical Markov chain based on
likelihood of transitions. The approximation de- .
veloped here contains more information because it
includes the effects of the exit times also. 1In
effect, we are developing an approximation which
accurately describes the action of the differential
operator (2.4.11) when it is restricted to act on

the eigenspace corrﬁgponding to eigenvalues of magni-
tude between o and 7=. Due to the discrete nature of
the spectrum.of (2.4.11), there are at most a finite
number of these; the essence of our aggregation re~
sult is to identify the eigenprojection which carriés
a general process into this space, and to establish
the right time scale under which the original pro-
cess, due to its inherent stability approaches this
eigenspace,

There are a variety of problems which suggest
themselves, based on the results of this paper. 1In
particular, it will be interesting to investigate
the consequences of having such approximations avail-
able for problems of designing suboptimal controllers
and estimations in systems with small dynamical
fluctuations.

2,5 Diffusion Approximations of Transfer Lines with
Unreliable Links and Finite Storage Elements

2.5.1 Introduction

An important class of systems which arises in
manufacturing, chemical processes, computer networks
and power systems, is where material moves through a
network of unreliable links between storage stations.
Transfer lines are networks where all of the storage
stations are arranged sequentially; Figure 2.5.1
describes a typical line network. The presence of
storage stations serves to compensate for link fail-
ures by maintaining the flow upstream and downstream
of a failure, thereby descreasing the effect of a
failure on the rest of the network., When the oper-
ation of a link is modeled as a random process, exact
analysis of the flow of material is a difficult task.
In this research we develop an aggregate model of the
flow through the network based on the physical
assumption that the storage capacities are large but
finite. This aggregate model is developed as the
limit of a sequence of probabilistic models for the
flow of material through the line network. Based on
this aggregate model, we can approximate properties
of the long~term behavior of the line network. Al-
though storage capacities are assumed large, satur-
ation of individual storage stations occurs and is
considered in the method here.

Analytical studies of line networks using a
probabilistic approach were first studied by
Vladzievskii [VIA 52]. A number of authors have
studied the flow rates of lines with storages of
infinite capacity; some of these are Hunt [HUN 56],
Suzuki [SUZ 64], Barlow and Proschan [BAR 75]. Un~-
reliable line networks with one storage station have
been studied by a number of authors (Buzacott and
Hausifin [BUZ 78], Gershwin and Schick [GER 80a],
These papers have
bibliographies of work in this area.

Systems with more storage stations are diffi-
cult to analyze because of the complexity of inter~
faces when storage are either full or empty. For
some special systems, Soyster, Schmidt and Rohrer
[soY 791 have obtained exact probabilistic analysis
of networks with more than one storage. Gershwin




‘and Schick's results [GER 80b] are more general, but

. still limited.
works with more than one storage is a difficult
computational task.

The aggregate model described in this paper is
established as a consistent long-term approximation
by verifying that an exact model based on the formu~
“lation of Gershwin and Schick [GER 80b] converges

" weakly to the aggregate model in a probabilistic
" sense. For a discussion of weak converdgence of
probabilistic measures, the reader should consult
Billingsley [BIL 68]. The arguments of convergence
depend heavily on the averaging results of Khasmin-
skii [KHA 66a,b].

The aggregate model obtained in this paper is
a diffusion process. Diffusion approximations in
queueing networks have been studied by a number of
authors, notably Borovkov [BOR 65], Iglehart and
Whitt [IGL 70], Kobayaski [KOB 74], Reiman [REI 771,
Burman [BOR 791 and Harrison [HAR 78]. Although
queueing networks feature storages of infinite
capacity, many of the techniques used in the analy-
sis of these networks are used here. In particular,
the construction of reflected Brownian motion in
Harrison and Reimann [HAR 79] provides a valuable
introduction to these results.

2,5.2 Mathematical Model of Material Flow

.In this paper, we will assume that individual
objects are of infinitesimal size, so that when
flow of objects through a network is a continuous
variable. Using the diagram of figure 2.5.1 as
reference, objects flow from an infinite source to
an infinite sink across storage stations and un-
reliable links. The failure and repair processes
of the links are assumed to be independent Jjump
processes with constant failure and repair rates.
It is also assumed that there is no creation or

destruction of objects in the line.
b Let x4, i=1,...k-1 denote the amount of
material in storage element i. Let ., j=1,...,k
denote the state of the link precedln& storage
element j. The variable a4 can take two values,
1 or 0, indicating respectively that link j is
operating or not. By assumption, . is a random
process, with transition probabilities

pr{aj(t+A) 1| aj(t) o} = rjA + o(d) (2.5.1)

Pr{aj (t+4) = 0 | o (£) i} = pA + (B)

From the theory of representation of jump processes
(Davis [DAV 76], we can describe t.: by a stochastic
differential equation driven by Polsson processes.
Thus, one obtains

t - t aE‘ t + l - a, t ‘ I}
(2-5.2)

- where F:, Ry, F, are independent Poisson processes
with transition“rates pj, rj, Py for any j,i.

-Let N; denote the capacity of storage j, De-~
note by‘Nj the flow capacity on link j. The flow
rate is assumed to be of maximum capacity whenever
possible, Since no objects are created or des-
‘troyed, we can describe the storage process by
differential equation

- Nevertheless, exact analysis of net~-

-storage elements are away from their limits.

0 < x, <N, (2.5.3)
i i .

i=1,...k-1

Define the vectors x = (x,,..., )T, 0= (0 yauuy )T
as the state of the system. Let s = (x,d). Equations

(2.5.2) and (2.5.3) provide a system of stochastic

..differential equations which describes the evolution .

of the probabilistic state s(t) whenever all of the
How=-
ever, ‘when a storage element is either empty or full,
equation (2.5.3) must be modified so that conser-
vation of flow through the line network applies.
Consider the situation when storage i becomes

full. Then, equation (2.5,3) must become
dx, ' -
— <0 : (2.5.4)
di =

Since the storage element filled up, the incoming
flow must be reduced to match the outgoing flow.
That is, the rate ui.is modified so that

Hlo, <u (2.5.5)

s, 40
i7i - Ti+lTidl

This implies
i < u,, ., if a =1

1~ "i+17i+1 i+l

Consequently

ui = mln(u ,u ) (2.5.6)

1+1 i+l

if a, —l and x, —N

Notlce that a (t) cannot equal 0 if storage i just
fills up.
When storage i emptles, the out901ng flow bl+l

must be reduced to match the incoming flow. That 1is,
+ = 13 .5.7
Uy m1n(ui+1, uiai) (2.5.7)
when O, =1 and x, = 0, Note that o, is not

zero wﬁen storage i empties, When more complex
combinations of full and empty storages occur, new
produciton rates are defined to enforce conservation
of flow. The full stochastic differential equations
for the x process is given by

dx,
i

e (2,5.8)

= ui(_s)ezi (s)al,u
where U, (s) satisfies the boundary conditions des~
cribed by equations (2.5.6), (2.5.7) and their ex-
tensions to higher order cases.

2,5.3 Scaling

In order to develop an aggregate model of the
system, we will assume that all of the storage
capacities are large. Mathematically, we assume

B

1
Ny =T

i i=1,...,k~1




for small £, and constants B:, Without loss of
generality, we will assume that all B, are equal to
1. Otherwise we can introduce constafit to keep
track .of the relative scaling. Define a scaled’
variable yi(t) as the fraction of storage used:
x, ()

N,
i

Y, (£) =

" thus, equation .(2.5,8). becomes

(s) (2.5.9)

RS LIPR]

Equation (2.5.9) represents a random evolution for
the y(t) process, with a discontinuity in drift k- 1
when the process exits the open domain D = (0,1)
Aggregation or random evolutions has been studied

by a number of authors; Hersh [HER 74] has compliled
a comprehensive survey of the work in that area.

' However, none of that work can incorporate the local
discontinuity of the drift as the process reaches
the boundary.

The process y(t) has coordinates with values
between 0 and 1, Eepresenting the fraction of capa-
city used in storage. The boundary effects des-
cribed in section 2.5.2 will occur whenever one of
the coordinates of y(t) is either 0 or 1. ILet
denote he time of first exit of the y(t) process
from its interior. That is,

y(w) = inf{t > 0 | y(t,0) ¢ D}

We will develop an approximation to the z(t) pro-
cess until its time of first exit from the domain
D. k-1 -

Denote by z(t) the process in R whose evol-

ution described by

dz,
l = —
NooF@ T %M T %t (2.5.10)

where |; are the constant flow rates when y is in D,

Note that the sample paths of the g(t) process
agree with the sample paths of the y(t) process un~
til time Y(w). The process z(f{) represents the
evolution of the normalized storage process if no
boundary adjustments were made.

Define T as €t. In this time scale equation
(2.5.10) becomes

dz,

T (t) = a, M

%5 41Mi41

Notice that the Markov process (z(T), 0(T))
has components varying in two different time scales,
The z(T) process has variations on the slow scale
~T, and the & (T) process has transitions in the t
scale. This separation of scales is & consequence
of the assumption that N, is large, and will be
exploited to obtain aggregate models. In the next
section, we will establish that the process E(T)
can be approximated by a Markov process which does
not depend on the jump process g(T); this approxi-

mation can be used in computxng expectatlons of the
process z(1).

2.5.4. AGGREGATION

The a(T) process described in ‘equation (2.5.2)
is a jump process with a finite number of states.
Each of the components has independent transitions,
and is strongly ergodic. The ergodic measure of the
jth component is* B ’

i (1-a.)p, + a.r,
iP5 i3

=y
Py T ¥y

(2.5.11)
The overall ergodic measure is given by

k .

g PL(a,)”

=1 373

As the parameter € approaches zero, the separa-
tion between the time scales T and t increases.
Hence, more transitions of the 0 process occur be-
tween significant changes in the y(T) process.” One
would expect that a good approximgtion for the evolu-
tion of the z(T) process would be provided by the
expected drift, in terms of the ergodic measure of
the 0. (t) process. This result is established in
this section. : _

Define the average drift Fi as

faiui - ai+lui+l)P(g) (2.5.12)

-
F, = z
¢

Combining equations (2.5,11) and (2.5.12) yields

i Tivitisn
i T, v P i+l + Pin1

Define go(r) as

0 -

zi(r) = zi(o) +FT

The processes zo(T) represents the average evolution

of the z(T) process, The next results specify the

accurac§ of this approximation.
Theorem 2.5.1
Let T be an arbitrary finite p051+1ve number.
Consider the processes z(T) and z (1), 0 < T<D
As € =+ 0, the prscess z( ) converges unlformly
in the mean to z . That is,

lim sup E{[z(T) - EO(T){} =0
€0 0<LT<T

Proof
The proof is a straightforward application of
Theorem 1.1 of Khasminskii (KHA 66).

The fact that the rates |, are constant enables
us to establish a stronger result than uniform con-
vergence in thP mean. We can establish that z(-)
converges to z 0(-) almost surely, and examine “the
distribution of its deviations.




Theorem 2.5.2
Under the conditions of Theorem 4.1, .the pro-
cess z(-) converges to the process z (-) al-
most surely as € + 0. Furthermore, let

1
V(D) == (2, (1) - 20(T))
i - i i
€
‘The process v(T) converges weakly to a zero-
mean Wiener process w with covariance

Bw(Dw (s)} = I min (1,8)

P
s s iPi%y N Yir1Py 1%541
ii o +20° N )3
Py ¥ %3 Pivi ¥ Tin
(2.5.13)
2
. . _ THMinPiaTia
RS TR R W 1 rr )3
Pi+1 ¥ Fisl
zij =0, [1"][ 22

Theorems 2.51 and 2.52 define aggregate models
for the evolution of the z(T) process. These aggre-
gate models are established as consistent by the
convergence of the true process as € * 0, The

‘models are developed in the slow .time scale T = €t
they are most useful when the line network is un-
balanced in the mena. That is, when the average
drift in the system, F, is of order 1. -

When all of the drifts in the system, F,, are
of order £, the approximation given by thesetheorems
is not of much use, because no significant trends

“occur in times of order 1/e. Such cases are re-
ferred to as balanced line networks. However, in
a still slower time scale, an aggregate model can
be obtained.

Let T, = € t be a slow time scale. In the Tl
scale, equation (2.5.10) becomes
+ .
Lozt = 1 MM T4 T (2.5.14)
dat it1 e e
1

Assume additionally that
Ei = ef, i=1,...,k1

~Then, we can write (2.3.14)
4 OiHs = %qHien ~ F
— 2, = + £,
dTl i € i

Let Q denote the infinitesimal generator of the
Markov process 0.(T). The operator Q can be viewed
as a singular matrix mapping R2K » R2K, Denote
vectors in R2K by the functions g(a). Suppose that

gi(q) =

o, R + .y, - €f,
1+lu1+l 1“1 fl

i% 0 Mia%a
r

1
+ +
i TP Ty TP

By its definition, the matrix Q can be expressed as

oh(a) = I r, (h(a:) - h()

"%

. c . .
= . (1= .. Jth - h
Z{rj(l o) + pjaj}{ (a)) (o)}

3 3

ar= (@y,eee, a4, 104, O

% FELARARI

Then,

LM, (1-0,) u,o
) . N 1 1
(r;(1-a;) +'p,a,) x, ¥ b, T, +b

oh, (@) =

(r, ) Q-a,,

141 (1-a, . .)

1+1 i+l 4$ 1+1 i+l
i+l + Pia1

) + p,

Y% I .

i1 T Pigy j

HiTs Hier¥iver

- H. O, + U, .0, -
p, 1 i+1 T Pia

i+l17i+l r
= -gi (q_)

2Conﬁ§der now an arbitrary bounded function h(z)
in CT(R ), the space of real valued, twice con-
tinuously differentiable functions of RX~1l. Denote
by L the infinitesimal generator of the Markov pro-.

cess (E,g) in the T4 time scale. Then
k-1 5 k-1 3
9 1.z (au, ~o, M, ,-€f) x—+ L f
L= S+ gisl  id i+17i+1l i 9z jop & oz
‘Let Z denote the diffusion operator
.kl k-1 k-1 2
L= L f 3 + & pX L, I, e
i=1 5zi 2 i=l 421 Tij Sz Sz
(2.5.15)

where I is defined in Theorem 2,5.2.
| Notice that L is the generator of a pathwise




unique strong Markov process in Ilk-l
Varadhan [STR 79]).
Theorem 2.5.3 i
When the link network is nearly balanced, the-
process z(T ), 0 < T, < 7T, for arbitrary fin-
- ite T, converges weakly as € > 0 to the unique
diffusion Markov process v whose infinitesimal
generator is L. Moreover, all the moments of
~z converge to the moments of v as € + 0.

The proof of these results is a direct
application of Theorem 1 in Papanicolaou-
Kohler, [PAP 74] because the & process is er-
godic, hence it is strongly mixing.

(Stroock=-

2.5.5. Diffusion Approximations with Boundary

Conditions

The results of section 2.5.4 provide an approx-
imation to the normalized storage process y(t) un-
til its time of first exit from the interior of the
region D. In this section, those approximations
will be extended to cover arbitrary intervals of
time. 1In this case, the boundary conditions des-
cribed in section 2.5.2 have to be explicitly con-
sidered.

: Consider the process z(T) defined in section
2.5.4 Define the compensating processes C,. (t,z),
Cl(t,z) for any continuous real valued function z
as

coltsz) = min . {0,z()}
0<s<t
Ci(t,z) = max {0,z(s)-1}

0<s<

The functions C_(t,z) and Cl(t,z) represent the

. excesses of the function z(t) outside the interval
[0,1]. Hence, for any function z(t), we can define
the compensated function zl(t) as

zl(t) = z(t) - Co(t,z) - Cl(t,z) (2,5.16)

The function zl(t) does not take its values in the

unit interval, because the effect of two compensat-
ing processes drive the new function outside. How-
ever, one can define a sequence of functions zJ(t)

inductively as

gy = 29 - Co(t,zj(t)) - ¢y (g2 (0)
(2.5.17)

For any bounded interval [0,T], and any continuous
. function z(t) on [0,T], z (t) is a continuous func-
‘ tion.

; . Consider the process z(t) defined in section

- 2.5.2. The failure-repair process a(t) is a Markov
jump process which describes the volution of z(t).

' Since the rates of evolution of z(t) are constant
except for the effects of O, the probabilistic dis-
" tribution of increments of z(t) is independent of
the value of z(t); that is,

Prfg(t+A) - §(t) eB | z(t), am)} =

p_{z(t+) - z(t) e B|a(n)}

The process y(t) has a similar property, except for
the effects of the boundary conditions. We would
like to incorporate the effects of these boundary"
conditions as compensating processes, in the manner
of equations (2.5.16) and (2.5.17). This is the
purpose of the next result.

Consider an arbitrary sample path z(t), t €
Define the sequence of times t, as

[o, T] 3

inf{tlco(t,z ) #0, or C(t,2,) #0

3

. for some j}
; o4 - i
£ = 1nf{tlc0(t.zj) #0, or C (t,z;) #0

for some j} (2.5.18)

The times t, represent times when the compensated
processes 2zl would require additional compensation
to stay in B. Now, define an interger wvalued func-
tion on the time sequence ti as

n(e,) = max  {j]zi(e,) =1 ana
1<§<k-1 S

i
> D
Cl(t,zj) 0, t> ti} (2.5,19)

If the set of such indices j is empty, let n(tj) be

n(t,) = min 4{kv1+j|z§(ti) = 0 and
Y 1g9<kel

Co (s z ) <0, t> t } (2.5.20)

Notice that, if only one storage level reaches
the boundary at time ti‘ then n(ti) identifies that
storage, and indicates whether it is empty or full.
Whenever two or more storage levels reach the boun-
dary simultaneously at time t,, the function n(t )
selects a storage by the folléw1ng rule:

‘Select the storage which saturated farthest
downstream. If there is no storage which is satu-
rated, the select the storage which emptied farthest
upstream.

This selection rule serves to ensure that the
compensation process at any one time requires no
more than 2k iterations. This is because the effects
of saturation propagate upstream, whereas the effects
of starvation propogate -downstream.

We can,now define a sequence of compensated
functions z recursively, as

go(t) = z(t)

§j+l(t) = z%(t) - co(t,zi)r{n(ti) = k-1+j}
-c (t,z )I{n(t )y =3} + c,(t, z )I{n(t )
'; k+j-z, 3 # 1}
+ ¢ (t, z )I{n(t ) =341, 3 A x—l} (z 5.21)




Equation (2.5.21) expresses the conservation
of flow relations.
~rate through storage i must be constrained to match
its output rate. This effect'ls modeled by the
compensating process C. (t, zJ). However, conser-
vation of flow dictates tha% the material which
does not flow through storage i will accumulate in
'storage i—l. This is modeled by the coupllng term
C (t,z3

Tﬁe ba51c claim is that we can express the
‘normalized storage process z(t) in terms of the
sequence of compensated processes zl(t). Specifi-
cally, the result is:

Theorem 2.5.4

For any finite t,

y(£) = lim 2™ (t)
imeo ’

where gl(t) is defined by equations (2.5.17-

2.5.21).

: 'The proof of this result entails establishing

" some simple properties of the recursion (2.5.17) -

(2.5.21) . These properties are summarized in the
follow1ng lemmas:
Lemma 2.5.5  epk-l
For any continuous trajectory z(t) ’
te[0,T], there 1s a finite integer j(t) such

that

zj(T%t) = zw(t) for all te([0,T].

Lemma 2.5.6

The mapping G:z = lim z ( ) is a continuous

map from c{[0,T]1; RN} for any finite T.

Notice that Theorem 2.5.4 and Lemma 2.5.6
establish that the trajectories of the normalized

storage process with boundary conditions are a

continuous map of the trajectories of the process

without boundary. Furthermore, Theorems 2.5.2 and

. 2.5.3 establish weak convergence, as € > 0, of the
process without boundary to a diffusion process.
Denote this diffusion process as v(t), 0 < t < T,
Then, Theorem 5.1 of [BIL 68] establishes that,
for an arbitrary interval, the process X(t) con-

' verges weakly as € + 0 to the process with support
in c{to, T, D} whose distributions are given from
the map G of Lemma 2.5.6. This discussion can be
formalized as

Theorem 2.5.7

Assume that the process z('-s) converges weak-

iy in c{lo,TI; Rk} ase + 0 to v(*), a

diffusion process. Then, the process y(*;€)

converges weakly in c{[0,T]; RX"1} to the

process G(v).

The compensating processes C, and C, are re~
lated to the time that the process z(t,e} spends
on the boundary D. Specifically, for a fixed tra-

‘jectory of z(t;e), we can write the process y(t;€)
as

= i (e,
Y(t7e) = E (tle) ’ t < ti

- In coordinates, we can write this relationship as’
) i
z

0=1 O(tz )I{n(t )

‘yj(t;e) = zj(t;e)

=k =1 + j}

When storage i is full, the flow

i

251 C (t, z )I{n(z 1) = j}
n

+zilc(tz )I{n(t )=k+j-—2,j;£1}
m -

7 g t, 2> yitnce, ) = I +1,3#%x -1} 7
2=1 “1'7'%541 2-1 v J

(2.5.22)

It is easy to establish inductively that the
first sum is constant except when y, (t;€) = 0. Simi-
larly, the second, third and fourth- terms are con-
stant except when y. (t;g) = 1, V4- 1 (ts;e) = 0, and
y]+1(t €) =1 respegtlvely. Hence, we can represent
yj(t ;€) implicitly as

(£) + Ut (B

1 o
At;e) =z, (t;e) + UO(E) « UL (t) ~ US
YJ 7E) 5 (€ ) Jf ) ]( ) j-1 41

where U (t), U (t) are increasing processes which
1ncreasg only %hen y:€t) = 0 or ya(t) = 1,

When the process y(t;€) is nearly balanced, the
limit process becomes a diffusion process with in-
stantaneous oblique reflection at the boundary 9D.
This follows because of the construction of the
compensating processes and their relation to the
local time of diffusion processes, as defined in
Watanabe [WAT 71].

The directions of reflection can be obtained
directly from equation (5.9). For instance, on the
face

the equations for the evolution of yj(t,e) are

dy daz )

o e =5 (50 L3, gn )

dy, dz. o

—d~£l(t,e)=-—l(t£)+—~—l(t) ’
4z, a .o

——JL— we) = 1 o - £ v

dt

Hence, the direction of oblique reflection on the
face y 0 is given by the effect of the compensat-
ing’prgcesses U9, corresponding to reflection in the
direction 3

d= (0,...,0, +1, -1, 0,...,0)

i1

When the transfer line is nearly balanced, the
limiting process spends no scaled time on the boun-
dary, on the time scale T = €“t, However, the lim~
iting process has a local time function at the boun-
dary, which can be used to obtain an expression for
the real t spent on the boundary. The characteri-
zation will be useful in later sections, when we

‘evaluate expressions for the throughput of the




" The quantity

[

transfer line. From equation (2.5.8), the equation
for throughput rate (in normalized units and scaled
time) is given by

T(T) =

1,07 : (o}
T fof” ey dt - g, (@}

uo_, (1)

‘represents the average lost.
production rate due to starvation of the last mach~
ine.

The result expressed in Theorem 2.5.7 defines
a reflected diffusion process as the limit process.
This process is defined uniquely in the weak sense, .
in terms of a continuous mapping on the sample paths
‘of a standard diffusion process. This construction
- depends strongly on three assumptions: constant
flow rates on links, constnat failure and repair
. rates, and the geometry of line networks. When any
. of these three conditions are violated, the limit
. process must be constructed using a different ar-
gument. This is a nontrivial problem because of the
“lack of smoothness of the domain D, a closed unit
cube. :

'2.5.6 Approximation with Level Dependent Failure
Rates )

In this formulation of the previous sections,
the failure and repair processes of the machines in
the transfer line are independent of the levels of
storage. However, a common practice in manufactur-~
ing networks is to turn off machines which are
either starved or blocked, thereby eliminating the
possibility of a machire failure during intervals
of time when tat machine is not processing any mat-~
erial. A mathematical model with these properties
is described in Gershwin and Schick [GER 80bl.

The main difference in such a model is to in~
~ troduce a feedback path from the continuous storage
level x to the discrete state process @, occuring
when x reaches its boundary. In terms of the nor-
malized storage process y, there are two situations
where a machine is on, but not processing any mate
erial. The first situation, called blockage, occurs
when machine i+l is off, and storage i full. Then,

the adjustment process described by (2.6) yields
u; = 0. Hence, machine i is assumed not to fail.

The second situation occurs when machine i is

‘off, and storage i is empty. The adjustment pro-
cess for machine i+l yields ° .

We call such a machine starved, and assume it cannot
fail.

The equations for the ¢ process can be modified
' to describe starvation and blocking as follows.

da, = (1-a,)dR, + a, (l—I{ui=0})dFi (2.5.23)

-where the last term has been modified to prevent
" failures during non-production intervals. The func~
tion Y, (y,0) depends on the complete state of the
system 1n—memoryless, fashion, given by the adjust-~
ment rules for conservation of flow.

Essentially, the description of the y process
is decomposed into an internal description, des-
cribing the evolution of the process away from the

boundary, and a boundary description which illu-
strates what happens to the process near a boundary.
Our purpose in this section is to show that the modi-
fied (y,a) process given by (2.5.22) and (2,5.23)
converges weakly to the same diffusion process given
in Theorem 2.5.7.

Throughout this section, we assume that the
transfer line is nearly balanced, so that the approp-
riate time scale T is £€°t. Let zle(T;E) denote the
scaled process defined in section 5, and pkslthe
induced probability measure on ¢{[0,T]; R ~}. Simi-
larly, denote by y2€(T;e) the resulting scaled pro-
cess ehn starvation and blockage affect the probabi-
lity rates, and P2€ it corresponding measure. The
main result of this section is stated in the follow-

ing theorem.

€ \‘
Theorem 2.5.8
In the topology of weak convergence on Cf[O,T],

gk-1}
1im P = 1im p°°
>0 >0

. Basically, Theorem 2.5.8 is a consequence that,
as € * 0, the process spends less percent of the time
at the boundary. The evolution of-zl€ and 228 are
identical outside the boundary, and they leave the
boundary in the same direction, Hence, as the time
spent on the boundary decays, the two processes )
approach each other. The differences in the behavior
of the 0 processes associated with 215 and v2€ do not
appear In-the slow time scale T=3€2t.- 1f the trans-
fer line was not nearly balanced, the appropriate
time scale would be T = €t, and these differences
would be noticeable in the approximate model,

Theorem 2.5.8 has served additionally to es~
tablish that the limiting process is instantaneously
refelcted at the boundary 9D, by showing that the
Lebesgque measure of the occupation time has expec~
tation zero. This is consistent with the represen-
tation of the limiting process as instantaneously
reflected Brownian motion.

2,5.7 Ergodic Distribution of Two Machine Transfer
Lines using Discussion Approximations

The simplest network one can construct consists
of two unreliable links with a storage center in the
middle, connecting an infinite source to an infinite
sink, as depicted in figure 2.5.2. In the context
of manufacturing networks, many authors have studied
the long term behavior of this simple network.
Gershwin and Schick [GER 80b] provide the basic equ-
ations for the description of the Markov processes
(x(t) ,qa, (t),a,(t)).

Assume that the flow rates on each link is
equal to 1y that is

Then, the basic flow equation for the storage
process is

o)

(0.1- 2

- dx
—
dt

when the storage buffer is neither empty nor full,

Assuming that the capacity of the storage process
N is large, the normalized storage equation is




vu)

<
0
13 1 I

The processes ai are jump processes wit? failure and
repair rates p,, r, respectively, i = 1,2,

. In Gershwin and Schick [GER 80a], this model is
" 'studied in detail, obtaining an exact expression for
_the ergodic probability distribution of the (x;al,

@) process. We will assume that starvation and
blockage prevent machines from failing as in sec-
tion 2.8.6, 2 :

et N=1/e , and T = €' ¢,

Then,
dy _ % =%
v atr €
;Assume that
r~ . NI RN :
= L - - Ze = em (225,24)
17 P 2 T Py

"Equation (2.5.24) indicates that the network is
‘nearly balanced, wvalidating the use of the et
time scale,
From Gershwin and Schick [GER 80a], the margie
nal ergodic distribution of the x(t) process is
. given by:

p(x < @) = S gmrax + plx=0} + p{x=c}-1lc < a}
o _
r.+r.) .
px=0) = c 2 (L1
Py 1. PPy
- r. +r
Py Ty  Py*Py
Y +r
gx) = c ¥ (1 + —31-30 2
1 1
A= (p,r, - p,r,)) ( + )
271 172 pz+p1 » r2+r1

Define % = A/€.  Then, a simple integral es~-
" tablishes ®

S Sk WP U SN Ui S B W
: P, T PytP Py Ty B*R
. r. +r
" 1 (eXN -1 1+ (71 72) 2
A (py*p,)

The ergodic distribution of y(t) is given in the
- following equations:

ply = 0} = pix = 0}
ply=1} = plx=n

VP_{‘y erty.y+dy)} = %—g(y/a) dy

‘have

Let N = 1/e. As €*0, A is of order €, hence we

‘ & . r_ +r 2
lim ¢t = Lim 5 @ -1 [1+-222
E*O e+0

Thus, = T T
1 X ks
lim s 9(y/E) =5 e Y,
£+0 A
e -1
‘Furthermore,

lim P{y = 0} = 1im pP{y = 1} = 0
) €0

(2.5.25)

because A is of order €, by assuming that the trans-
fer line is nearly balanced.
The ergodic distribution indicated by equation

(2.5.25) reflects the long-term behavior of the z(t)

process. The diffusion approximation v( ) generated
in section 2.5.5 for the balanced line case has as its
infinitesimal generator

a2
o3
ov

N+

3
L—m—a-—‘;+
2p. T 2p.r. .
g = 171 5 + 272
(pl + rl) (p2 + r2)

3

with domain

D(L) = {f | £ is bounded, twice differentiable
on (0,1)

Hence, the ergodic distribution p(v) is given by

mp .1 3p
m v + > g 0

-m p{0) +

N
Q
i
2k
G
f
o

op
c - (1)

(S
1
o

-m p(1) + (2.5.26)

The solution of (2.5.26) is

-+
K e Ky

-1 + e'+"K

plv) = (2.5.27)

where K = 2® | 1o show that the two densities are
alike, we have to establish that o

um k-3 ]=o0
€0




- From equatibn (2.5.24),

A 1
I - x| =12 o,z -p)7, -

2 2
(p1+rl) (pz+r2)

¥ | .«

3 3
BTy (ytr) 92?2(91+f1?;

Ty
;

(pl+p2+rl+r2)
(szpl)(r2+rl)

p; Ty (PyHr,)

2
(pl+rl)

P,
- Po¥y
+ 5 (py+r)) I (2.5,28)

(p2+r2)

i Since the transfer line is nearly balanced, we have

\

r . X
e T nwa t 0O
17 2 7Py :
rp, - rp; = 0(€) > (2.5,29)
r p
17 P 2 7P
}

Hence, the first two terms in the right hand side
of equation 2.5.28 are bounded as € - 0. The last
term can be expanded using equation (2.5.29) to
give

.

I ) (pl+p2+rl+r2) ) plrl(p2+r2) . P,T,
(P1+P2)(rl+r2)

2 2
(pl+r1) (p2+r2)

(pl+rl) I = O(E)

which establishes

1im |k - &} = o.
€0

Hence, the ergodic distributien of the diffusion
approximation is consistent with the ergodic dis-

- tribution of the original model. Theorem 2.5.7
indicates that continuous functionals of the pro-
cess, such as expected exit times, will converge
in the same fashion.

- 2.5.8. Three Machine Transfer Lines

- The three machine transfer line is the first

- nontrivial example of coupling between the storage
"buffers. Figure 2.5.3 describes a typical three
- machine transfer line with two storages present.

We will assume that blockage and starvation affect
machine failure rates, as indicated in section 6.

Assuming that N, = N_ = 1/¢, and that the

transfer line is nearly balanced, the normalized

equations of flow in the time scale T = €2t are -

dy
1 1 -
@ T M%)

e B
L PO
=g (% = H304)

- ar €

when (Ylnyz) € (0,1) X'(O,l)

On the boundary, the adjustment rules for conser-
vation of flow must apply. In terms of the compen-
sating processes, this means

dy
1 1 ., d .o
gt T e W% T %) g U (0
da .1 d 1
- AT Ul(rze) + E?'UZ(T’E)
dy .
2 1 . d .o
gt ~ & (M8 = Hiy) + Gr Uy (TiE)
da .1 d o0
o Uz(r,s) - I Ul(r.e)

where we have explicitly depicted the dependence of
the compensators on . The results of Theorem
2.5.7 and 2.5.8 let us represent the approximating
diffusion process as the

1 1
Vo (1) = w, (1) + U0(1) - U (T) + U_(T)
. ! 1 l_ 2 (2.3.50)
- o} _ql _ 0
%h)—%h)+%n) %“),%”)

where (w,,0,) is a diffusion process with parameters
(m,£), given by .

151 Yo,

[—[‘l = =
™ S I
T, *p, T3ty
z z
R (2.5.31)
2 Za
2 2
HiPyTy 2Hop T,
le =2 3 + 3
(p1+r1) (p2+r2)
2
- "Ryt
= 3
12 (p2+r2)
2
.- ~2H,p,%,
217 o3
2%%;
2 2
. 21,p,T, 2H3P3¥3
T+
22 (P2+r2)3 Py ¥ ¥y

Equation (2.5.30) corresponds to a diffusion




A

process on the unit square with oblique reflection
at the boundaries; the directions of reflection are

. illustrated in figure 2.5.4.

The processes U9, U} are continuous, increasing
processes, which are bounded almost surely at each
time T. This implies that the processes v, (T),

‘Vz(T) are semimartingales, and thus we have a gen-

'

eralization of Ito's formula (Kunita-Watanabe

[KUN 67], Harrison-Reiman [HAR 79]). Let f be a
twice continuously differentiable function on D.
Denote by L the infinitesimal generator of (m ,m ),

_that is .
- 2 9

L f(ml,wz) iél m, 55; f((ul,wz)
2 :
1 T 32 .
+ = I.. — :
2 i=1 ij 9w, dw, .

j=1 3

' Then we have

. tions of the four parts of 9D.

| ﬁ{f(vl(r),gz(r))Ivl(O),v2<0)} - £(v,(0),v,(0))

”E{J;fif(vl<s),vz(s))aslvl(O),v2(0)}

f(vl('r) ,vz(T)) - f(vl(O) ,v2(0))

-
fo L f(vl(s),vz(s))ds
T R £y, (s),v. (s))dw. (s)
foj avl 17772 1
+ 1T 22 r v (s) v (8))dw, (s)
0 avz 1702 2
T of of o)
+J §;I~- 5;; (v, (8) v, (s))au, (s) .
AR of gi F5) (v, (8),v, (s))au (s)
+ 4; - %é;—(vl(s),vz(s))dUi(s)
+ Iy 5%5 (v, (8) v, (5)) QU (s) (2.5.32)

2

where the last four terms represent the contribu~
Notice that, if f
were such that f € D9, the set’of all twice con-.

_ tinuously differentiable functions such that
%l. %%— - %%—-= 0 on v, = 0
1 2
:2. g%—-- %g— = 0 on v2 =1
: 1 2
3. Eﬁ— =0 onv, =1
; v 1
1
- of _
: 4. v f 0 on v2 =0,
2
the equation (2.5.32) implies o .

(2.5.33)

The infinitesimal generator of the (v, ,v.) pro-

" cess is thus seen to be [ with its domain P iInclud-

.p*(1,0)

ing the class of functions D°.
The process (v, (t),v.(T)) is a diffusion pro-
cess in a compact domain, with a positive probabi-
lity of visiting all states except possible the
corners of D, Hence, there exists a unique ergodic
probability density function p*(Yl,vz) such that

tpr =2 % 3 §-§§__. o*
2 i=1 ij xi xj
j=1
2 aon
=L M <O (2.5.34)
i=1 1 xi
i 221 1 32* An*
2 le 9x + 2 211 3y + 212 By
- mlp* =0 ons,
L 3p* .
3 L2 3yt Iip 3y "MpP*=0ons, (2.5.39
1 a * a *
2 le Si + 212 5y ~ ™ p* = 0 on S,
—]; éﬁi ;L dp* Ip*
2 %22 3y T2 Ta2x P12 5x
- * =
m,p 0 on s4
z
p*(0,0) = 0 unless I —%l =0
Z22
p*(1,1) = O unless -7?~+ T 0
* - =
p*(0,1) = 0 un}ess bX 2212 + 222 0
p*(1,0) = O unless 212 =0

From equation (2.5,.,31), we can verify that

= p*(0,1) = 0. However, when machines 1

and 2, or machines 2 and 3 have identical failure

and repair rates, the values of p*(0,0) and p*(1,1)
can be nonzero. In these cases, the intensity of

the coupling term Ij matches and cancels the oblique
flow along the boundary, resulting in decoupled re-
flecting conditions. This can be seen from equation

(2.5.35), which, when le = 222 = -2212, reduce to
l . EB: - * =
> I11 3x mp* =0ons; . -
L z 2p* -m.p* =0on S
2 “22 By TMPT =UYoms,




Exact solutlons of equations (2 5.34) with
boundary conditions (2.5.35) is a difficult problem,

.which can seldom be solved in closed form. However,
the markov process (v, (t), v,(T)) can be approxi-

‘mated in the weak sense by a Markov Chain, as in
Kushner [KUS 76], and the ergodic distribution of
this chain can be computed as an approximate solu-
tion to these equations.

#, Assume that the stationary probability distri-
‘bution p*(x,y) has been determined. Let E* denote
the measure on the path space induced by p*. Let

- £ be any bounded, twice continuously differentiable
function on D# Then, equation (8.9) 1mp11es, from
Fubini's theorem,

T
f Lf p* dvldv + fb E*({av av }dU (s))
+ 4; E* (gi - éé;OdU (s)} + f E* {(- ) dU (s )}
T 3
AR 5{; aud(s)} = (2.5.36)
Define measures on Sl' 52, 83, 54 as

v (B) =2 [T E*{1(v,(s)em) lasf(s)} for B s,
v )= 2 [T E*{1(v. (s)€B) lav®es)}, B s

2 T 1 2 ' 2
vy (B) = %-fr E*{I(vz(s)GB)dUi(s), B S,

v4(s) = l~fT E*{I(vl(s)eB)dué(s)}, B S, ’

The measures Vi are the occupation time, or local
time, measures on the boundary, defined in Donsker-~
Varadhan [DON 75]. It is easy to show that, for
any T,

0 < E*{U;(T)} < ®,

Hence, we can use Fubini's theorem to reduce equ-

ation (2.5.36) to .
fb L £ep* dvldv2 + fs (5%5'— §%£0 vl(dy)
1 1 2
* s, 32 v @0+ fo - 9—5-1 v, (dy)
L+ jég (-%f - 5%59 v, (@x) =0 (2.5.37)

Equation (2.5.37) can be evaluated for selected
functions £, to obtain the properties of the pro-
- cess when it reaches the stationary limit. For in-
stance, ‘recall that the throughput rate in section
5 was given by

()
u_(T)

1 .7 2

T(T) = {:r- fo My, ds -

. The expected stationary throughput rate is‘just :

‘hence (2.5.37) implies

T E*(T(T))

Ss

il
t
*
=
3
~

Uyry:
r3tpy

- v2(82)>

Vasa

Let £ = Qe . f is bounded, 'and smooth,

z -
1 22 2/0_,
5 & ™ ) e P (vl,vz)dvl
-x_ /0

2
+f 9' vl(dvz)

+ IS - Vz(dvl)
2 A -
-1/2
+/f. e v, avy) =

S,

(2.5.38)

Letting o approach zero in (8;35) yields

Vo(8y) = /g 3

1
=f , 3 L,y P*(v,,0) dv)

(2.5.39)

2.5.9. ConClusiqp

In this paper, we have presented a methodology
for approximating the flow of material through a
transfer line of unreliable machines with finite
storage buffers. .  Under the assumption of large but
finite storages, the flow of material is approximated
by a diffusion process with reflecting boundary con-
ditions, independent of the process which describes
the failures and repairs of the machines, This
approximation reduces the number of gtates which
must be considered by a factor of’2k, where k is
the number of machines in the transfer line.

The structure of the approximation was exploited
in the case of 2 and 3 machine transfer lines to
obtain equations for the stationary distribution of
the approximate diffusion process. In the two ma-
chine case, these equations were solved explicitly,
and found to be consistent with the results of
Gershwin and Schick [GER 80al. The equations for
the stationary distribution of the three machine
trnasfer line were too complicated to solve in closed
form, although numerical algorithms for their solu-
tion are currently under study.

The methodology derived in this paper can be
applied to transfer lines of arbitrary length with-
out ignoring the coupling effects of starvation and
blockage. As such it represents a significant gene-
ralization of the previous works mentioned in the
introduction. Work is currently in progress to
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" the range of T and is denoted by R(T).

ity of T which we denote by nul T.

\

generalize these results to arbitrary network tdpo-

- logies with nonconstant flow rates and storage de-~
‘pendent failure rates.
techniques used in this paper will not apply, be-

For these problems, the

cause of the dependence of the failure-repair pro-
cesses on the levels of storage. Xey theoretical
questions concerning the existence and uniqueness
of the limit process must be answered. These pro-

‘blems are currently under investigation, and will

be reported in later publications.

Appendix 2.A Linear Operators on Finite-Dimensional

Spaces

This appendix contains background material on

- linear operators on finite-~dimensional spaces.
"Most of the results are available in [KAT 66].

The
purpose of this Appendix is to introduce the nota-
tion and preliminary results for section 2.2.

Let V and W be two vector spaces and T:V =+ W
a linear operator. The image of V under T is called
The dimen-
sion of R(T) is called the rank of T; we donote it
by rank T. The inverse image of the zero element
of W is called the null space of T and is denoted
by N(T). The dimension of N(T) is called the null-
A basic result

in ‘linear algebra is:
rank T + nul T = dim V

If T maps V on W one to one, the inverse operator
T1l: w> vV is well defined and T is said to be
non-singlar, otherwise is said to be singular,

) Let X and Y be two subspaces of V such that
each u € V can be uniquely decomposed in the form
u=u'+u" withu' €Xandu" €Y, i.e., V=XxX@Y.
The linear operator P: V = V, Pu = u' is called the
projection on X along Y and we have R(P) = X, N(P) =
Y. P is idempotent, i.e., P2 = p and conversely

.. any idempotent operator is a projection. More
- generally
v = XI'C)... (&) X (2.a.1)

u = ul + ¢« + us, u, € Xi and the operator P. defined
by P, = u, is the proj&ction on X; @ ... Gf X1
X D...0 X . Furthermore, we have J

@
(g
+

S

I P, =1 . (2.A.2)

j=1 7

p.p, + 6 . P, 2.A.3
'k qkn 3 ¢ )

Conversely, any set of operators {p.} satisfying

- (A.2) and (A.3) is a family of projactions that
" determine the direct sum decomposition (2.A.1) with
"X,.= R(Ps).

i A §a§1s fvj} of Y is salé to be adagted
to the decomposition (27A.1) if the first n, = dim

. X, elements of {v.,} belong to X., the following

n, = dim X, ones belong to X, and so on,
A subspace X of V is sald to be invariant
under a linear operator T: V =+ V if TX X. 1In

this case T induces a linear operator T : X * X

2

" defined by T u = T_ for u € X which is galled the

part of T in X. ?uis said to be decomposed by a -
set of subspaces {Xi} if 2.A.1 is satisfied and all
the Xi are invariant under T.

.R(E,,T) conmute,

A linear operator T: V > V is called niloptent
if TY = 0 for some positive integer r. A nilpotent
operator is necessarily singular.

The set of all linear operators on V to W is a
normed vector space with norm induced by the vector
norms in V and W as follows:

|zl L
il =swp —— = sup ]
el e

w0
B

Operator?ﬁalued functions T(t) defined for a

real or complex variable t can be defined and treated

as vector-valued or scalar functions. The following
lemma dealing with projection-valued functions will
be useful in latter.chapters.
Lemma 2.A.1 (KAT 66] p. 34)
Let P(t) be a projection depending continuously
on a parameter t varying in a (connected) region
of real or complex numbers. Then the range
R(P(t)) for different t are isomorphic to one
another. In particular, dim R(P(t)) is con-
stant.
Let T be a linear operator on V to itself. A
complex number A is called an eigenvalue of T is
there exists a non-zero vector u such that

Tu = Au

u is called an eigenvector of T with eigenvalue A.
The subspace of eigenvectors of T with eigenvalue A
is called the geometric eigenspace for A and its
dimension the geometric multiplicity of A. The set
of all eignevalues of T is called the spectrum of T;
we denote it by 0(T).

The operator-valued function

1

R(E,2)= (T - EI)~ (2.a.4)

is well defined for any complex number & € p(T) é
C -~ 0(T) and it is called the reésolvent of T. The
set p(T) is referred to as the resolvent set of T.
R(,T) satisfied the so called resolvent equation:

R(glfr) - R(EZ}T) = (£, - &) R(E,;,T) RE,, D
(2.A.5)

which, in particular, implies that R(E.,T) and
The resolvent is an #nalytic func-
tiofi with isolated singularities at precisely the
eigenvalues A, , k = 0,1,...,s, of T.

The Laurent series of R(E,T) at lk has the
form:

- m'v-l -y
RE,D = - -2 p - Eh g™l 4

k n~1 k
o«
s £ EAp" ST
n=0
(2.2.6)
where ) . i

1
P, = = EEE-ITkR(E'T) ag

k “‘?7A'7)




.

- (with T a positively oriented contour enclosed A, .
but no other eigenvalue of T) is a projection ca&led
the eigenprojection for the eigenvalue A, of T;

m = dim R(Pk) is the algebraic multiplicity of Ak'

D, = 1 Ir (E—}\k)k(E,T)dE (2.2.8)
k

k.  2mi

is the eigennilpotent (D:k = 0) for the eigenvalue
Xk of T; and

s =L 1

x = 31 R(E,T)dE (2.A.9)

S (E=A)T
I k

"It is not difficult to see that the following
. relations hold:

V=M@ ... OM

with M = R(P ). M,_ is called the algebraic

eigenspace for the gigenvalue Ak of T. It follows -
that
TP, = P, T = P, TP = Akpk + D (2.a.10)

which gives the canonical form or spectral repre~
sentation of T:

]
T = z

x20 (2.A.11)

(AkPk + Dk)
An eigenvalue A, is said to be semisimple if
the associated eigenniloptent D, is zero and sim-
- ple if in additoin = 1. T is said to be dia~
gonabiable if all itsS eigenvalues are semisimple.
Definition 2.A.2
A linear operator T on V to itself is said to
have semisimple nul? structure (SSNS) if zero
is a semisimple eigenvalue of Tg.
Lemma 2.A.3
The following are equivalent statements:

i) To has SSNS .

ii) v=R(T)@® N(T))
iii) R(r) =Rz ) °
iv) rank T_ = rank T 2

S v) N(T) = N(To?)

It follows that if T_has SSNS then P_, the
. . . : . 20 .
eigenprojection for the zéro eigenvalue of To, is
also the projection on N(To) along R(Ty). Let Q% =
I- Po'
Therem 2.A.4.
If T has SSNS then Tg + P

o is non-singular.
Define the operator To# by To# =

(To + P,) -1 _

P.. The following lemma gives several properties of
vtgis operatog., -\ - - N e e
*Leémma ‘2.A.5.
iyp TF=1#p =0
ol o# oy © "
ii) Qo#To = To Qg = To
114y T T =T T, =9 |
AN N kA .
It follows from lemma 2.7 that To To' Tg = Tgr
THT T*=r#andar, TH=1#1.° ¥ is thus

the ggnegalized Group inve@rse of T (see [Cam 79al;
we will refer to it simply as the‘generalized inverse
of To. The following lemma shows that if T, has
SSNS then P, and T ¥ fully determine the Laurent ex-
pansion of the resolvent R(A,T_ ) at zero.
‘ ‘Lemma ‘2,A.6. : ° .
If T has SSst then for O <_]ij <|lr
we have ©

#Il-l

P o
___o° k k+1
R(l.To) = 7r-+ kEO Al (To#)
P -1
=-T°—+T#(I-?\T#)
(o) (o)

Assume that an operator-valued function T(€) is
given which is continuous in a neighborhood of € = O,
say for € € [0,€7]. We will distinguish two cases:
a) T(€) has an absolutely convergent power series

expansion for £ € (0,ell, i.e.,

-]

T+ I €'
n=1

(n)

T(e) = for € € [0,e] (2.A.11)

- -2
Tr@ I <liz iz e Ie™lave <o
n= =

for ce [0,eY]  (2.A.12)

b) T(€) has an asymptotic expansion in powers of €
for €¥0, i.e,,

N _
lim [[r(e) -7 - I €° 2™ eNoo wo
€40 n=

(2.A.13)

The eigenvlaues of T(€) satisfy the characteris-
tic equation: .

det (T(e) - &I) = 0 (2.a.14)

If T(e) is analytic this is an algebraic equation in
£ of degree n = dim V, with coefficients which are
analytic in €. It follows that the roots of (2.A,14)
are branches of analytic functions of € with only
algebraic singularities and therefore the number of
(distinct) eigenvalues of T(€) is a constant s




"~ independent of €, except at some special values of

- €. There are only a finite number of such excep-
tional points in a compact interval e€[0,€']. We
will assume that €' is small enough so that [0,€']
contains only one exceptional point which, without
_loss of generality, we take as £=0.

In a neighborhood of the exceptional point, the

~eigenvalues of T(€) can be expressed by s analytic

% functions A, (€),...,A_(€) with A _(€) # A, (¢) for

n # k which™ can be grouped in the manne%:

{Al(e),...,Ap(e)}, {Ap+l(s),..., p+q(e)];...

in such a way that we have the Puiseux series:

Ap(E) =X+ W /P, o, w® P (2.a.15)

n=20,1,...,p~1

where )\ is an eigenvalue of the unperturbed operator
T(o) and w = exp{2fi/p}. Each group is called a
cycle and the number of elements its period. It
should be noticed that the A_(€) are continuous at
€=0; A =A_(0) will be called@ the center of the
cycle under consideration.

In general there are several cycles with the
same center A. All eigenvalues belonging to cycles
with center A are said to depart from the unperturb-
ed eigenvalue X by splitting at €=0. The set of
these eigenvalues will be called the A-group since
they cluster around A for € small. Fouation
(2.A.15) shows that A_(g) - A = 0_(el/P), .

In the asymptotig case (b), £he number of

eigenvalues may change with € quite irregqularly;
" the splitting and coalescence of eigenvalues taking
place in a very complicated nammer. It may even
happen that in no interval of the form (0,e'] is
the number of eigenvalues constant. In dealing with
non-analytic perturbations we will restrict our-
selves to the case of constant numbers of eigen~-
values for € € (0,e'].

The resolvent of T(€) is

R(E, T()) = (T(e) = ET)~*

Lemma 2.A.7
Let

o
bX n
nel € 7T

T(E) = T + (n)

If £ €p(T) then for, € small enough, E€p(T(g))
and

R(E,T(é)) = R(E,T) + nzl E:er(n)(E)

where

5 (n) _ _1\P (v7)
R = ”1+’§'+“p=“ (-1)* rR(g,T)T" 1

v; 21

R(E,T)T(l/z)...T(EP)

R(E,T)

the sum being taken for all combinations of

positive integers p and V,,...,V_ such that

l1<p<n, V+...+v = n." The séries is uni-

formly convergent oR compact subsets of p(T)

in case (a) and it- is a uniform asymptotic seri-

es for R(§,T(€)) in compact subsets of p(T(€))

in case (b).

Let A be an eigenvalue of T = T(0), with alge-
braic multiplicity m.  Let I be a closed positive
contour in p(T) enclosing A but no other eigenvalues
of T. It follows from lemma 4.1 that for € small
enough R(£,T(€)) exists for £ € I' and therefore there
are no eigenvalues of T(g) on T.

The operator

P(e) = - —=— £ RETEEE (2.216)

2mi

is a projection that commutes with T(€) and is equal

to the sum of the eigenprojections for all the eigen-
values of T(€) lying inside I'. From Lemma A.2.7, in-
tegrating term by term yields

-

_ “ e ..n _(n) -
P(E) = P + n§1 € P e:[Q,eol (2.4.17)
where
P= -2 f RE,T &
2mi °T !

is the eigenprojection for the eigenvalue A of T,
and :

(n) )
EFI'fr R (&)ag .

P(€) is continuous in a neighborhood of zero and it
follows from lemma 2.A.1 that the range of P(€) is
isonorphic to the range of P; in particular,

dim R(P(€)) = dim R(P) = m .

that all eigenvalues of T(€) lying inside T form
exactly the A-group. For this reason P(€) will be
called the total projection, and R(P(€)) the total
eigenspace for the A-group.

Lemma 2.A.8

Let -

_ S on (n)
T(e) =T + n§1 er

Let A be an eigenvalue of T with multiplicity m
and let P(£) denote the total projection for

the A-group. Then
(Tle) ~Mp(e) _ _ 1 _ _
= =" 3 J%(E AR(E,T(€))dE =

_Db, T _ng
=g+ ngD e & SG(O,QO]

where ' is a closed positive contour enclosing
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A but no other eigenvalues of T, D is the
eigennilpotent for A and (") jig given by:

(n) _ _ _.\P (k1) (V1)
T - pgl -1 v +_,§+\, =n S T
1 P

k1+ "+kp+l=p_l

v, >1, k, > -mtl
- — L - 3 -

sk (kp) p(Vp) (k)

with 89 = - p(o) = -p, s - _ X, k> 1

and s = gk, x > 1 for

1

1 - .
S= 57 fr (E-}) "R(E,T)aE

i
i

L - — o ‘,_/
R(ALE) NAgeN
(AN AN
RAED Niayen
[ S N e ~
A(AmlE) AAm(E)

Fiqure 2.2.1.

Ao(e) Ago Ag Agarreevt- Aom*****
A‘(f) A|° Ansonooac-.Ao’m_lo-.noo
A,(€) Agorrr=rr-Bom-gt® "
Am€) A"no........

Ficure 2.2.2. Table of matrices Aij'

Structure of the matrices Ak(e)_'
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us |
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MSSNS

/ * \nof us

Aqfe)

Fig

not MSSNS

MSSNS = Multiple Semisimple Nullstructure

us = Uniform Stability
MSST =Multiple Semistability
ure 2.2.3 Different cases studied in section 2.
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3.1. stochastic Bifurcation: and Singiilar Pertar-

batior

3.1. Introduction

Bifurcation is the study of branching in the
equilibrium behavior . of dynamical systems in res~
ponse to small changes in the parameters of the
system. In our past work on stability of large
scale interconnected power systems at the Univer-
sity of California, Berkeley we have shown the im-~
portance of the study of static bifurcations of the
load-flow equations and dynamic bifurcations of
the -swing equations (see [SAsS-80], [SAS-81],
[ARA-8la], [ARA-81b]).

Nevertheless the methods of deterministic bi-
furcation are extremely sensitive to the addition
of small amounts of noise, as has been noticed
before by some researchers.
macroscopic description arises from an aggregation
of microscopically fluctuating dynamics; for ex-

"ample, - the power demanded at a load node (PV or
. "PQ) of a power systems, the predictions of deter-
ministic bifurcation are incorrect. In Section
3.2, our aim is to remedy this deficiency and
set down a theory of bifurcation in the presence
of noise - referred to as stochastic bifurcation.
Section 3.2 is organized as-follows:

Section 3.2.1 is the introduction to this
section and states a problem from thermodynamics
that led to this development-phase transitions in
Vvan der Waals gases by the Maxwell equal area rule.:
Section 3.2.2 discusses the Maxwell's equal area i
rule. In Section 3.2.3 we compare and highlight
the differences in the predictions of determinis~
tic and stochastic bifurcation for a class of
gradient systems. Finally, we apply this theory
to the study of noisy constrained systems: The
dynamics of several engineering systems are not
described explicitly by differential equations;
but rather implicitly with a combination of alge-
braic and differential equations. An example is
the dyramics of a power system: the swing egquationsi
‘coupled with algebraic equations at each load node.
.These equations {(deterministically) admit of jump
at points of bifurcation of the algebraic equation.
The nature of the jump can be altered quite dra-
matically by the presence of noise ~as we discuss
;in Section 3.2.4.

i Section 3.3 is titled Singular Perturbation,
iState Aggregation and Non-linear Filtering. In
~isituations where the structure of a dynamical sys=~
item varies with time it is often the gase that the
(random) structural changes occur on a time scale
that is much slower than the dynamics in any given
mode of operation. For example in the study of
power system dyanamics, the swing equations are
sometimes thought of as occuring on a fast time
scale compared to .the relatively slow time scale
of random faults or breakdowns. The purpose of
this section is to study the asymptotic behavior
of the resulting hybrid system in the limit that
the two time scales mentioned above are singularly
perturbed to the slow time scale. Thus, returning
to the example of the power system dynamics, we
are interested in the asymptotic behavior of the
transitions between different faulted states in
the limit that the swing dynamics become infini-
tely fast compared to the incidence of (say)
lightning strikes.

In addition to studying the asymptotic
behavior of the hybrid process in the slow time
scale we show asymptotically that the problem.
lof estimating the projection onto_the slow time-

Thus, in systems whose

"{In 3.3.1 we set out the preliminary definitions and
- discuss variable structure systems and give the

" ldynamics of power systems.

scale of the state of the process given moisy, non-
linear observations reduces to a finite-state Wonham
ifilter. The layout of Section 3.3 is as follows:

flavor of the results to be expected. Sections
3.3.2, 3.3.3 develop the probabilistic and detex-
ministic mathematical machinery  needed for the
lstudy. Section 3.3.4 contains the main results on
‘the asymptotic behavior of the hybrid process.
Asymptotic filtering is discussed in Section 3.3.5.
The link between the two sections is in that
ithey both study the asymptotic qualitative behavior
of two-time scale systems and hybrid systems in
different contexts that arise in the study of the

3.2. Bifurcation in the Presence of Small Noise

3.2.1  Introduction

Bifurcation is the study of branching in the
equilibrium behavior of a dynamical system in res-
iponse to small changes in the parameters of the
:system. Deterministic bifurcation, using as foun-
‘dations singularity theory, has been fairly success-
ful at explaining a wide variety of such phenomena
in fluid mechanics, optics, elastic structures, g

laser physics and ecology [11]. Nevertheless, the ;
methods of deterministic bifurcation are extremely |
jsensitive to the addition of small amounts of noise!
'Thus, in systems whose macroscopic description :
arises from an aggregation of microscopically fluc-!
tuating dynamics, thermodynamic systems for exampleé
‘the predictions of deterministic bifurcation may be:
incorrect. We seek in this paper to set down, a
ﬁathematically rigorous theory of stochastic bi-
furcation - i.e. bifurcation in the presence of
'small additive noise. We show repeatedly that, in
‘the limit as the intensity of the additive noise
;tends to zero, the conclusions of this theory are
lrather different from those of deterministic (or :
ino~noise) bifurcation. i

In section 3.2.2 we discuss as motivation an
example of a thermodynamical phenomenon, isothermic!
:phase transition in Van der Waals gases in which :
ithe predictions of deterministic bifurcation theory:
lare incorrect. We then indicate how the addition !
]of small noise predicts the experimentally observed!
‘phase transition first studied by Maxwell [May 1875.
In passing we should mention that since the advent .
:of quantum mechanics physicists have been concerned:
iwith the derivation of the Van der Waals equation
ifrom first principles (i.e. quantum statistical
mechanics). The derivation was first done in 1963
[RaC 63], showing that the Van der Waals equation
together with Maxwell's rule are consequences of
the quantum theory. The notion that “fluctuations
play an especially important role near bifurcation
points" has been noticed and elaborated by the
Brussels school, Prigogine, Nicolis, and others
{see [NIC 77] and references contained therein).

In section 3.2.3 we compare deterministic and
stochastic bifurcation. We use Laplace's method
of steepest descent to compare the two theories in
the limit that the noise intensity goes to zero.

In section 3.2.4 we apply the theory of noisy
bifurcation to the study of noisy constrained or
implicitly defined dynamical systems resulting from
the singular perturbation of fast (or ‘'parasitic')
d§namics on some coordinates of the system. The
deterministic solution of these systems admit jump
discontinuities, including possibly relaxation
loscillations, as studied in [SAS 81]. The addition

¢
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of noise however changes the nature of the jump and
can in. some instances result in the destruction of
relaxation oscillations. This is shown explicitly

in the case of the degenerate Van der Pol oscillator

equation (see for example [2EE 721).

3.2.2.

Phase Transitions for Van der Waals Gases

One of the models used in the study of phase
transition from liquid to gas in thermodynamics is
the Van der Waals equation [CAL 60] relating the
pressure P, the volume V, and the absolute tempera-
ture T:

T - (P + ) (V-b) = 0 (3.2.1)

v
where a,b,r are positive constants depending on
the gas. Loosely speaking, the surface satisfy-
ing (3.2.1) in (P,V,T) space (see figure 1) is a
smooth two-dimensional manifold with two fold lines
meeting in a cusp at (Pc,Vc,Tc). Isotherms in the
-. (P,V) plane are drawn in Figure 2. For temperatures
'-; less than T, the upper left hand corner of figure 2

“represents the liquid phase. We study here phase
transitions from liguid to gas phase at constant
temperature:

3.2.2.1 Isothermic Phase Transitions

For temperatures above T, (supercritical) in
figure 2 there is no phase transition (only gas
phase). At the critical temperature T,, the por-
‘tion of the isotherm to the right (left) of (P,
Vo) represents the gas (liquid) phase. At sub-
.critical temperatures phase transition is more
-subtle. If the liquid were allowed to expand
'quasistatically' and isothermally at T, by de-
creasing the pressure, the variation of pressure
.and volume is described by

; P = f(t) P(0) = P_ (3.2.2))
?g(P,V,Tz) 4 rT2-(P+ —%) (V=b) = 0 V(0) =V_>b ;
: o v : ® (3.2.3)

}where. f(t) is a negafive function of time. Note
!that eguations (3.2.2) and (3.2,3) describe the
‘variation in time of P and V so long as

g(P,V,Tz) # 0 (3.2.4)

9
oV
Isince we may then obtain V(t) as a function of P(t):
implicit function theorem applied to
(3.2.3). At points (Py,Vy), (P5/Vy) shown in
figure 2, (3.2.4) is not satisfied and equation
(3.2.3) is singular. A regularization we suggest
accounts for the fact that ‘'quasistatic' expansion
of the liguid neglects some 'fast' dynamics (see
‘Isas 81] for details):

2

= £(t) P(0) = Po
eV = g(»,v,T,) V() =V (3.2.5)
The limit of the trajectories of (2.2) (2.5) as

€ ¥ 0 yields a discontinuous change (jump) in vol-
ume from (P;,V;) to (P3,V3) as shown by the dotted
line in figure 2. This is the predicted liquid to
gas transition. For the converse phase transition
choose f£(t) to be positive and the jump transition
predicted is from (P,,V3) to (Py,V4).

Thus the predicted deterministic phase trans-
itions are hysteretlc (figure 3). Unfortunately,

" las shown by the solid line.

the observed phase transitions are non-hysteretic
This line is drawn
according to Maxwell's equal area rule [MAS 1875)] -
equality of the shaded areas in figure 3.

3.2.2.2.

Noisy Isothermic Phase Transitions

To
propose
(3.2.5)
gations
section
ing the
{3.2.2}),

explain the observed phase transition we

to account for noise in equations (3.2.2),
stemming from the fact that P, V are aggre-
of microscopically stochastic behavior. 1In

manipulations outlined here.
(3.2.5) by

We replace

P = £(t) + I E(t) P(0)

P° (3.2,6)

ev g(P,V,Té) + /ex n(x) v(0) v, (3.2.7)

where £(+) and n(.) are standard independent white
noises and A > 0, U > 0 scale their variance. For
%each €, U, A the above equations generate a diffu-
;sion t »+ (P(t),V(t)) in the plane. The evolution

of the corresponding probability density pk €(P,V,t
is then given by the Fokker-Planck equatioh’

2 2
3 A u o A 3 A A 97 X
Lot =R f _pd - = £(r) + & L
8t Pue T2 2 Fe” P Pue 2e 52 e

13 A
- E'g;‘pu eg(P,V,T,Z) (3.2.8)

3.2.4.2 we present rigorous results justify-

iTo study (3 2.8) in the limit € ¥ 0, multiply (2. 8)
by € and let € + 0. Then the limit p/ of oA e
;prov1ded it exists, satisfied H U

)

? A3 A _ 3 A 4
: =~ —=p - p.9(V,T ) =0 . (3.2.9) "
; zavz u 3V u .
Solving (3;2.9) yields
pl = kl exp[-s(P,V,T,) /A1 (3.2.10) |
M U 2 TR
where kx = kA(P,t)’and
H H
s(p,v,T) = ~2fg(p,V,T)av
= PV2+2a log V~2PbV+ g%1—3-—23:\_7'1' .

Substituting back in (2.8) and then integrating
over V yields

AN _u3d AX 9 A v
at(K c’) = 3 5;5-(kuc ) 55-(kpc YE(t) (3.2.11):
where
)\ 00
c (P) = exp(—S(P.V,TZ)/Mdv < o,

We see therefore that in the limit € + O the P pro-
cess converges to a diffusion whose probability
density kAcr satisfies (3.2.11). Further in the
limit € ¥+ 0, the conditional density pA(V]P) ig
given by

1
exp (-S(P,V,T_)}/A) .
c}\(P) ]

This is plotted in figure 4 for dlfferent values of
P. Note that the critical points of p (V]P) are

S
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fexactly the solutions of (3.2.1) with T = T,. For

AR




P > P, there is only one critical point.
two additional critical points - a local minimum an
a local maximum ~ appear from a fold bifurcation.
The new maximum grows in height so that for P £ P
it is the global maximum. The old local maximum
shrinks and annihilates the minimum again in a fold
at Pg. Now Laplace's method of steepest descent
(next section) shows that as. A ¢ 0 the conditional
density p (VIP) coverges to delta functions sup-
ported at the global maxima of pA(V!P); these
‘densities' are plotted in figure 5. The pressure
at which the limiting conditional densities jump is
the pressure P, at which the two local maxima of

(V{P) are equal i.e. Maxwell's equal-area rule.
Thus the limiting behavior of (3.2.6), (3.2.7) as
€+ 0, A+ 0, and 4 + 0, in that order, is the
deterministic system

P = £(t)
. (3.2.12)
vV = Y (P)
.|where ¥ is given by figure 5 for V < ? and vV > 5;

and w(P4) =V, or ¥ with probability Ejeach,' ‘
3.2.3.1 Deterministic Bifurcation

Roughly speaking, bifurcation is the study of
branching in the equilibrium behavior of a dynami-

meters of the system. Consider, for example, the
class of gradient systems*

(3.2.13)

X = - %'grad s(x,u)
proper function growing

with S(x,u} a smooth (Cu7

For P€ PJ
A

cal system in response to small changes in the para~

)
'sufficiently rapidly as ||x|| -« in IR®, for each
ifixed uy € IR™, It is well~known [HIR 75] that
Eevery trajectory of (3,2.13) converges to an equili-
ibrium point of (3.2.13) and that every critical i

%point of s(x,u,) is an equilibrium point of (3.2,13),

;Further, if for some ug,, S(x,u_) is a Morse function
[ABR 78] then every stable equilibrium of (3.1) is |
ta strict local minimum of S(x,u,) and conversely.
In several practical problems [POS 78] it is of
interest to study the variation of the critical
ipoints of S(x,u) with the parameter u oxr, in other
jwords, to study solutions of**
Dls(x,u) =0 (3.2,14)
‘as u varies, If x* is a nondegenerate critical
:point of S(x,ug) tBen there exists a smooth function
x*(u) defined in a neighborhood of u, such that
x*(uy) = x¥ and x*(u) is the only critical point of
{8(x,u) in some fixed neighborhood of x*, This is
the implicit function theorem. Thus smooth con-
tinuation of critical points is locally possible
from a nondegenerate critical point.

Now suppose x; is a degenerate critical point

i.e.

2 )
rank Dls(x;.uo)-= r<n ., (3,2.15)
By using the implicit function theorem on the x-
dimensional range space of D%S(x;,uo) one can show

* -
Here grad stands for gradient with respect to x,
using the standard inner product on RR,

**D,S(x,u) (D%(x,u)) stands for the first (second)
derivative of S with respect to x, while Dyg (x,y)
stands for the first derivative of g with res-
pect to y.

(the method of Lyapunov-Schmidt [HAL 77]] that the
study of the n equations in n unknows (3,2,14) re-
duces to the study of n~r equations in n-r unknowns
N{(g,u) = 0 (3.2.16)
here g = Px where P is the brojection onto the ker-
nel of Dls(x*,uo) and the first derivative of the
bifurcation PunStion N vanishes at (q%,uy) where
q§_=APx*. The nature of the solution set of
(3.2.14) is thus dependent on the function N. For
example suppose r = n-l1 (the codimension one case);
the function N is then ascalar function of a scalar
variable that is at least quadratic near q;. If
52 -
— * 13
o2 N{gZ,u)) # 0
q .

then in a sufficiently small neighborhood of (a*,u]
there is a unique g*(u) such that

N

e

oq

N(g* (u) ,u) o,

i.e. N has a local maximum or minimum at (g*(u),u);
‘for definiteness assume that it is a maximum. It
can then be shown [HAL 77] that if

E(u) = N(g*(u),u)

then the equations (3.2,14)
(i) have no solution if E(u) > O
(ii) have one solution if E(u) = 0

(iii) have two solutions if E(u) < 0,

in a neighborhood of u,, This is the fold bi-

furcation and is visualized in figure 6, If
52 33
——— * - ——— *
> N(qo,uo) 0 but 3 N(qo,uo) # 0
9q 3gq

then N(q,u ) is at least cubic in g-g* and the
bifurcation is a cusp bifurcation (figure 7).
Equations (3,2.14) then have one, two, or three
solutions in a neighborhood of u .

We do not discuss other bifurcations here.
Suffice it to say that the normal form theorems
singularity theory (see Thom [THO 75] Hale [HAL
yield universal unfoldings of singularities; the
bifurcations of N(g,u) are in general sections of
one of these unfoldings,

ofg
77%)

3.2.3.2 Bifurcation in the Presence of Small Noise

Consider, for example, equation (3.2.13) with
added white noise

X

= - % grad S(x,u) + VA E(t) (3.2.17)
where £(+) is an u-dimensional standard white noise
process and A is a positive_ constant scaling its
variance, For each u in ‘R , equation (3.2.17)
generates a diffusion whose probability density
p*(t,x,u) satisfies the Fokker-Planck equation

3 A_1 ® A
AP = —-.2 A == + = (grad 8).lp (3.2.18)
at 2 3=1 sz Bxi i

where {(grad S), is the ith component of the vector
grad S, We now assume that the derivatives of S
grow rapidly enough at ® such that as t 4+ ®, the




i

i

u is a slight modificatidn of th3t appearing in
{[HIJ 80].

t{appearance and disappearance of global minima will

. . }Theorem.
"o iminima at xl(u),..., xN(u), where N may depend on u

iMoreover if the above growth conditions on S and

co =A - '
density p (t,x,u) converges exp3yent1a11y [pAP 77]
to ‘a unique invariant density p”(x,u); the density
px is then g;ven by

Ek(x,u) = exp[-S(x.u)/)xi/cl(u) , (3.2.19)

where c)\ (u) is chosen such that E)‘ integrates to 1.

Note that for all A > 0 and u in IR the criti~

cal points oijNx,u) are precisely the eguilibriumi
points of the deterministic system (3.2.13)., Fur-
ther, if for some u,, S(x,uy) is a Morse functlon

then for all A > 0 every ;ocal maximum of A, u)
is a stable equilibrium of (3.2.13). Thus the .

study of the bifurcations of the critical points
of S{x,u) also
cal points of PMx.u). Here we study the bifur-
cations of TAx,u) in the limit as A ¥ 0 using
Laplace's method of steepest descent (for more in-
formation see chapter 4 of [HIJ 80]. We will need

the following version of the method.
Let, for each u € R™, S(x,u) have global

Let them all be nondegenerate.
least quadratic growth ag x + .,
as A ¥ 0, FMx,u) converges to

Let S(x,u) have at
Then in the limit

I a6 3
a, 0 (x-x* I a,
j=1 1 1)/i=l i
5 < 1
where a; (u) = det(Dls(xf,u)) 51 More precisely

if ¢ (x,u) is a smooth finction having polynomial
growth as x & ©, then

lim ¢A(u) = lim J ¢(x,u)§%{x,u)dx =
A0 A0 IR"

N N -
* =
220w/ Liag 2 6 ) .

i¢ are uniform in u, for Ju| € R, then ¢X is bounded
on |u] € R uniformly in A > 0 and

u

for all R >0 and p 3 1.
{Proof. The proof that ¢ (u) - ¢ (u) pointwise in

For the LP convergence, use the domi-
nated convergence and Egoroff's theorems.

We therefore see that bifurcations in the pre-!
sence of small noise are obtained from the study of,
changes in (non-degenerate) global minima of S(x,u)
as a function of u. In contrast to section 3.3.1

be points of bifurcation in this context. We close
this section with the remark that if the drift in
equation (3.2.17) were not a gradient, then al-
though the invariant density Ea(x,u) will not
necessarily be of the form (3.2.19), it will be
so_asymptotically as A ¥ O, which is enough for

the above theorem. This will be developed else~
where.

3.2.4. Noisy Constrained Dynamical Systems

3.2,4.1 Deterministic Constrained Dynamical Systems

ields the bifurcations of the critir

We add noise to the system (3.2.20), (3.2,24)

_in such a way as to obtain
% = £lx,y) + A E(E) x(0) = x_ (3.2,27)
€y = g(x,y) + /A€ n(t) (3.2.28)

Congsider a constained or implicitly denfined

dynamical system of the form:

= £(x,y) (3.2.20)

= g(x,y) (3.2,21)

Here x € I!“, vy e.mﬁg, f and g are smooth maps
RD x ®B® into R and R respectively. Assume
that 0 is a regular value of g, We interpret
(3.2.20), (3.2.21) as describing implicitly a dy-
namical system on the n-dimensional manifold

M= {(x,9) |g(x,y) = olc®™ (3.2.22)
Alternatively, one can think of (3.2.20) as des-
cribing a control system with control variable y
and (3.2.21) describing implicitly a feedback con-
trol law, a situation that arises frequently in
optimal control for example; (3.2.21) would then
correspond to the Euler-Lagrange equations. The
venctor field X(x,y) on M is defined by specifying
its projection along the x-axis, namely
TX(x,y) = £(x,y) ., (3.2.23)
where T is the projection map (x,y) > x. At pointe
where the mxm matrix D,g(x,y) is full rank, it is
clear that (3.2.23) uniquely specifies X(x,y).
Difficulties occur at points (x,y) where Dyg(x,y)
is not of full rank and £(x.y) is transverse to
TTM(x,y). It would seem then that the trajectory
should instantaneously jump off the manifold from
(x,y) to some other point (x,y') on M (x is con-
strained to vary continuocusly by (3.2.20). (see
figure 8). This intuition is made precise in
[sas 80] by interpreting solution trajectories of

(3.2.20), (3.2.21) to be the ‘degenerate’ limit asi
€ ¥ 0 of the trajectories of i
x = £(x,y) !

H

ey = glx,y) (3.2,24) |

|
provided the limits exist, Under certain condi~ !
tions this regularization has been shown to make
physical sense in the context of electrical cir-
cuits in [SAS 80]. We illustrate the theory with
an example. i
Consider the system of equations in the plane;
given by

x=yv (3.2.25)

Y —X-y3+y ' (3.2,26)

the degenerate Van der Pol oscillator [ZEE 72].
The phase portrait for the degenerate system in-
cluding jumps from two fold singularities of the
projection map 7 : (x,y) * x is shown in figure 9.
Note the relaxation oscillation formed by including
the two jumps,

3.2.4.2 Noisy Constrained Systems

Here £(+) and n(-

are, as before, independent
R" -valued and R

~valued white noise processes
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" |is governed by

and A, U scale their wvariance, For each ¥, A > 0
systems of this kind have been studied in the limit
€ ¥ 0 extensively by Papanicolaou, Strook and
Varadhan [PAP 77]. Our contribution here is to
study the kehavior of (3.2.27), (3.2.28) in the
further limit A ¢+ 0 followed by U ¥ 0, and to pre~
4sent it in contrast to the results of section 3.4.13
We note in passing that the results remain un-
changed if the order in which A,u¥0 is interchanged.
However, if AV0 before €40 then we are reduced to
the case in section 3.2.4.1. In order to apply
Laplace's method, restrict attention to the case

glx,y) = - 5 grad s(x,y)

the gradient taken with respect to y, for some S

smooth proper and growing sufficiently rapidly as

y + ®, uniformly for lx[ £ R, for all R > 0. Note

that here x and y play the roles of u and x in

section 3.2.3.2. For each €, A, U > 0, the evolu~

tion of the corresponding probability density p& e
. L]

3 A 1
3 Pu,e” B T LBy e

where L;, L* are formal adjoints of the operators
Lo Ly givel by

Lop =1£1 [2 Bx2 * fi axi]P
and
2
=7 A8 2
I"l‘p 15 [2 8y2 * ER Byilp K
i

The conditional density of y given x is, in
;the limit € + 0, given by

ST M explesx,y),A1/E (1)

where ck(x) is chosen so that 5% integrates to one.
Set

£ x) = [mmf(x;y)i"(X.y)dy ’

- f6r A > 0. Assume that f£f(x,y) has at most poly-

" nomial growth as y - ©, uniformly in Px| € R, for |
all R > 0. It then follows that f, (x) is bounded
on ]xlé'R uniformly in 0 < A < X _,"for some Ag
sufficiently small, We assume in what follows that
f, (x) has linear growth uniformly in 0 < A & Ao'
Set

The operator Eg is the gperator L, averaged over

the invariant density P of y given x.

Theorem [10] As € ¥+ O the first component t - x(t)

of the solutions of equations .2.27), (3.2.28)

converges weakly in C([0,T]; R ') to the unigue

diffusion, denoted by t = Xk,u(t)‘ governed by Lo.
We now have the following )

Theorem. As A ¥ O the diffusion t + x (t) con-

verges weakly in C([0,T]; B to the unique

|is essential in both steps 1 and 2 that Y remain

ipression in the limit, one has to show that

diffusion t = xx; (t) converges weakly in C([0,T],
R ®) to the unigué diffusion t -+ x (t) satisfying
in law L .

x = £_(x) + A £t

*(O) =,x° (3.2,29)

where
N N
= * .
:o (x) iz=l a; {x)f(x.yi (x))/ i2=1 a; (x)

as in section 3.2.3.2, and y*(x),...,y*(x) are the
inondegenerate global minima Of S(x,+).

IProof. The proof of this and the next theorem
mimic that of the previous theorem and so we only
outline the proof. The reader may perfer to master
the proof of the preceding theorem appearing in
[PaP77] first. We first show that the measures on
C([O,T];xzn) corresponding to t =+ x R (t) are
relatively weakly compact in C{[0,T]; R ). The
second step is to identify any limiting measure of
the family X, ue A > 0, as the unique solution of
the martingale problem associated to (4.10). It

fixed and positive.
To prove compactness in C([0,T]; R
fices to show that

1 it suf-

840 A>0  [t-s

1i P( (t) - (s)] 2€) =0
im sup suTSa ‘xl,u xklg s [
0<t, s<T ’

for all € > 0 ([13] page 351).
the fact that

This follows from

-

X T Him )+ A E(E) x(0) = %,

in law (which is all we need here), and the
assumption on £, (x) [KRY 80] page 120).

For step 2, take a C® function ¢ whose sup-
port is in [x( < R and consider

t
¢(x1.u(t))~¢(xo)- Jo fk(¢) (xx,u(s))ds

t
8
-3 LA@) (XX,U(S))dS ,

H

where £(¢) is the directional derivative of ¢ in
the direction of the vector field £ and A is the
Laplacian. For each A > 0 this expression is a
imartingale and the idea is that the limit is also
‘a martingale. Note that to get the correct ex-

T . .
*E(jo [f)\(d)) (xy () =E (9 (x, | () Jas) (3.2.30)

goes to zero as A ¥ O, This follows from the fact
that for all p sufficiently large there i§_a K>0
depending only on p, a uniform bound for £, (x), )
le € R, 0<X£MX,, and T, such that (3.2.30) is
bounded by

K| [£, 0)-E )] lp (3.2.31)

where the LY norm is over lxl € R ([KRY 80] page 52j.
But from section 3.2.3.2, we know that (3.2.31)
goes to zero as A ¥ 0. This completes the proof.
Finally we can let § + O to obtain

Theorem. The family t =+ x (t), U > 0 is relatively
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weakly compact in C({0,TI;R'). Any limiting dif-
fusion of the diffusions t +,xu(t), u>0,asu+t+ 0
then satisfies the ordinary differential equation

X = E;(x) , x(0) X .

o (3.2.32)

Proof. As before one checks that t + x (t), u > O,
is relatively weakly compact, as before any limit-
ing diffusion is then governed by fc, i.e.

t
d(x(t)) = ¢{x) + f E;(¢)(x(s))ds + martingale .
0
Since the variance of the martingale is
t L,
EJO [fo(¢ )—2¢fo(¢)](X(s))ds

and f(¢2)~2¢f(¢) is zero for any vector field £,
it follows that the martingale part is identically
zero and (3.2.32) holds. a
. Let us consider, as an example, the noisy ver-
‘| sion of the degenerate Van der Pol oscillator. '
Consider

3
X

#

y + A E(r)

it

5% —x—y3+y + YAE N(t)

For A\,u > 0 as € ¥ 0 the x-process converges to
one satisfying

>‘<'=37l (x) + VU E(t)

where
-y 400 2 4 2
yo(x) = [ y exp ¥ (~xy - X; + j%ﬂ-dy
00 5 Y}_ zi -1
. L’oexp-x(‘xy—4+2)dy .

In figure 10, 7 (x) is plotted for Ay > A, >0,
In the further limit that A + 0 followed by
U ¥+ 0, x satisfies

[}

P (x)

x

i
i
i
1
i
H
1
i

0

where Y (x) is shown heavy in figure 10. Note that
Y is discontinuous at x = 0, since the support of
‘| the conditiongl density jumps from ong leg of the
curve X = y-y to the other leg as shown in figure
10. Consequently the relaxation oscillation is
broken up by the presence of small noise.

3.3 Singular Perturbation, State Aggregation and
Nonlinear Filtering

3.3.1. Variable Structure Systems

In situations where the structure of a dynami-
cal system varies in time, it is often the case
that the structural changes occur on a time scale
that is much slower than the dynamics in any given
mode of operation. For example, in the study of
power systems, . .the swing equations are sometimes
thought of as occuring on a fast time scale when
compared to the relatively slow time scale of
random faults or breakdowns.

Suppose that g.,..., are vector fields on R

suppose that A(x) (aij(xy), 1<4i,j §N, is

-lon X governed by A + (1l/¢g)g.

| servable) stochastic control problems associated

an intensity matrix for each x in R'. If there

if a4k (x) represents the infinitesimal transition
probability that a structural change from mode j to
mode k happens when the system is in state x,; then
a natural formulation of the above situation is to
consider the trajectories of

x = (1/€) g; (x) (3.3.1)

where x = x(t) is the state at time t and i = i(t),
2 jump process on {1,...;N} governed by (a,k(x(t)),
represents the mode in operation at time t7 More
accurately and more concisely, a natural formulatio:
of the above situation is to say that t > (x(t),
i{t)) is a Markov process on X = RR x {1,,..,N}
governed by A + (1/€)g.

One can generalize (3.3.1) in various direc~
tions. For the purposes of system identification
one may replace {1,...,n} by an arbitrary parameter
space A (for related work see [HIJ 81b])., Alter-
natively, the state space need not be RP and may be
replaced by any smooth manifold, In fact all of
these situations are subsumed by the following
set-up:

Let X be a smooth manifold and let g be a
smooth vector field on X, Let A be an integral
operator on X given by

Bo(x) = fo (2(x%) = &(x)) u(x,dx*), (3.3.2)
for some measures B + U(x,B) depending on x in X.

For each € > 0 let t > xs(t) be a Markov process

The purpose of this paper is to study the
limiting behavior of these processes as € ¥ O,

are N possible modes of operation of the system and

Our mgin result is that while the original motion
t > x (t) clearly blows up as € ¥ 0, in certain ‘
cases there is a reduced-order state space X and a |

projection T: X -+ X such that t -~ Xt (t) = 7 (xE(t))
converges to a well-defined limit as € 0. Thus

X may be reaarded as the full-order state space
while A and g are the generators of the slow and
fast dynamics respectively.

In general X should be chosen to be the limit
set of the vector field g. In this paper we deal
with the simplest kind of limiting behavior, when
the limit set of g is given by a finite number of
states X = {x_,...,x_} in X. Even in this case
there are a niimber 2¥ novel features. Viewed as
a singular perturbation problem, here there is no
"fast variable" and thus the state space X is not
a product of a fast variable and the slow variable
x = M{x). Viewed as a state aggregation problem,
here we have aggregation from a continuum of states:
X to a finite state space X, a fact that radicallyg
changes the level of computational difficulty of ;
nonlinear filtering. and {partially or fully ob- i

to the processes t + x (t).

As an application of our main result we shall
see that while the nonlinear filtegs corresponding
to the problem of estimating t < x (t) in the pre-
sence of additive white noise do not converge as
€ + 0, it turns out that the projected filters do.
in fact converge to well-defined object, the
(finite-dimensionally computable) finite-state
Wonham filter. '
Our treatment here is based on the martingale

Stroock and Varadhan [PAP 77]1. We therefore begin,
for the sake of completeness, with a review of the

martingale problem for A + (1/€)g. For a general
treatment of the martingale problem for Levy

formulation an analogous theorem due to Papanicolaou

<
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processes, see [STR 75].

3.3.2. The Martingale Problem for A + (1/€)g

Let X denote a smooth manifold and leg g be a
smooth complete vector field on X. Let B(X) be the
space of all bounded Borel functions on X, and let
Gy, —©.< t < ®, denote the flow of g. The domain
of g is the set D of all functions ¢ in B(X) such
that there is a ¥ in B(X) satisfying

9%mn—m%M):§W%MMr

for all x in X and 0 < s < t < T, Any such ¥ is
then denoted by g(®) and we eﬁphasize that there
may be more than one g(?) assocatied to a given €.
If ¢ is sufficiently smooth, however, then there is
a natural choice of ¢(®) given by

g(®) (x) = @(at(X)).

8

dtl g
‘| We note for future reference that P is a vector
space.

Let 2 denote the space of all right-continuous
paths @ : [0,T] > X having only a finite number of
discontinuities of the first kind in any compact
time interval. For each 0 < t < T let x(t) Q+ x
be the evaluation map at time t: x(t,w) w(t). Thi
Borel O-algebra of @ is then given by Fry, where F.
iis the O-algebra generated by the maps x(s), 0 < s
< k. .
§ If B <> U(x,B) is a finite positive Borel mea-

w

{sure on X for each x in X such that x*u{x,B) is in
{B{X) for each Borel set BC X, let a0 be given by
1 (2), for any ¢ in B(X). A is then a bounded linear
{ operator on B(X) whose norm is less than or equal |
‘to twice the sup norm of A where A(x) = ux,X). Let
{Cx(X) denote the space of all smooth functions of !
,compact support on X. Let Ly : CR(X) » B(X) be a !
"linear operator depending on t. We use the standar
‘martingale definition of a Markov process [5]:
:Definition. A Markov process on X governed by Lt
%is a probability measure P on § satisfying

E@mmn—Quwn-f L@HMﬂMﬂF)=0
! (3.3.3)
‘for all & in C®(X) and all 0 < s <t < T. Recall

:that this equi%alent to the statement that for any
ibounded Fg - measurable ¢ : Q + R,

| .

| B (e = 0(x(s)) - f5 L_(@) (x(x))ar} &)

o]

for 0 < s < t < T. By abuse of notation, the
measure P is referred to as the distribution of the
Markov process t * x(t).

Let G 9(x) = ®(a_(x)) and set A_ = G¢A G_
Consider tke map O : 3 * Q given by o_ (@) (t)

O_pse(@(t)) and let B. be the image of a given

measure P. under the map Q..
Lemma. Pe is governed by A + (1/€)g if and only if
P is governed by At e

This lemma is proven using integration by
parts in (3) exactly as in the proof of theorem
(2.1) of [STR 71]. Since A
tor the methods of chapter 3,[2] yield the fact
that there is one and only one measure B for any
given initial distribution governed by € the opera-
tor A g Thus
Proposition. There is one and only one Markov
process on X governed by A + (l/c)g, for any given

d

c is an integral operar

initial distribution.
with Ly =
g, and

Moreover (3) above holds
A + (1/e)g for any ¢ in the domain B of

P (t + x(t) is a finite disjoint union of
compact trajectorles of g)

1.

Proof. The sample paths of P, are as stated becauss
Pe is the image of the measure P8 under the map
" and the sample paths of PE are piecewise con-
stant. To see that (3.3.3) holds with Lt = A +
(1/e)g for all ¢ in D first note that P can be corr
structed so that (3.3.3) holds for all ¢ in B(X),
when Ly = At e, and then note that the integration
by parts trick referred to above still holds when &
is in D.

Thus the martlngale problem for A + (1/¢€)g is
well-posed. In particular if X = {xl,...,xN} is
a finite set then X can be considered to be a zero
-dimensional manifold. Thus suppose (uij) 1<i,
j € N is given and set -

AQ(xi)

=1 (@(xj) - ¢(xi)) uij (3.3.4)

where the sum is over j, for all & in B(X) Cw(ﬁ).
If in the above proposition we make the replacg—
ments X * X, A <« A, g «_0 then we conclude that the
hartlngale problem for A is also well-posed. In
closing this section, we note that the only pro-
perty of g that we have used is the existence and
uniqueness of an associated flow satlsfylng CO(X)
cD.

3.3,3. Gradient-like Vector Fields

Recall that g is a complete smooth vector }
:field on X with flow 0. We assume that there are |
:a finite number of points xl,...,xN in X such that :
for all x in X, at(x) converges to one of xl,...,xN
jas td®, The set X = {xl,...,xN} represents the re-:
‘duced order state space. Let BjC X be the ith !
‘basin of attraction: B;j is the Borel set of all x
in X such that O (x) converges to.x; as tte. For
x in B; set m(x) X:. Themap T : X > X is then
in P and one choise of g(m) is given by the zero

function. For & in B(X) let 3 denote the restric- !
tion of & to X.

Definition. The Fredholm alternative holds for 9
iin B(X) iff there is a ¥ in U satisfying

gP) = 3o -3 . (3.3.5)
Consider the following assumption.
(A) There is an integrable function R(t), 0 t <o

such that
lu(at(x),Bj) - u(n(x),Bj)l < R(t)

for 1 < j <N, x in X, and t > 0, and me(t)dt is
1nf1n1te.

Proposition. Under assumption (A), the Fredholm
alternative holds for all functions of the form
(A(%om), for any given ¢ in B(X). ’

Proof. Set & = dom and

Px) = f: A@(as(x)) - A®(m(x)) ds.

Since AP is a finite linear combination of the
functions x + u(x,B;), assumption (A) guarantees
that Y is in B(X). “The rest of the proof follows
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still holds for all bounded ?¢ that are continuous
off a set of P measure zero. See [PAR 67], -

3.3.5,

Filtering

:
r-linear map A: B(X) -+ B(X) is then given by~ -
tation (4) where MRS ulile R- Iy ‘ )

o
P

W)L 15 R

st follows is the main result of the paper.

orem. Assume thgt the Fredholm alternative for
olds. Let t = x (t) be Markov processes on X
erned by A + (1/€)g, all having a common initial
tribution on X. Then the Markov processes t >
t) coverage in distribution to the unigque Markov
cess on X governed by A and having the projected
tial distribution, as €+0. This means that for

bounded continuous functional & : Q * R

EE(Q) +~ E(9)
€+0. . .

The proof of this theorem is analogous to that
a theorem due to Pzpanicolaou, Stroock and
adhan (4], and breaks naturally into two steps.

first_ step consi§§s of showing that the distri-
fons {P_} of t > x (t) are a relatively weakly
sact family of measures on §, while the second

? is the identification of the limiting dis~
sution P via the Fredholm alternative and the
l-posedness of the_martingale problem for A.

The topology on £ is the Skorokhod topology.
.5 turns § into a complete metric space and thus
A family of measures
" on i is relatively weakly compact if *{P_} is
‘ormly tight: For_each'a > 0 there is a compact

KC § such that P_(K) > 1 - o for all € > 0,
te X may be considéred as embedded in a real
: the standard theory applies and so we conclude
: {P_} is relatively weakly compact, using a
:ial case of proposition (A.1) or [STR 75]. _
_Now suppose that € +0 and 58 -+ some P* on {2.:
¢ be in B(X) and choose Y in D such that B
g(¥) = a(d)ow - A(dom) . (3.3.6),
e P is governed by A + (1/€)g and $ + €.V is
" we Kave (¢ = dom) k :
=5, ({(@¢re ) (x(1)) - (B+e ) (x(s))
k

[ RPN

Suppose we are giveninoisy observations

i

G y(£) I=Ch(x"(t))_+ vhite noise

iof the Markov process t +¢x8(t).‘ The nonlinear
‘filter corresponding to (3.2,7) is a well-defined
map given by the Kallianpur-Striebel formula for
example. Rather than use this formula, we shall
use the robust form of the filter and simply de-
fine it to be the expebtation of a certain bounded
functional on {l. For each y in C{[0,T]) and &, h
in B(X) let -7 ’

N e e e e v

2(0) = (x(£))exp(=fg V(s,x(s))ds)

wheze C e I
: 2'\ .
v(t,x)- = E{y(t) ~h({x))" .
It can be shown that @Y
off a set of P_-measure zero.
Definition. The filter corresponding to a Markov
process with distribution P is given by the map

is a continuous map £ + R

c(fo,t}) » c(lo,T1)
+ E(® (®))/E(® (1 .
y * E{ y( 1I/E( y( 3)

Since_the distribution P_ of the Markov processes
t + x (t) do not converge, we do not expect the
corresponding filters to converge. However the
projected filters, obtained by replacing & by %om,
h by Rom, do in fact converge as €¥0:

Theorem. The projected filters converge to the
finite-state Wonham filter corresponding to the
iproblem of estimating the finite state process
.governed by A, in the presence of additive white
inoise. o o ' T T

i

'
I8
i
H H
i
; - e YU S ¢ o e s e s

:
i

o (3.2,7).
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" 4. STABILITY AND CONTROL OF HYBRID SYSTEMS

4.1 Introduction

The material in this chapter deals with the
-analysis and design of decision-making policies in
. systems described by stochastic hybrid models. One
of our conjectures in the proposal was that a cause

-3 of instability in large-scale power systems consists

of the local nature of some of the discrete feed-
back control systems. Many of these. control ac-
tions fail to anticipate the potential effects of
disturbances elsewhere in the region, resulting

"in overall instability. Most of the work in this
chapter is aimed at understanding how discrete
control actionsmay result in instabilities, and
how to properly modify them to- ensure stability of

“the overall stochastic system.

In section 4.2, we introduce a control-theo-

‘retic formulation suitable for hybrid models: The
JLQ optimal control problem., This is the simplest

‘nontrivial.coritrol problem involving stochastic

"hybrid systems. We derive the detailed form of the
optimal control law, thereby obtaining valuable in-
sight into the qualitative properties which con-
troller designs for hybrid systems must have. In
particular, we establish that an optimal controller
identifies regions of hazardous operations, and
will attempt to steer the system away from such
regions. We describe two separate mechanisms for
such steering: passive hedging and active hedging.
The results presented in this section are a con-~
densed version of the doctoral thesis of Dr. H.
Chizeck, which is under preparation.

" In section 4.3, we study in detail the stoch-
astic stability of a specific control scheme for
a continuous system. This control scheme known
as the Multiple Model Adaptive Control concept,
results in a control law which switches between

" a finite number of possible candidates. The
mechanism for the switch -is a nonlinear dynamical
relation, driven by the output of the system it~
self. Hence, the resulting controlled system can
be represented as a stochastic hybrid system. We
provide a detailed analysis of the stability of
such a system, isolating classes of behavior which
may be typical of more general stochastic hybrid
systems,

. The work presented in section 4.4 deals with
the stability analysis of consrolled hybrid systems
after an abrupt change in the parameters of the
system (such as a generator outage) has occurred.
In this setting, a critical factor in maintaining
overall stability is to identify the change in the

. system, as soon as possible, while trying to pre-

. serve the stability and integrity of the system.

Basically, new models of the system must be
developed quickly; this may involve applying speci-
fic controls to determine the effects of the abrupt
changes., Furthermore, one must also account for
the possibility of further changes due to the
initiating event.

In section 4.4, we approach this problem using
the principles of adaptive control. We study the

- problem of how to design control inputs, based on
noisy observations, which will provide us with an

“accurate description of the abrupt change. These
two objectives are often contraditory in nature.
With this study, we hope to develop analysis meth-
odologies which can be used to guide the actions

by the discrete state p(t).

of controllers when failures occur, so that control

actions do not add to the severity of the dis~
turbance, but rather serve to identify quickly a
new operating condition. .

Our results in this chapter provide an under-
standing of the principles whereby good control
systems for stochastic hybrid models may be designed.
Although the complexity of the optimization formu-
lation in section 4.2 appears discouraging, we must
peint out that there are simpler structures which can
be determined using suboptimal approximation proce-
dures,i These are the first results which have been
obtained with regards to the control of nontrivial
stochastic hybrid systems. There are many open
problems which remain in this area, which should be
the subject of further research.

4.2 Control of Hybrid Systems

One of our conjectures concerning the sources
of instability in large~scale power systems was that
the actions taken to control the instability would
instead promote further spreading of unstable .-be-
havior throughout the interconnected system. For
example, prolongued operation in a vulnerable emer-
gency state is likely to result in additional break~
down of the system. In order to understand these
mechanisms for instability, we studied the abstract
problem of how to control a stochastic hybrid system
to achieve optimal performance. Due to the inter-
acting nature of the discrete transitions and the
continuous evolution of hybrid models, the control
strategies would have to compensate for the exis-
tence of vulnerable regions of operation, antici-
pating potential structural changes. By studying
the qualitative features of some "optimal" control
policies, we were able to identify several important
characteristics which well-designed control strate-
gies should possess. This work will be reported in
detail in the upcoming thesis of Mr. Howard Chizen
Tchi 82]. Preliminary versions of these results
have appeared in [Chi 79], [Chi 80a]l, [Chi 80 bl.

In this section, we provide an overview of our re-
sults in this area. -

We can divide the research into two parts, re-
ferring to the class of hybrid systems which each
part studied. The first part of the research studied
the control of hybrid systems with a hierarchical
structure, depicted in figure 4.2.1. The discrete
part of the system state evolves independently of
the continuous part, and cannot be affected by con-
trol actions. Its state, however, affects the
evolution of the continuous part. The basic mathe-
matical model for this class of hybrid systems,
assuming that the evolution occurs in discrete time,
is given by:

x(t+l) = A(p(t)) x(t) + B(p(t)) ult) +

Gp(t)) w(t) (4.2.1)
where p(t) is the state of a finite-state Markov
chain whose transition matrix at time t is denoted
as P(t). If p(t) denotes the distribution of p(t),
then

plt+l) = P(t) p(t) DR ..(4.2.2)
The matrices A, B, G belong to a finite set, indexed
The sequence wi(t),




[matane

"w.(tl) is a sequence of independent identically dis~-
t}ibuted, normal random variables with zero mean
"and unit variance. '

‘ The objective function for control design was

- chosen to be gquadratic, of the form

_ T-1 _
J=E{éOXRVQ&thx&¥#

u' (B)R(t,p (L)) ult) + x(T) ¥ O(T,p(t)) x (T).} (4.2.3):

‘Notice that the penalty matrices depend on the dis-
crete state p(t); hence, operation under certain
undesirable structures can be penalized more.Control
_problems of this type are referred to as Jump Linear
“Quadratic (JLQ) control problems.
! The study of finite~horizon control problems
-of the form (4.2.1) ~ (4.2.3) was initiated by
Krasovskii and Lidskii [Kra 61]. Similar formu-
:lations in continuous time were studied by Wonham
- [WON 70}, Sworder [SWO 69], Birdwell et. al,.’
- [BIR 78], and Chizeck and Willsky [Chi 70, Chi 80al.
" In all of these works, the assumption is made that
the full state is observed exactly; that is, x(t)
and p(t) are known. Under this assumption, a
" straightforward application of dynamic programming
yields the following result:

Proposition 4.2.1 [Chi 80al The optimal
control law u*(t) which minimizes (4,2,3) subject
to (4.2.1) - (4.2.2) is

ur (£, %(t) ,0(t)) = - S T(£,0(£)) K(£,0(t)) x(t)

(4.2.4)
. where
Pij =41~ j entry of P. M = dimension P .
T(t,p(t)) =j§l Pp(t),j (t) k(t+1,9) (4.2.5)
K(£,3) = Q(t,3) + A*(3) T(t,5) A(H) -
K(t,3) s T, 5) K(e)9) (4.2.6)
S(E) = R(E,§) + B (5) T(4,9) B(3) (4.2.7)
K(t,j) = B'(ﬁ) T(t,3) A(J) (4.2.8)
KT = Q1,0

(4.2.9)

§

Proposition 4.2.1 displays the explicit de-~
. pendence of the control law on the costs associated
: with operating in a given form (discrete state).
. The optimal control gains will hedge against the
" possibility of a transition to a form of expensive
" operation by over controlling when the system struc-
. ture is in favorable configurations. Several
- examples which illustrate this conclusion are in-~
“cluded in [Bir 78] and [Chi 82]. These examples
"illustrate how instabilities can occur even though
. for each individual, discrete state p, the resulting
system is completely controllable.

Our major contribution to the study of these

problems consists of examining the infinite horizon

control problem, thus searching for time imvariant
control strategies which stabilize the system, and
result in a finite cost. The close relationship
between stability and the existence of steady state.
control laws is studied in detail. Necessary and
sufficient conditions for the existence of steady-
state control laws which result in finite cost are

~given in {[Chi 82], where their relationships to

meanesquare stability is explicitly displayed. We
summarize these results in the next proposition.

Béfore stating this result, we recall the
following terminology pertaining to finite-state
Markov chains:

¢ A state is transient if a return to it is not
guaranteed. :

¢+ A state i is recurrent if an eventual return
to i is guaranteed. If the state set is finite,
the mean time until return is finite.

« sgstate i is accessible from state j if it is
possible to begin in j and arrive in i in some
finite number of steps.

« states i and j are said to communicate if eaclh -
is accessible from the other.

« A_communicating class is closed if there are
no possible transitions from inside the class

. to any state outside of it,

¢ A closed communicating class containing only
one member, j, is an absorbing state. That
‘is, Pi.=1,

* A Markdv chain state set can be divided into
disjoint sets T, C1,...,Cg, where all of the
states in T are transient, and each Cy is a
closed communicating class (of recurrent
states). ' .

Define the cover c., of a form j € M to be the set of
all forms accessible from j in one time step. That
is,

J

For the purposes of notational simplicity, denote
form auguments as subscripts, such as A(i) = A_.
Proposition 4.2.2 Consider the time-inva¥riant

e.={1<i<M p,, # 0}
- - Jji

Markovian JLQ problem (4.2.1) - (4.2.3). Suppose
that there exist feedback control laws
u(t) = - Fi x(t) for each 1 < i <M.

such that the following conditions hold:

(1) For, each absorbing form i (ie: Pjj=1) the
{(deterministic) cost-to-go from (x, i) at
time t remains finite (for any finite x) as
(N~t)*>® , This is true if and only if

o«
I (A,-B,F,) 't(Q +F!R.F.) (A, -B,F )" <
i"ii i7iiti i Tii
t=0
: o (4.2.10)
. {each element finite). ‘
(2) PFor each closed communicating class C.
(having two or more members) the expegted
cost-to~go from (x, j € C.) at time t re-
mains finite (for any finite x and each
ie Cj) as (N-t) > o, This will be true
if and only if for each such class Cy
there exists a set of finite positive-
definite nxn matrices {21,...,Z|C ‘
satisyfing 3

B IR TR



ini 'R, F,
=(1—p)21= (A—BF)t +
.l z Pl o
2,ecj l'Pi 2
| 241
. S . - t - IR -
. }J.,'”_N [ S (Ai BiFi) e e e e ~~A-— I R
for alliec (4.2.11)

3" - ,
(3) For each transient form 1 € T M, the ex-
pected costeto~go unitl the form process
leaves T (that is, until’a closed communi- °
cating class is entered) is finite. This
is true if and only if there exist finite
positive-definite nxn matrices {G 502G 1

) satisfying: T
+ R 3
. Q;*F R Fs
- [}
G, = (1+P,.) Z Pqu(Ak—B.F.) t +
I . 11 X 11
t=1
L Py
2eT Tp GR
AL ii
@a,-8,7 )" - -
1 i1
for all i € T. (4.2,12)

Conditions (1) to (3) are necessary and suffi-~
cient for the existence of steady-state solutions
to the equations of Proposition 4.2.1, yielding an
optimal steady-state gain which results in a finite
cost. Furthermore, suppose that,

(4) For at least one form i in each closed
communicating subset of 1 < j <M, if Lj is
is the steady-~state galn,

null{Qi}nnullfLi} = {o}
Then,

lim E {x'(t) x (&)} =0 .
£

The conditions (2) ~ (3) take into account
* the probability of being 1n forms that have
unstable closed loop dynamlcs
e the relative expansion and contraction effects
of unstable and stable form dynamics, and how
the eigenvectors of accessible forms are
"aligned." That is, it is not necessary or
sufficient for all forms to be stable, since
the interaction of different expected form ‘
dynimics determines the behavior of E{x'(t) x
(t) 5
Proposition 4.2.3 A sufficient condition for
* the existence of a steady-state optimal control law
. yielding a finite cost is that, for each form i,
there exists a feedback gain F. such that
' 1. For each absorbing form i

by ||(A —BF)t||2<eo
t=o

2. For each recurrent, nonabsorbing form i

,;__.,M(l-pii)tf_l Py H(A -B,F,) ]l <1

3. For each transient form i that is accessible
froma form j in its cover ;v

t-1

(1-p ) T P Na,-8r %2 <c<1
"i= ii (Ai’ii < ©

4. For each tran31ent form ie T that is not
) accessible from any form j in its cover
ci'

12 < w

® t-1 g7,
(1—1=ii)t§1 Py 11 (a,~B,F,)

The proofs of these propositions are contained
in [Chi 82], as well as some examples which illu-

strate the possible cases when some assumptions are

relaxed, The work in [Chi 80a] and [Chi 82] also
contains several extensions of the problem described
in this section, incorporating additional terms into
the cost function, or considering noisy observations
of the state, The qualitative results remain the '
same: The optimal control gains hedge against the
possiblity of being transferred into a discrete state
(form) where the cost of control is very expensive.
We have labelled this effect as passive hedaging, to
indicate that there is no direct influence by the
control action on the transitions of the form pro-
cess.

The second part of the research studied the
control of fully interconnected hybrid systems, in
contrast with the hierarchical hybrid structure of
figure 4.2.1. Figure 4.2.2 describes the structure
of the hybrid system under consideration. The key
difference between the structures of figures 4.2.1
and 4.2.2 is that the current continuous state
affects the evolution of the discrete state of the
system in figure 4.2.2. This permits the possibility
of steering the continuous state of the system into
regions where expensive form transitions are unlikely
to occur,

In order to understand the issues associated
with obtaining an optimal control strategy for hy-
brid systems with structures akin to figure 4.2.2,
we formulated and solved a simple example. The
continuous state was described by a scalar equation,
as

x(t+l) = a(p(t)) x (t) + b(p(t)) u(t) (4.2.13)

The discrete state p(t) could take values on {1,2},
with transition matrix P(x), given by

1 - A(x) A(x)
P(x) = ) (4.2.14)

(o] 1

The rate XA (x) was assumed to be piecewise
constant) for the sake of simplicity, we will assume
that there are only two pieces,

i}
>

A(x) x>v

(4.2.15)

= A, x< v

The objective of the control action was to minimize




i

[

the expected cost:

T=1
g=£8 {.rI,

P

(x2(t) qlt,p(t)) + ul(t) R(e,0(T)) +

x2(T) o(t,p(m))} (4.2.16)

_Notice that, although equation 4.2.13 is linear in x,
" the true dynamics in x are non-linear due to the

-~ X~dependence of the p evolution (4.2.15).

" larly, the cost (4.2.16) is not quadratic in x.

"571.

-transition occurs,

In [Chi 80b], [Chi 82], we have solved this
problem using a dynamic programming approach [Bel
The fact that the form state p = 2 is an
absorbing state permits us to decompose the problem.
When p(t) = 2, the remaining control problem is a
standard optimal control problem, with a solution
available from classical theory. When p(t) =1,
the solution is more complex, because the control
skrategy can control the probability that a form
In order to solve this problem,
we developed an extension of dynamic programming

-to hybrid systems, denoted as hybrid dynamic
' programming, which exploits the special structure

of the hybrid system. Essentially, this algorithm
divides the standard search procedure associated
with dynamic programming into a hierarchical
operation: at the lowest level, optimal strategies
are computed which result in specific descrete form
transitions. These are . a finite number of these
strategies, due to the finite number of discrete
states, and finite pieces in (4.2.15). At the

“highest level, the costs of these strategies are

compared, and the optimal one is selected.
The basic advantage of this algorithms is that

it divides the difficult task of the optimal control

of a hybrid system into two easier tasks: conven-

‘tional minimization of the cost for a several con-

tinuous-variable systems, and a comparison over a
finite set of options. Upon applying the algorithm

* to the problem (4.2.13) - (4.2.16), we developed

the following results:

1. The expected cost-to-go from state x and

p=1 at time t is piecewise gquadratic.

The number of pieces increases linearly

with T-t. The optimal control law is

piecewise linear, over the same regions.

We have characterized conditions which guar-

antee that the expected cost-to-go is

monotone for x > 0, These conditions involve
the relative magnitudes, of the costs asso-
ciated with each discrete form, and the
switching rate A. Most important, there are
conditions which establish that the optimal
cost-to-go is not monotone for x > 0. Typi-
cal cost-to-go functions are depicted in

figure 4.2.3.

Recursive Riccati~type equations which des-

cribe the pieces of the control law and the

cost-to-go function are given in [Chi 80b],

[Chi 82]. Upper and lower bounds for the

cost-to-go functions are derived there.

4. The optimal control law exhibits active
hedging: There is a preferred side of v to
be in, and the optimal control strategy has
regions where the state is “over-controlled"
to ensure that the next state is on the pre-
ferred side. This results in discontinuous
control laws, although the number of dis-
continuities is equal to the number of pieces
in A(x).

Simi- . _.

" In the remainder of [Chi 821, we studied several

D 'ﬁays in which to extend these results to more general

hybrid systems. In particular, we studied possible
extensions to hybrid systems where the continuous
state equations have driving noises, and obtained
some analytical characterizations of the structure
of the optimal strategies. Another extension was
to consider hybrid systems with a multidimensional
continuous state. The complexity of the solution
algorithm in the scalar case increased manifold when
appliedmto the vector case. The basic reason is
that R, is not totally ordered; hence, it is very
difficult to evaluate the number of different pieces
which arise from the discrete comparison part of
the hybrid dynamic programming algorithm.

Some approximation methods were also explored,
which yield suboptimal strategies. In particular,
it was of interest to characterize the existence of

" a steady~state optimal strateqy, and approximate it

The reader is
82] for the details of these re-

by an easily-implemented strategy..
referred to [Chi-
sults.

Overall, our conclusions were that good control
strategies for stochastic hybrid systems arise from
a blend of these major factors: The desire to re-
gulate the continuous stateprocess, the desire to
influence the transitions of the discrete state
process, and the intent of compensating for the
probability of undesirable discrete-state transitions
in the future. A good control policy is a compromise
between these three factors, partitioning the space
into regions where one of these factors is the
dominant consideration. The precise nature of such
a partition is of mathematical interest, but, in
terms of real applications, it remains a question
of sound engineering judgement.

These results have a lot of implications for
the design of operator policies in the control of
power systems in an emergencv or an in-extremis
state. It emphasizes that regulating the continu-
ous variables (power surges, swing angles) alone
is too much of a myopic policy. One must also
recognize the possible effects of these actions on
creating new structural transitions due to overloads,
and to hedge against the possibility of additional
failures. These results provide the foundation of
an analytic methodology which can characterize re-
gions where one of these factors should be the pri-
mary concern, hence providing guidelines as to when
a system in an emergency state should be islanded.
However, it must be pointed out that a problem of
such scope is far beyond the reach of existing
methodology; we have developed a conceptual metho-
dology, and successfully applied it to the study of
some simple examples. There is a lot of additional
research which must be completed to establish these
theoretical developments as useful analytical design
tools,
4.3, Qualitative Analysis of a Switch-Like
Adaptive System

As discussed in the Introduction, one of the
principal directions for research in this project
has been the qualitative analysis of stochastic
hybrid systems, where a significant portion of the
discrete dynamics represents discrete feedback
mechanisms (e.g. protective devices). It is an
important fact that many adaptive control systems
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" . which do not explicitly include such discrete feed-
 back mechanisms behave essentially as if they do.
For example, the work of Greene in [GRE 78], some
initial deterministic analysis of the multiple model
adaptive control (MMAC) explored and exposed this
_possibility for MMAC algorithms. Motivated by
this work and by the general hybrid system charter
1of this DOE project, we undertook an extension of
3 the work of Greene, A thorough treatment of the
results of this extension can be found in the S.M.
thesis of Mr. H,R. Shomber [SHO 80]. In this sec~
tion we will provide an overview of the results of
. this work, ’
In the basic MMAC formulation (written in
“discrete~time) the open~loop system is assumed to
- be linear

x(k+1) = Ax(k) + Bu(k) + wik) (4.3.1) .

v = cx(k) + v(k) (4.3.2) -

where w and V are independent white noise process-
es, with -

Elwk)w' ()] = stj, Elvik)v*(§)] = Rakj (4;3.3)

‘While the open~loop system is assumed to be linear,
it is not assumed to be known. Instead, a set of
possible models are postulated

xi(k+}) = Aixi(k) + Biu(k) + wi(k) (4.3.4)_
yik) = Cixi(k) + vi(k) (4.3.5)‘
wi ~ Qi ’ vi ~ Ri (4.3.6)

~i=1,...,N.

: If one designs Kalman filters for each of
these models, one can use the filter innovations
processes to compute the conditional probability
p, (k) for the validity of the ith model given all
of the data up to time k and assuming that one of
the N models is correct. If we use steady-state
filters, we obtain

xi(k+1) = Aixi(k) + Biu(k) + Hiri(k+l) (4.3.7)

r; (k+1) = y(k+l) - C, (AR (k) + B,u(k)] ‘
' ' (4.3.8)

where Hi is the Kalman gain for the ith model

1

H, = P.C,'R, (4.3.9) |
1 11 I '

.and Pi is the solution of the Riccati equation

-1 -1.-1
= . ' )
Pi [Ci Ri ci + (AiPiAi + Qi) 1 (4.3.10)

' Assuming that the actual system matches the ith

~model, then r, (k) is a zero mean, white process with
covariance : : - .

= L]
vi cin_Ci +Ri (4.3.11)

- special case considered by Greene.

Ryl -

and the'probabilifes‘aie-6btéihed from the recur-
sive.equation

pi(k) fi[ri(k+1)l

N

(k) £.0r, (k+1
jﬁl pJ( ) J{rJ( )]

pi(k+l) = (4.3.12)

" where £, (-) is the probability density function for

r, assuﬁingvthat the ith model is correct:

4,
i

1

. ™ - gl -1
£,(r) = (V(2m) " det (V)" exp - {Er v, r}

(4.3.13)

' ‘Suppose we now assume that. with éach model we

. have associated a feedback control law

ui(k) = Gixi(k) (4.3.14)

" Then, the MMAC algorithm specified that the actual
- control as a probabilitically weighted sum of these

N

u, (k) = I p.(k) G,X, (k) (4.3.15)
i j=1"1 i1

The impetus for the work in [GRE 78] and in
[SHO 80] was the experience obtained from several
applications of MMAC, What was observed was that
the probabilities p, (k) behaved in an essentially
switch~like manner =- i.e. they were approximately
riecewise constant. Consequently the system behaves

" wery much like a stochastic hybrid system. To
. begin to gain an understanding of this qualitative

property of some MMAC Systems and of its impli-

~ cations for overall system behavior, design choices
" such as model selection, etc., Greene focused atten-

tion on the case when there are two models (N = 2), .
neither of which may concide with the true system.

" In addition, Greene focused attention entirely on

the deterministic analysis of the MMAC algorithm.
In his work Greene was able to isolate several
modes of behavior for the MMAC system. To describe
these (and also for later use) it is convenient to
rewrite the overall closed-loop dynamics for the
In this case
I, R =R2=R,
Q, = Q2 = Q. Thus, the only differences between
t%e true system and the mddels are inthe matrices

N=2,B=B =B =C=Cy =Cy=

rmA,A.MmmmN=L%m=l—ﬁm.

Thus, if we define

x (k)
w(k) = rl(k) (4.3.16)
rz(k)
: the MMAC system can be written as
wik+l) = A(pl(k)) w(k) (4.3.17)

Pi(k) fllrl(k+l)]
pl(k) fllrl(k+1)] + [lﬁpl(k)] f2[r2(k+1)]

(4.3.18)




vwhere ' i fg e Ndecay. For this case Greene performéd some
: detailed approximate analysis of stability

vA-plGlP(l—Pl)G and also determined approximate analysis.of

(I«H ) (1— )G (I- -H,
; 2 pl 1 P ) stability and also determined approximate
i(pl) ={a-a A, (I-H.) 0 expressions for the switch times for pj. As
1 1 1 one would expect for a hybrid system, the
- ) intervals between switchings are x~dependent,
A-A 0 a_(I~-H,)
2 27 T2 as predicted by Greene‘s analy51s and simu-
- e T (4.3.19) -~ -~ - lations. s -
) 3) 1f E(p,) is stable for some range of pl but

i not for all p;, then one can obtain trajec-

A sepcific choice was made for the A's: for many . ﬁ tories that display either of the types of
of the numerical exaamples: : j - " behavior -- hyperbolic oscillations or ex-
) , . ; ! ponential decay «~ depending upon the size
a o Ta o a. o : : of the initial condition. Eventually,
A= [o a] . Al = [o'a ] ' Az = [3; a] ’ however, the system would settle down and
1 decay exponentially with p; in the range for
; v (4.3.20) which A(p;J is stable.
Ewhich, by symmetry, leads to : (4) Greene also anélyzed the behgvior of a limit-
i . ed memory version of the MMAC algorithm,
; where the p, (k] are based only on a window
H-=|R©° , B = h, o , of the most recent measurements, In this
1 oh - 2 o h case one observes an increase in the fre~
1 - ’ quency of oscillations in p, and x and a
(4.3.21) decrease in the peaks.of x.  In addition,

if X(1/2) is unstable, limit cycles are
- : ) guaranteed to exist.

c. =19°| , e =191 ° (4.3.22) In our more recent work, as reported in [SHO
1 °g, 2 b g ) 80}, we have expanded upon Greene's deterministic
'This case allows one to expose a wide variety of

analysis, Specifically:
(1) Greene's approximations for the switch times
behaviors by simply adjusting one or two parameters.
Greene's analysis led to modes of behavior

and for state magnitudes at these times were
modified to obtain significant improvements

specified in terms of the stability properties of

the matrix Alp ). Specifically:

(1)

(2)

in accuracy when compared to simulations.
While the approximation is noi exact, it
does provide a reasonably accurate measure

1f A(P]) is a stable matrix for all values

of p,, then all components of the system

state decay exponentially.. In this case

the probability pl(k) may behave in a
switch~like manne¥ in the initial transient
period if the initial states are large
enough (and r, and r., are of different
sizes), but tﬁe probability will eventually
settle to some value depending completely
on the initial condition.
if A(p,) is an unstable matrix for all
values p,, then the probability will behave
in a switch~like fashion for all time. Even
in this case, it is possible to have an
overall response that %s stable. For the
example specified by (4.3.20) ~ (4.3.22).
In this case the model 1 controlles stab-
ilizes x, but not x,. Thus one can imagine
a stable overall response in which p
switches between 0 and 1, alternately stabi-
lizing x7 and x5. Greene defined the notion
of hyperbolic stability, which is motivated
by the fact that at any time one state is
decaying exponentially and the other is
exponentially diverging. Consequently
Ln(x (t)x (t)) is essentially a linear
func%lon of t: if it is increasing, then
the system is stabley if it is zero, then
the system essentially limit cycles; if it
is decreasing, then states decay more dur-
.ing periods in which they are stabilized
than they diverge during destabilizing
intervals. 1In these cases the trajectories
of components of the state are rather pe-

. .culiar, as states alternately diverge and

(2}

of the rate of decay or divergence of X, (k).
xz(k).

Analogous approximations for switch times
and corresponding state sizes were derived
for limited memory MMAC and also for MMAC
with nonzero set points. Again these approx-
imations provide reasonably accurate pre-
dictions of behavior with one exception
which is easily understood. Specifically,
the switch-time approximations are based on
the assumption that pj(k) is either o or 1
at any time., However, in the case when the
state is stabilized and limited memory MMAC
is used, p, (k) tends toward 1/2. Thus,
intermedia%e values of p. (k) will appear.

The major component of the work developed in
[SHO 80] is aimed at analyzing the effects of noise

on MMAC behavior.

The basic approach used is to

perform covariance analysis of (4,3.17) -~ (4.3.19)
(with noise included in (4.3.17)) using random input

describing functions (RIDF's).

As the resulting

quasi-linear equations are quite involved, we will
not repeat them here and refer the reader to [SHO 80]

for the revelant equations,

Using these equations,

we have investigated the stochastic (specifically
mean~square) stability of MMAC systems and have
compared our results and predictions to Monte Carlo

simulations.

Again the nature of the results is

best explained in terms of A(p,):

(1)

Consider the case in W%lCh Z(p,) is stable
for all values of py- In this case the

RIDF analysis predicts mean square stability
in that the second moments of the states
remain bounded. This was confirmed by

.Monte Carlo simulations which also indicated




(2)

(3)

(4)

that the RIDF approximation was.exception-

ally accurate in predicting the transient
behavior of the state variances as well as

- their steady-state values.

Consider the case in which A(p,) is unstable
for all values of p,. As indicated earlier,
Greene's deterministic analysis indicated
three modes of behavior: hyberbolic asymp-
totic stability, neutral stability, and
instability. The RIDF analysis ard Monte
Carlo simulations indicate that the state
variances grow exponentially in all of these
cases, suggesting the singular nature of
deterministic hyperbolic asymptotic stabi-
lity. A proof of mean square stability has
not been obtained, however.

If A(p,) is stable for p, in an interval

of the'form (€, €,] with e, > o, €, < 1,
the state variances remain Stable for a
while and then grow significantly, indi-
cating instability. This is again veri-
fied by simulations, although in this case
the RIDF is in error by a substantially
greater margin.

If A(p,) is stable for p, in an interval

of the form [o, €,] or [% , 1] or both,

the RIDF analysis indicatés instability but
Monte Carlo simulations did not support
this prediction.

Based on these results some subsequent analy-
sis, conjectures, and directions for further work

were developed.

(a)

Py (k) =

:a(k+l)

(b)

In particular:

_Write
1
L l-pl(o) det vy o - 1 o)
pi(o) det v, P 2
(4.3.23)
where

= a(h) + rl(k+1)'vlnlrl(k+1) - rz(k+1)'

v '1r2(k+1) (4.3.24)

2

In all of the RIDF anaiysis performed, the
variance of a(k) remained bounded. On the
other hand, for the case specified by
(4.3.20) - (4.3.22) we have performed
auxiliary analysis which indicates that

the variance of a (k) diverges. Given this,
it is not difficult to check that the dis-
tribution for pl(k) approaches one concen-
trated completely at o and 1. This pro~
vides an understanding of why stochastic
instability results in Case (3) described
earlier and why there is no instability

in Case (4) although the RIDF predicts in-~
stability based on an erroneous calculation
of the spread of a(k) and thus of p, (k). A
modification to the RIDF which corrécts the
erroneous prediction for the variance of a
is needed.

This analysis is incomplete in another
sense in that what is needed is a probabil~

.istic description of the temporal behavior

~of a(k) and thus of pl(k). Specifically,
-we would like to prove in Case (2) that
systems which are deterministically hyper-
“bolically stable are stochastically unstable.
To do this one must determine that noise
(even small amounts) disrupts the delicate
switching mechanism by which states are al-
ternately stabilized and destabilized.
It is conjectured that it may be possible
for, both the RIDF indication of instability
_iand the apparent stability from simulations
i, of Case (4) to be correct. That is, it may
be that the system is stable with probability
one but not in mean square. Again the nature
of switches in the probabilities in this
stochastic setting must be investigated.
Intuitively, if [o, €,] is the range of p
for which K(pl)is sta%le, then Py will spend
most of its time in this range with rare
occasions on which p, leaves this region due
to stochastic effects. For any sample path
Py will return to the stable range, but there
may be the rare possibility of arbitrarily
long excursions from this range, leading
to moment instability.
In conclusion, the analysis we have performed
on MMAC systems has provided us with signficant
amount of insight into and some useful tools for
analyzing stochastic hybrid systems. We have had
significant success in performing approximation
analysis for the prediction of deterministic and
stochastic behavior and have determined or con~
jectured the essential causes for the few signficant
discrepancies between our predictions and the results
of simulations.
These determiniations and conjectures suggest
several promising directions for further work.

(c) -

4.4 - Convergencé‘Issues in Stochastic Adaptive
Control

4.4.1 Introduction

methodologies and the potential applications.

The development of a systematic design methodo-
logy for the synthesis of practical self-adjusting
control systems which can maintain first stability
and second performance improvement, in the pre-
sence of rapid and large variations in the open-loop
dynamics, represents a very important generic goal
in control system engineering, in view of its wide
applicability to industrial and defense applications.
The so-called "adaptive control problem” has re-
ceived attention by theoreticians and practitioners
alike for the past twenty five years. About a dozen
books and hundreds of articles have been devoted to
the subject, different philosophies have been de-
veloped (model reference adaptive control, self-
tuning regulators, dual-control methods, mulitple
model adaptive control etc.) and a variety of (mostly
academic) examples have been simulated.

In spite of the intense research activity there
seems to be a significant gap between the availabe
To
put it bluntly, none of the available adaptive con-
trol algorithms can be routinely implemented on a
real system and guarantee even the stability of the
closed loop process, especially if the physical
process is characterized by oscillatory or unstable
dynamics and/or unmodeled high frequency dynamics,
and/or significant stochastic disturbances and
noisy sensor measurements. .. .. ..




- cesses.

One should not blame the theory for this state
‘of affairs. Elegant and useful theoretical ad~
vances have been made in the last decade, and es-
pecially in the past three years, that have unified
diverse approaches. The difficulty appears to be
that some of the hypotheses needed to rigorously
_prove the theoretical results are too restrictive
from a practical point of view. Hence, new ad-

* vances in the theory are necessary, by making diffe-

rent assumptions which better reflect the desired

- properties of physical control systems.

Results merging deterministic stability

- approaches (e.g. model reference adaptive control),

"and stochastic optimization approaches (self-tuning

- regulators, dual control), together with structural
assumptions upon the nature of the adaptive com-
pensator which will hopefully eliminate some of the

-undesirable (from the applications point of view)
characteristics of currently available adaptive

- control algorithms are presently needed.

Moreover, despite recent rigorous theoretical

developments in adaptive control, [NAR 80a],
[CRU 79], [GOO 80c]l, the status of stochastic
adaptive systems has been little advanced. Both

. in identification and primarily in control, the
presence of even only observation noise compli-
cates immensely the stability and convergence
analysis of such schemes. There is still no gene-~
ral global convergence theory available to date for
stochastic adaptive schemes and the results obtained
so far are only valid locally, and/or asymptoti-
cally-without concern for the transient behavior
(stability) characteristics of the adaptive process.
For the most part, the presence of noise has been
dealt with in a rather ad hoc manner with "common
sense"” modifications to already existing deter-
ministic adaptive control algorithms. Prefiltering
(of the output error) and use of stochastic approxi-
mation techniques have been the dominant approaches

- in this direction. The former, introduces extra
delays in the adaptive process with obwiously
adverse effects on the speed of response and the
convergence characteristics of the overall system.
The rationale behind the latter was that, when
adaptation is completed, the effect of noise should
be removed from the adaptation mechanism. However,
it is not clear that the parameters will actually
converge to the "desired" values before adaptation
is stopped.

The most important issue of our current work

. that must be understood and appreciated relates to
the possibility of obtaining global stability
results. Every adaptive control algorithm involves
a dynamic compensator whose parameters are adjusted

" in real time based upon output measurements. If

" the measurements are stochastic processes (due to

. stochastic disturbance and/or noisy sensor measure-

" ments), it follows that the parameters of the adap-

" tive dynamic compensator will be stochastic pro-

Thus, to answer stability results in a

. global sense, one should ideally be able to analyze

" the global stability properties of differential

equations involving multiplicative noise. No general

mathematical theory is currently available for such

_ stochastic differential equations. A more promising

alternative is to exploit frequency separation pro-

perties and band-limited signals as well as gene~

ralizing the "passivity inequality" to encompass

stochastic quantities also. Although at present

no final (or rigorous) results have been obtained

along the above lines, cons derable progress has
been made in understanding the fundamental- concepts -
underlying adaptive control theory, that unify both
deterministic as well as stochastic algorithms, and
in formulating clearly the problems that are to be
addressed. The long range objective of this re-
search is to develop a methodology of design for
adaptive control systems, by attempting to unify
promising concepts based upon hyperstability (passi-
vity) theory and stochastic optimal control, res-
pectively, with some common sense engineering techni-
ques related to multivariable loop shaping ideas in
the frequency domain which include issues of good
command following, integral control, disturbance
rejection, bandwidth control, and high frequency
roll-off characteristics. A more basic understanding
of robustness properties of multivariable systems
that has recently been developed through the use of

.singular value diagrams, serves as a useful tool

here.

The emphasis in this
senting a finished body of rigorous theory, is in
developing the basic motivation for the avenues of
research pursued currently. We attempt this by first
presenting succinctly, and without proofs existing
theoretical results concerning the (local) stochastic
stability of adaptive systems in such a way as to
render transparent the points of tangency and inter-
sections among them, from which our current research
direction arises as a natural extension. For more
details and proofs the reader is referred to the
literature cited. Our current results and a novel
method of analysis of adaptive algorithms follow
next along with our conclusions.

4.4.2 A Brief Review of Existing Convergence
Results for Recursive Stochastic Adaptive

Two are the main methods used to prove (local)
convergence in recursive stochastic algorithms: the
associated Ordinary Differential Equation (ODE)
approach developed by L. Ljung and the Martingale
approach, first developed by [GOO 79a] and [GOO 79b]
and later followed by [CAI 80].

The self-tuning regulator (STURE) of [AST 73]
was the first recursive stochastic system whose con-
vergence had to be analyzed. Self-tuning regulators
were in general designed from an optimization point
of view, the objective being to minimize output
variance, without any explicit stability considera~-
tions at the outset. By using the (ODE method,

[JU 77] showed that the stochastic convergence
analysis of the STURE could be reduced, under certain
associated differential equation, in a deterministic
framework thus bringing the stability issue also into.
this class of adaptive controllers.,

Later, the close relationship between the self-
tuning regulator and the deterministic model re-
ference schemes was understood, [NAR 79b], [EGA 79].
Partly as a consequence of this, another approach to
the convergence analysis emerged, for the MRAS with
observation noise, which has become known as the
martingale approach. According to this, near-super-
martingales are constructed corresponding to stochas-
tic Lyapunov functions, in terms of the state vari-
ables of the overall closed loop system (parameter
and state errors), which are now random variables.
Then again, under certain rather restrictive condi-
tions, the martingale convergence theorem is employed




" to prove convergence of the recursive scheme.
Although at first glance the above two appre-
.aches appear to be widely different, they both make
use of the positive realness of a transfer function
that describes the (output) error equation corres-
ponding to a particular recursive scheme. This
‘realization is remarkable, since it has its exact
‘counterpart in the deterministic case, where it

. ».was recently shown [VAL 80], that positive real=-

ness is a unifying underlying factor in all deter=-
ministic schemes to date, either implicitly or
explicitly.
: Moreover, even in the deterministic case,
-aymptotic stability of the nonlinear time-varying
differential or difference equations, that des~
cribe the overall adaptive system, has been proven
"only for those schemes where the parameter adjust-
ment law is a vector of square integrable functions.
 This condition is also present in some form, either
explicitly or implicitly both in the ODE as well
as in the martingale approaches for the conver-
gence analysis of stochastic adaptive schemes.

(i) The ODE Approach
: According to this approach, an ordlnary
dlfferentlal eugation is associated to the two sets
of equations that represent the adaptive algorithm.
These are typically of the following form:

x(t) = x(t-1) + Y(£)Q(t;x(t-1),y(t)) (4.4.1a)

d(t) = A(x(t-1)¢(t~1) + B(x(t-1))e(t) (4.4.1b)
where the set of equations (4.4.l1a) represents the
parameter adjustment laws and (4.4.1b) the obser-
vations (auxiliary stacte variable generation). y(t)
is a decreasing adaptation gain, Q(., .) repre-
sents the correction to the parameter estimate of
the previous time instant and e(t) is the stochas-
tic disturbance. The results obtained are "probabi-
- 1lity one" results and link the convergence pro=-
perties of the associated ODE with those of the re-
cursive algorithm.

a. Associating an ODE with (4.4.,la) & (4.4.1b)

The differential equation corresponding to the
recursive algorithm in (4.4.l1a) and (4.4.1b) is ob-
tained as an asymptotic approximation after the
system has more or less reached steady state and
under the assumption that (4.4.1b) describes an
aymptotically stable equation. Using standard ar-
guments to approximate the solutions to (4.4.la)
and (4.4.1b) under such assumptions, one can evalu-
ate

t+s
x(t+s) = x(t) + T Y (k)Q{x(k-1),9(k))
k=t+1 :
t-fs ’ tEs
2 x(E) + £B)) oy YO+ by YRV
s oo
T x(t) = £(x(£)) £ y(k) (4.4.2)
t+1
where: Q(x(k-1),d(k)= Q(x(t), 5(k;x(t))) = f(x(t))

+ w(k) for t>k,
$(k;x) is a steady staté approximation of & (k),
£(x) = EQ(x,(k;x))

'and hence w(k) is a random variable with zero mean.

Equation (4.4.2) then suggests that the sequence of

estimates more or less follows the difference equa-
tion :

Birean) = By + ATf(xA(T))

t+s
where AT -+ Z Y(k).

and hence, for At small enough,

H
:

o = ralan

(4.4.3)
where the fictitions time T relates to the real t1me
t by

r
T, = (k).
t k=1Y

For more details of the above derivation we refer
the reader to [LJU 77].
b. Assumptions on the Algorithm and Related
Theorems [LIJU 77]

The approximation arrived at in o. and the sub~
sequent analysis of the convergence properties of the
recursive algorithm given by the generic form in
equations (4.4.la) and (4.4.1b) depends on certain
reqularity conditions on the functions O, A and B
and on the driving "noise"” term e. Several sets of
assumptions are possible, derived from one another
by differing restrictions and tradeoffs on Q, A, B
and e, We list here only one such sct, since it
will be enough . to see from it the limitations under
which the ODE methods is valid.

Let us first define

Ds = {x]A(x) has all eigenvalues inside the
unit circle}.

Then (4.4.1b) defines an asymptotically stable sys-
tem for all xeDs and hence we can write

A < Ak Ax) < 1,

Then take X€D and define the random variable 5(t,§)
s.t. §(t,%) =A@ F(t-1,%x) + B(x)e(t) §(0,%) = O.
Let Dy be an open, connected subset of Dg. The
regularity conditions will be assumed to be valid

in Dg. We tehn impose the following set of assump-
tions:
1. e(+} is a sequence of independent random

variables (not necessarily stationary or
with zero mean).

2. |e(t)| <c with probability one for all t.

3. The function Q(t,x,$) is continuously
differentiable w.r.t. x and ¢ for x € D
and the derivatives are bounded in t, for

~ fixed x and ¢.

4. The matrix functions A(*) and B(*) are

Lipschitz continuous in Dg.

5. 1lim E o(t,%,3(t,X) exists for X € Dy and is

i rsand .
denoted by f(X). The expectation is over
oel*).
6. IT y(t) =
1
7. yw)P<ce for some p.
8. ¥Y(*) is a decreasing sequence ;
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9. lim sup 7 - Ty <% .

e P YTE) T YD ,
! Assumptions 6,7,8,9 come directly fromthe ana-
. lysis of stochastic approximation convergence tech-
‘niques and are rather needed for technical points
in the proof; thye are also the easiest to be satis-
: fied. Although assumption 2 includes the common
. Gaussian models of noise, it may not be unreason-
"“able for practical purposes. The regularity con-

"ditions represented in 3 and 4 are reasonable, once

one is willing to accept that 1-9 are valid only in
D D , i.e. in a stability domain in parameter
space.” This is clearly very restrictive and un-
i realistic, since it is precisely the boundedness

of the resulting closed loop system that is under
' question, even in the relatively simpler determin-
“istic case. While it may be possible to assure
. that x € DS in an open-loop (identification) scheme,
by using appropriate projections on D , this never
 turns out to be possible in a closed~Iocop (control)
situation. Besides D_ is never known in an adap~
" tive control problem. Lastly, Assumption 5 is
- clearly the one that allows the association of an
ODE with the recursive stochastic algorithm, once
_the rest of the assumptions hold.

The whole ODE approach then heavily hinges on
three theorems, We state them below for the sake
of completeness. For proofs and more details we
again refer the reader to (LJU 77).

Theorem 1l: ' Consider the algorithm (4.4.1a) and
(4.4.1b) subject to the assumptions above. Let D

be a compact subset of D, such that the trajec-
tories of (4.4.3) that start in D remain in a closed
subset Dgr of Dp for T > 0. Assume that

1. there is a random variable such that (4)

x(t) € D and |¢(t)| < ¢ infinitely often
w.p.1l. '
2. the differential equation (4.4.3) has an
invariant set Dc with domain of attraction
. Dp D.
Then x(t) > D, w.p.1l. as t > .
Theorem 2:
tions, suppose x*€DR has the property
P(x(t) + B(x*,p)) >0 ¥p>0
where B(x(,p) denotes a p—nelghborhood
of x*.

Also, suppose that - .

Q(t,x*, 5(t,x*)) has a covariance matrix
. bounded from below by a strictly positive definite
matrix and that E Q(t,x ¢(t x)) is continuously
differentiable w.r.t. X in a neighborhood of x*
. and the derivatives converge uniformly in this
" neighborhood as t > «. .
- Then

f(x*) =0 and

H(x*) = é%-f(x) has all eigenvalues in
x=x* the LHP,

. Theorem .3: For egns. (4.4.l1la) and (4.4.1b) assume
* 1-9, and also that f(x) is continuocusly differenti-
" able and that (4) holds. Assume that the solutions
to (4.4.3) with initial conditions in D are ex-
ponentially stable and let I be a set of integers

" such that

‘where N =
Theorems 1~3 above can be expressed in a somewhat
more intuitive language as follows:

For the same algorithm and given assumpe

-where egv = (a

- T I = 6 > 0..

wi“f%lT

where i#¥j and i, j € I.

The for any p 31 there exlst constants K, e and T

depend on p, D, 6 such that for

. E<Le_ _and t >T _ . __ .
" o o} o
b

i

K
P sup [x(t) - x°(T_,T Px(t Nl >e ¢ ——
ter t to €4p
>t
o

.

T yHHP.

o

sup i; 1 € I which may be .

1. =x(t) can converge only to stable stationary
points of the ODE€ .

2, If x(*) belonds to the domain of attraction
of a stable stationary point x* of the OD€
infinitely often, then x(t) converges w.p.l.
to X* as t > «,

3. The trajectories of the ODE are "the asymp-

~ totic paths" of the estimates x(°).
C. Examples :
o . -

1. Astrom and Wittemmark's Self-Tuning Regulator
[AST 73]. The data generating process is
described by an ARMA model as follows:

Hetty (4.4.0

Alg™Y) y(t) = B(q™Y) u(t) + c(q”

where qﬂl is the delay operator and

n
Foogt anq

A(q'l) =1+ alq—l
B(_q“l) _ bo + blq!-l

b1 known.

C(q_l)

{e(t)} is a stationary random sequence of
independent random variables, such that
all its moments exist. Also (4.4.4) is
minimum phase. '

. <m
+...+bmq ’ bo =0,

-1 -n
=1+ ¢4 +o. ot qu

Then, if the parameters were known, a minimum vari-
ance controller would be given by

alt-1) = - Sl- or, d(t)
1

4 T Cpreeerd - e §2,...,bm)

OT(E) = (eg(tel), .. my(ten), u(t=2),..,ult-m).

‘Since the vector of parameters is not known, it is

estimated on~line according to the recursion

1

D (4.4.5)

8t) = B(ee) +

$(t) e(t)

= rf]l-'

r(t) = r(tel) + (¢(t) $(t) « r(tel)) (4.4.6)




0 R e

‘where €(t) = y(t) - bju(t-1) - 8e-1)To(e).

Both y(t) and u(t) are influenced by the se-
quence of estimates {6t} through the control law dA . .
u(t). Define y(t,8), u(t,0), ¢(t,8), €(t,0) to be EEjr(T) = g(6(t)) - r(1) (4.4.11)
the stationary processes which would be obtained
with a control law corresponding to some fixed 0.

. T S ~_____ _ vhich is defined for 0(T) € D(s), r(T) > O and where
: Then  U(t-1,0) = £- 6°§(t,0) : ; CTT T T T T T T T T
7 B o g(8) = 8" (£,0) F(t,0).
é(t'e) = Y(t,e) - bl u(t—l,e) - . ’ 15.‘ )
1 o - _ : Global stability of (4.4.10) follows if
) 9 ¢(t'e) = Y(tre)o T
. (@) + & (8) is > 0.
We note here that the process is defined only for

those 6 in the stability region D_, where also the Taking into account eqns, (4.4.8) and (4.4.9) it can
: stationarity assumption is valid. be shown quite easily that the above holds iff H(g~1)
‘ Furthermore, we can write is strictly positive real.
L _ - ~ -1 ’ Remark 1. In this approach, strict positive realness
e(t,;0) = y(t,8) = GO ¢(t,0) + blu(t—l,e) + C(g ™) of the transfer function associated with the error,
B ; however it may be defined in any particular algori-
“e(t) = thm, is a necessary condition for global stability
’ - -1 of the ODE, which then implies local convergence of
= (30-8) ¢(t,0) + Clg Nel(t) = the recursive algorithm. 1In deterministic stability

analysis, strict positive realness was a sufficient
condition for global stability of the adaptive sys-

T = = T
O, = 8y P(t,8) + O(£,8)7(6,,-0) +

tem.
-1 : Remark 2. We note here from egns. (4.4.5) and
Clg Te(t) (4.4.6) that the parameter adjustment low is a square
integrable function,
where 6 is the vector of (original) process . 2. Genera] Adaptive Algorithms
parameteérs. : In general, the process is given by

Hence, since -1 o1

e a1 - alg )y(t) = g% B(g™) ut) + wt)
®, - 8y $(t,8) = [1 ~Clg ] y(t,0) = ~k
where ¢ represents a pure time-delay (relative
-1 _ : degree) m > k > 1, A and B as defined before and

(1 - Clg 7)) €(t,0) w(t) represents the disturbance.
’ A reference model may be specified by

it follows that

M, <1
Mg hyMiey = g F B My

-1, = _ T T _ -1 — .
Clg ™) &(t,8) = ¢(£,8)7 (8, -8) + Clg Telt) Mg 1,
(4.4.7) .
’ It can be shown {[EGA 79]} that the output error
and .
defined as
E(e,0) = 3(t,07 @, - &) + e(t) (4.4.8) "
. e(t) = y(£) =~y (¥)
N where $(t,8) = H(g 1) §(t,0)
satisfies
: -1
~H(g ) = — -
cl@h | AMet) = ¢ X676 ()] + P w(t)
- Also, define ) ; where A, AM, P, BM, B are polynomials of compatible
) - o ] . ‘degrees and such that the polynomial equation
G©) = B¢ (t,0F (¢,0) (4.4.9)

AAM=AP+q'KQ

6* =6

Mv where the parameter in the polynomials P and Q can
be chosen, A is any arbitrary Hurwitz polynomial and
B is absorbed in A. 6 represents the unknown para-
meter vector that has to be adjusted and ¢ is the
state vector, both defined in an analogous manner

Then, since e(t) is independent of y(s), u(s) for
. s < t, we have from eqns. (4.4.8) and (4.4.9)

£(0) = BB (t,0) £(t,8) = &(B) (6* -8) .  as in example a.
When the re%atlve degree (pure time delay) is
and we can now associate with the algorithm (4.4.5), greater than one, extra filtering has to be intro-

- (4.4.6) the following differential equation: : duced through a strictly stable and inversely stable




-

[E—

‘rational transfer function L(q-l). Then the aug-

‘mented error can be written as T

L

T -1 P
e_(t) - —— [0°L "$(t-k)] + — w(t)
a Aa™M At

‘A typical recursive adaptive algorithm is then
‘given by

ele) (4.4.12)

Bee-1) + LT (t-K)]

B(t) = =0
' -1 2 ‘
r(t) = r(t-1) + [L7 ¢ (t-k) | (4.4.13),
‘where €(t) = ea(t) - e(t)
e(t) = % 87 (e-1) T71% (t-k) 1
An

“and the control law is chosen to satisfy

8T e (0] =

For more details of the above derivations, the
reader is referred to [EGA 79]. TFollowing the
same method of analysis as in example 1, it can be
shown -again that the algorithm (4.4.12), (4.4.13)

converges locally, provided —Lﬁ-is SPR.

Remark: For (4.4.12), (4.4.13) we see that the
parameter adjustment law (12) is an L2 function
here also.

(ii) The Martingale Approach

The basic proof technique in [GOO 79a] was the

use of ,the Lyapunov V,_ = 8 - §tll2, t=1,2,...,

" where 9 was the nominal (actual) parameter value

- and ét its estimated value. V; can be called a

. stochastic Lyapunov function since one attempts to
show Vi is a super-martingale. In fact, in [GOO

79al, Vt + . St was shown to be a "near super-

martingale",ti.e., a positive super-martingale less
‘'a negative quantity plus a positive quantity, the
latter being a.s. summable. The term S was in-
troduced in an apparently arbitrary manner in order
to deal with a cross-term arising in the expansion
of Vi via the equation deflnlng the parameter ad-
justment law. Si is positive by virtue of a strict
positive real condition required of the transfer
function corresponding to the error generating
dynamics. [SOL 79] also showed how to exploit this
property in parameter estimation. The whole techni-
. que is based on the Martingale Convergence Theorem,
. which we state below for the sake of completeness.
. Its proof can be found in [NEV 75], [soL 79].
Martingale Convergence Theorem: Let {r 1, {a},
" {B_T be sequences of non-negative random variables
- adapted to an increasing sequence of O-algebras
; Pp such that

E[?p‘Fn-ll < Rn--l - 0‘n-l
- If Zw B < ® a.s., then T convergg almost surely
© to a finite random variabl€ T and I, 0 < ® a.s.
Then, for the general problem stateé in example b,
with k=1, and for recursive adaptive algorithms in
[GOO 79a] which are very similar in nature to the
. ones already discussed, the following result was

obtalned using the Martzngale Convergence Theorem.
Result: If the noise generating dynamics satisifies
the following conditions :

)
3 is P.R. v
(4.4.14)

then t@e algorithms in [GOO 79a] ensure that with
‘probability one:

N

(1) swp T I y)2 < (4.4.15)
i N t=1
; N
" (2) sup % I um)lc<w (4.4.16)
; N e=1
(3) lim = L elly(t) - vy (0)12]F, .} = v°
o ¥ 21 M -1

(4.4.17)

where Yz is the minimum possible mean square control
error achievable with any causal linear feedback.
(This includes feedback designed using the true
parameters) .

Remark 1. Strict positive realness - of the "noise
transfer function" ~ is also a requirement using the
martingale approach. However, this requirement on
the noise dynamics is very unreallstlc, since they
are even unknown.

Remark 2. No a prloni boundedness of .the adaptive
signals is assumed,

Remark 3. The martingale approach is much less sys-
tematic than the ODE method. One of the reason is
that convergence proofs require first to find an
appropriate super martingale which to some extent
can be considered as a stochastic Lyapunov function.
The search for the appropriate near supermartingale
can be lengthy, the rationale behind its derivation
not clear and the conditions on the relevant adaptive
signals unrealistic or not verifiable. Clearly, a
more systematic approach has to be developed.

1. An alternative Formulation of the Structure of
Stochastic Adaptive Algorithms ’

It is a well established fact to date that
most =~ if not all -- of the currently existing re-
cursive identification and adaptive estimation and
control schemes can be equivalently represented by
a feedback system with a linear time-invariant feed~
forward path and a feedback time-varying path. The
forward path ‘Pepresents the generalized (state)
error equations of the adaptive system, while the
feedback path corresponds to the parameter adjust-
ment mechanism, Hyperstability theory has then been
employed to prove global asymptotic stability of
the overall feedback system, which can be guaran-
teed e~ under additional conditions ({VAL 80]) =--
if the forward block consists of a strictly positive
real transfer function and the feedback part re-
presents a passive system. In fact, it can be read-
ily seen that this equivalent feedback configuration
appears implicitly in the design approach using
Lyapunov functions, since the Lyapunov function .
candidate always consists of two terms; one quadratic




* at present.

_bitrary symmetric matrix.
' to belong to the class L(A) if the resulting sys=
. tem obtianed b{ its parallel connection with a

. positive real discrete transfer matrix,
' sulting system, consequently, is described by

- form of the state exrxors and another one of th
. parameter errors. . :

When sensor disturbances are present, the out-
put of the forward path is contaminated with noise,

-w(t), while the rest of the structure of the (now)
. stochastic adaptive system remains the same.
. ever, deterministic stability theory no longer

How-

holds, since now the parameters in the feedback

".path contain random quantities and the requirements
. for passivity can no longer be assumed to be satis-

fied. Global stability results for such a stochas-
tic adaptive system have been obtained using mar-
tingales by [GOO 79a] and [GOO 79b] under the very
restrictive and rather unrealistic assumption of
positive realness of the noise generating dynamics.
A much more realistic assumption is to assume know-

- ledge of the power spectrum of the noise and attempt
. to make use of such data to derive the adaptive
i laws within the existing structure (feedforward
. and feedback) ,

This will guarantee convergence of
the stochastic adaptive system under more realis-

:tic and less restrictive assumptions than have

been made to date. R
We show below a general method of proof, using

- the Martingale Convergence Theorem, for this struc-

ture. Unfortunately, so far, we have had to use a
very restrictive assumption, also, but one whose
form allows for more general extensions and moti-
vates our search for some sort of a "stochastic
storage function" or "energy indexing function"
which lies at the center of our research efforts
Besides, this helps clarify and state
more precisely the problems we are currently
addressing.

. 2. Use of the MCT in tﬁe Passivity Framework for

Convergence of Adaptive Schemes

[LAN 79a] generalized the classes of systems

~ for which the structure described in 1. above re-

sults in global asymptotic stability for deter-
ministic adaptive schemes. We present below their
definitions which we shall employ later in the
proofs.

Consider the following discrete time, com-
pletely controllable (and/or observable) linear
time-invariant system

x(t+l) = A x(t) + B u(t)

y(t) = C x(t) + D u(t) *
where x is the state vector of dimension n, u is
the input m-vector, y the output m~vector and A,
B, C, D are matrices of compatible dimensions.

Definition 1., [The Class L(\)]: Let A be an ar-
The above system is said

gain matrix - 5 A is characterized by a strictly
The re-

A x(t) + B u(t)

x(t+1)

[}

y(t) Cxu)+m—§A>mu

and its transfer matrix is given by

H(z) =D ~ %-A + c(z1-a) "B,

' Consider now the discrete linear time~varying

4system,deséfibéd 5§ '

%(£) = AE) %(t) + B(E) B(E)

y(t) = c(t) X(t) + D(t) u(t)
where the vectors X, y, U and the matrices A,B,C,D
are defined as the analogous quantities as in the
system of definition 1. A e
Definition 2. [The Class N(I')]. Let T'(t) be an
arbitrary sequency of symmetric matrices. The sys-
tem S,'is said to belong to the class N(I) if the
resulting system obtained by its feedback connection
with a gain matrix E-F(t) satisfies the inequality
I T~ 2
I y(t) u(t) >~y
t=tq . °

¥t >t

1 (]

where T(t) is chosen to satisfy A - T(t) > O.

Remark: The above inequality is often called the
Popov inequality and its interpretation is taken as
a passivity condition.

The resulting system is then described as

x(t+1) = A(t) x{t) + B(t) u(t)
y(t) = C x(t) + D(t) u(t) S,
- . 1 .
ae) = 80 - 5 T(e) F&)

and, consequently, the passivity inequality can be
expressed as

t t

1 Y . !
I y() u(t) = T g(t) ult) + 3 T
t=t t=t t=t
[ o : o
- ~
y (t) T(r) y(t)
Note: For the case of single-input single-output

systems, the matrix A becomes a scalar denoted by A
and the matrix sequence I'(t) becomes a scalar se-
quence Y(t).

System S, in the forward path with S, in a
feedback connection with it is the most géneral form
of recursive adaptive algorithms of the type des-
cribed by equations (4.4.12) and (4.4.13). 1In fact,
all the existing recursive adaptive algorithms, with
appropriate interpretations of their state, input
and output variables, can be cast in such an equiva-
lent feedback connection, that furthermore satisfy
conditions for classes L(A) and N(I'). Our purpose
is not to show this here, since it can be found in
the existing literature. We just want to mention
again at this point that the state variables of S
are the generalized error states, while those in S
are the correspondgng parameter errors. In the

present discussion, the input to system S3 is

B0 = y(&) + wit) (4.4.18)

where y is the output of S, and w the measurement
noise. The input to system S1 is

u(t) = -y(t) (4.4,19)

where y(t) is the output of SB"~ o s




» .7 We will now prove that the quantity 2Z(t) to be . 1 T 7 1 1
"defined in the sequel in terms of the states of sys- 2 > {e+1)P x(t+l) - o+ 2 Z 8" (k)M B(x)
tems S, and S, is a near-supermartingale, which in

turn is crucial in the proofs of convergence, i.e.

: t 1 - - -
cbtaining results of the type of equns. (4.4.15), + %— z uT(k) Au(k) + %-xT(t+1)P(t+1)x(t+l)
(4.4.16), (4.4.17) following from this point on k=0
:very similar arguments as in [GOO 79b], without, &
“however, needing to involve positive realness of the 1 1 1
> noise generating dynamics. S - T YF E-kzo 6* (k) M(k)8 (k) - 2-y2 Z Y ()T (k) ¥ (k)
t-1 . t . "
Define zZ(t) = Sk 4 3 L YU 44 00, = I ¥ (RIWGK) . (4.4.24)
t +1 k =0 :
k=1
where V(t) = xT(t) P x(t) + QT(t) P(t) x(t) + . where
| - | (4.4.200)  a = x (0)Px(0), BT(K) = [xT(K), ul (k)]
+ I, uar e 2 . . . .
k=0 ' ak) J ; Y = x (0)Px(0), § (k) = [x (k), u (k)]

‘where P(t) 20, M >0. Using now the definition of V(t) from (4.4.20b) we

i can rewrite the above as
"Proof: If can be shown {[IAN 79]} from.the defini-

tions for the classes L(A) and N(I'), that the ot ’
following two relations hold true for S1 and 53, V(tt+l) - a + kz B (k) M S(k)'*kzou (k) Au(x) - Y +
respectively:
-t - t T t
t +3I 8 NMKISK - X k) Tk =2 Z §
Iy (k) u(k) = %XT(t+l) P x(t+l) - %xT(o) , k=0 k=0 k=0
=0
x + (k)w(k) (4.4.25)
P x(o) +—§— o), uwain XK +2 :
£ k=0 © ulk) In a completely analogous manner as Jdone for eqgn.
P uT(k) A uk) (4.4.21) (4.4.25) we also find
k=0 . : . el el
‘where P > 0; M_>0 vie) ~a+ LBk M B + Lo v
. ) t~1 t-1 T
£t - - - - - - Z - I vk
5 yT(k)u(k) _ %-xT(t+l)P(t+1)x(t+l) Aa(k) « v + 8T (k) M(k) G(k) xEo v (k)
k=0 £e1
vx) =2 L FT 4.2
1T o - 1 £t - o7 _ T'(k) y(k) 2 ko v (k)w(k) (4 6)
-5x (o)P(o)x (o) + 3 L [x7(k),u (k) IM(k)
k=0 : Comparing (4,4.29) and (4.4.26) we get
% (k) 1t p _ ' T T
Tt o3 I vy (kIkyk); . V(t+l) = V(t) + 2y (t)w(t) - B (t) MOB(t)
u(k) k=0

L3

uT(t) Au(t) - 8T(e) M(t) S(t)

1

where P(t) > 0, M(t) > 0.

'Also, from egn. (4,.4.18) and (4.4.19) we obtain + ;T(t) T(t);(t) (4.4.27)
Y (Bu(t) = -g(0)a(t) + yo(t) wit) ~> : and since M_ > 0, M(e) >0
.y £ @ t - t ¢ - ' T ' T
2 I ykulk) =- I y(uk +I 7 (Kwk ~> V(t+l) < V(t) + 29 (B)w(t) = u (£) Au(t)
k=0 k=0 k=0 , . ,
+§(t) (L) yit). (4.4.28)

t
~ 3 vE (k) u(k) + >: 7T (k)T (k) k’i_O;T(k)w(k)

k=0 k=0 But from (4.4.19), u(t) = -y(t) and since A~ F(t)2>0
. (4.4.23) the inequality above becomes
- Adding the LHS and RHS respectively of equs {4,4.21] 7 v(t+l) € VIt) + 2§I(t)w(t) =y (4.4.29)

and [4.4.22] and using (4.4,23) we obtain IR S e




. V(E+D) | V() 2 - =>'§(t)4 ;'
T+ S Toer ToEer Y(®IW(E) €t

£ V() , 2 T
T el T oer ¥ (B)w(E)

R ey V(EHD) 1 vk _ V(t)

2«
. L 2
; T T kL WL kS ol T ter Y(Owel+
o (4. ) o e e
' T 1 vk -
* =1 kHL K >
"5 Z(t+1) <€ Z(t) + —= 7T (t)w(t) (4.4.30)
‘ = t+l * ;
and

1 =T
elzee) | F ) < 20) + 2 g7 B (0w(e) | £

(4.4.31)

In order for Z(t) to satisfy the conditions of the
Martingale theorem in [NEV 75], we need to have

1 _;-T _
oy Ely (Bw(t) IFt} = e(t+l) > 0
‘ .
where {E ¥ (t)w(t)iFt} = £(t+l) (4.4.32)
and
X
Z g(t) < o,
t=1 ’
" Then,
t-1
lim Z(t) = 1imv——é-§l+ 'z ]—c—%""}i——k—)- <o a,s.
o0 oo k=1
(4.4.33)

From this point, the rest of the convergence re-
sults are obtained by using the MCT repeatedly
to obtain inequalities of the form (4.4.15) -
{4.4.17). :

The passivity inequality as implied by eq. 4.4.32]
clearly is unrealistic to assume and very hard to
quarantee in the time-domain. It does, however,
suggest that a frequency domain equivalent may be
possible, given that, usually, the power spectrum of
the .noise can’ be -assumed known. In the frequency
domain, then, it can be interpreted as the “toler-
able energy" that can be injected into the system
due to the presence of noise without -risk of in-
stability for the overall feedback adaptive loop.
One can then define “admissible frequency sectors »
within which (4.4.32) is satisfied, given the noise
characteristics. This, in turn, points to a way of
choosing y - and hence the adaptive laws - such that
(4.4.32) can be satisfied taking into account the
noise characteristics.

AT(t-1) D(€) A(t-1) - B(t-1)

At (t-1) F(t) B(t-1)

An alternative way of looking at the problem is

" . to see what modifications and/or tradeoffs are

possible in the conditions required from the forward
and feedback blocks, i.e., possible redefinitions

of the classes L{/A) and N(I') in the original feed-
back adaptive structure, in order to take into

‘account the random effects introduced by the noise.

For example, the class N(I') implies some weak posi-

jtivity condition for the system S.. This can be
‘expressed as the following set of conditions, in
‘terms of the system matrices A(t), B(t), C(t), D(t):

There exists a sequence of matrices

P(t) > 18 >0, A(t),M(t) such that

-Ae) Ae)T

cT(t-1) - A(R)M(E)

[}

ME(t) M(t) = D(t-1) + D (t-1) ~ BT (t-1)B(t)B(t-1)

The above set of conditions can be thought of as the
time-varying version of the positive real lemma.
Then, by the implicit function theorem applied to
the egns. (4.4.34), the exists a non-empty open

set D_ around any parameter corresponding to a
positive real system such that a (possibly) random
evolution of parameters, due to the presence of
noise, is possible within D_ given some reasonable
assumptions about noise characteristics. Hence
non~-constant random uniformly positive real systems

exist.

The method of proof in (i) and (ii) above expli-
citly makes use of positive reality or a passivity
condition that has to be satisfied within the over-
all adaptive loop. Furthermore, in (i) the addi-
tional assumption of stationarity of the adaptive
signals is necessary for the local convergence ana-
lysis; unfortunately, stationarity does not hold in
a closed loop framework, where the adaptation mecha-
nism is still ongoing. In (iii) following, we
prove that the output and parameter errors of a
representative discrete-~time algorithm remain bounded
in a mean~square sense, when the plant output is
corrupted by a measurement noise sequence, assumed
to be white, Gaussian, of zero mean and arbitrary
constant variance. The proof does not rely on any
more restrictive assumptions other than the
requirement that the noise samples be independent and
uncorrelated at time t with the output(s) of the
preceding stages, up to time t~-1l. This latter part
can be ensured by construction of the algorithm per
se, as will be seen next. The proof in (iii) is
the first available in the existing literature that
an adaptive control algorithm with observation
noise is mean-square stable not only in the output
but in the parameter errors as well, independent of
the choice of a reference input. This confirms the
often expressed belief that the output noise will
in fact provide the “"sufficient excitation" necessary
for parameter error boundedness at least in the
case considered next.

(iii) Mean Square Boundedness of a Discrete-Time
Stochastic Adaptive Algorithm [ROH 81}

The proof in this subsection makes use of the
ideas of Bitmead and Anderson in [BIT 80 a & b] and
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Anderson and Johnson [AND 81] and although it is
given here for a first order plant it is extendable
to the multivariable case as well. The algorithm
analyzed is the discrete-time version of that in
[NAE 80a]l and is contained in [NAR 80b]. We de-
scribe it briefly below.

The plant-model representation is given by two
first order difference equations (4.4.34) and

Actual Plant: y(t+l) = oy(t) + Bu(t+l) (4.4.34)

Reference

Model: ) Y¥(t+l) = ay(t) + br(t+l)

(4.4.35)

where |a| <1, b >0,0 and B are unknown, y and u
are the plant state and control input and y* and r
are the model state and reference input respectively.

- The plant output y(t) is contaminated by obsexrv-
ation noise n(t) and is described by

z(t) (4.4.36)

The plant input u(t) is synthesized recursively
according to equation (4.4.37)

y(t) + n(t)

u(t+l) el(t+l) z(t) + 62(t+1) r(t+l)

2
plyy, 27(0) + (v ,#Y,)) z(B) r(e+d)

2
Yy, T (t+1)} e(t+1)

% [(a—a+¢l(t+1)} z(t) + [b+¢2(t+l)]r(t+l)
-DB[Yll zz(t) (Y 5%, ) 2(t) rit+l) +
+ Y22 rz(t+l)] e(t+l)]

where 91, 62 are the adjustable parameters

¢1, ¢2 are the associated parameter errors

{Yij} constitute a gain matrix I's= rt > o

%-< p <1, and we choose_ p=1) here for
simplicit
Y12™ Y21=°} F Y
The error equation for this system is

*
e(t) =z (t) - y (t)

ae(t-1) + ¢l(t) z(t=-1) + ¢2(t) r(t)‘.
T "1+ Bd(t)

(4.4.38)

where d(t) Yy zz(t-l) +Y, rz(t)

: A A
and ¥y, =Yy 4 Yy =Y, -

The overall error system is now described by the
following set of equations:

- < s . -
T e(t) [ 2 r e(t-1)
¢, (£+1) el ) (e
3 1+Bd (t) A | 7B
b, (£+1) 6 (5
—— t
- 8 4 b -l l(
J e e g ——y b B -
‘Bd(t) :
1 ]
+ 178ty Yy z(t-1) n(t) (4.4.38)
Y2r(t)
where [A] =
[ a Bz (t-1) r(t) T
-Y,az(t=1)  1+Ba(t)-By,z” (t-1) -By,z(t-Dx(t)
SYpar(e)  -By,z(t-Lyz(t) 1484 (£) -, 8% ()
and | the last two equations correspond to the

parameter adjustment and {n(t), t=0,...,® }
is a zero-mean white noise sequence with each
sample having variance 02.

Note that, in this algorithm, the error at time t
is multiplied by the noise corrupted plant output at
time (t~1) for the parameter adjustment laws.

Since the additive noise samples at those two times
are assumed to be uncorrelated, the expected value
of the noise driving term in equation (4.4.38) is

zero. Equations (4.4.38) can alternately be written
as follows:
x(t+l) = A(t)x(t) = B(t)n(t) (4.4.39)

where the correspondence of A(t), B(t), and x(t)
with the elements of eqn. (4.4.38) is self-evident.

The weighted mean square error for a particular
time t can now be written as E[x'(t)Px(t)] where

P=Pl >0
Similarly, at time 2(t+l) the corresponding

error - before taking expected values -~ is expressed

as
x'[2(t+1)Px[2(t+1)] . (4.4.40)

Substitution of eqn. (4.4.39) in expression (4.4.40),

in turn, yields:

X1 (2 (£+1) ) Px (2 (£+1))
= x}(Z)A‘(2t)A'(2t+1)PA(2t+1)A(2t)x(t)t

+ 2x'(2t)A' (2t)A' (2t+1)PA(2t+1)B(2t)n(2t) +
+ 2x(2t)A* (2t)A" (2t+1)PB(2t+1)n(2t+1) +

+ n(2t)B'(2t)A' (2t+1)PA(2t+1)B(2t)n(2t) +
+ 2n(2t) B*(2t)A" (2t+1)PB(2t+1) n(2t+1) +

+ n(2t+1)B' (2t+1)PB(2t+1)n(2t+l) . (4.4.41)




Y
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Subtracting the term x'(2t)A'(2t)PA(2t)x(2t) from
both sides of the above equation and taking
expectations we get

E[x'2(t+l))Px(t+l))] - Elx' (2t)Px'(2t)] =

Elx' (2t) {a' (2t) (A' (2t+1)PA(2t+1) -P)A(2t) +

A’ (2t)PA(2t) -P}x(28) ] +

+

+

2E{x'(2t)A‘(2t)A‘(2t+l)PA(2t+l)B(2t)n(2t)} +
+ E[n(2t)B' (2t)A"* (2t+1)PA(2t+1)B(2t)n(2t)]

+ E[n(2t+1)B' (2t+1)PB(2t+1)n(2t+1)] . (4.4.42)
Straightforward algebraic manipulations for the

"algorithm of egn. (4.4.38) shows in turn, that the
following equality holds for all t.

A'(€)PA(E)-P = ~H(E)H' (£) (4.4.43)
where - »
1/8 0 0
P = 0 '1/yl 0 (4.4.44)
0 0 /v,
and H(t) = 2 -
1253—(1+6d(t)) /B a) JaMa
1
1+Pd (€) 0 -VB z(t-1) Vd(t)Bz(t-1)
0 -/B r(t) /a(t)Br(t)
(4.4.45) J

Finally, substitution of eqn. (4.4.43) in the first
term on the RHS of eqn. (4.4.41) allows it to be
rewritten as

-E[x' (2t) {A' (£)H(2t+1)H' (2t+1)A(2t) +

+ H(2t)H' (2t) }x(2t)] = -E[x' (2t)W(2t)x(2t)]
(4.4.46)
where
w(2t) 4 {AT(2t)H(2t+1)H' (2t+1)A(2t) + H(2t)H'(2t)}
in what follows we prove next that W(2t) > u(2t)P
where u(2t)>0 for all t within two consecutive
time steps. :

“Let W(2t) é L(2t)L'(2t) : (4.4.47)

where L(2t) = [H(2t) A'(2t)H(2t+1)] (4.4.48)

oy

Siien 0 VB
le(2t—l)
o. o A —_
Also, define K(2t) = va(2t)
Y
2r(2t).
e o B N S R
% L ey
i
B
(1K' (2t)H(2t+1)
T(2t) =
[ o T
(4.4.49)
and _
W(2t) = L(2£)T(2t)T* (2t)L(2¢t) (4.4.50)
Then )
w(2t) > 1 W(2t) (4.4.51)

max

A (T(2&)T* (2t)

where A (TT') is the maximum eigenvalue of TT'.

Direct calculation shows that

A nax(T(2E)T*(2t)) < 2max 3, <

I+Y1+Y2

for all t.
1’2

(4.4.52)

Further, it can be straightforwardly shown that

Y. Y

1'2 (Bz(2t)r(2t)

-8z (2t-1)r (2t+1)) 2

w(2t)>

2 (1+8d(21)) (1+pd (2t+1))

P

(4.4.53)

with P given by (4.4.44) since

al 0 0
W(2t) = 0 'b* cf
o P S
where at = 148420 -a® | a’(1+pd(2t+1)-a’)
B (1+pd(2t)) B (1+RA(2t+1))
ot = BEo(2t-1) Bz2 (2t)
1+pd (2t) 1+Bd (2t+1)
b*f_ Bz (2t-1) r (2t) gz (2t) r (2t+1)
N 1+Rd(2t) 1+8d (2t+1)
et = Bz2t-Lir(2e) | Bz(20)r(2t+1)
' 1+Bd(2t) 1+Bd (2t+1)
S gr? (2t) . Br? (2¢+1) o

T 1+Bd(2t)

1+Bd(2t+1)
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Combining eqns.(4.4.51),(4.4.52) and

(4.4.53)
yields that - R
W(2t) > u(2t)p - (4.4.54)

where u(2t) =

_NiYa, (Bz(2t) r (2t) -Bz (2t=1) r (2t:+1) ) 2
. L+, +Y, 1+Bd(2t))(1+Bd(2t+1))
2 max 3 . e

(4.4.55)
We note that y > 0 unless

{y(2t)+n(2t)}r(2t)=’{y(zt-i)+n(2t—1)}r(2t+l)
{4.,4.56)

an event which occurs with zero probability. Also

CE[x'26)W(26)x(2t) IPE[U(2t)x* (20)Px(26)]  (4.4.57)
> E(u(2) IE[x* (2t) Px(2t) ] ;
‘and clearly E[u(2t)] > O (4.4.58)

Substitution of eqns. (4.4.46), (4.4.57) in eqn.
(4.4.41) results in the following inequality:

E[x' (2(t+1)Px(2(t+1)) 1<(1-E[u@L)DE[x"2t(Px(2¢)] +
C+2Ex' (2t)A' (2t)A' (2t+1)PA(2t+1)B(2t)n(2t)] +
+ E[x'(2t)A' (2£)A' (2t+1)PA(2t+1)B(2t)n(2t)] +

+ E[n'2t+1)B' (2t+1)PB(2t+1)n(2t+1) ] 54.4.59)

Next, using eqn. (4.4.43) we prove below that the -
- second term on the RHS of ineq. (4.4.59) is less
than or equal to zero, independently of the fact
that A(2t+1l) depends on n(2t).

Let D = E[x"'(2t)A'(2t)A* (2t+1)PA(2t+1)B(2t)n(2t)]

f_E[x'(2t)A(2t)PB(2t)n(2t)]

= Elx' (2t)A(2t)PB(2t) JE[n(2t)] = 0
. (4.4.60)

Similarly, for the third term on the RHS of the
same inequality, (4.4.60), it can be shown that

E[n(2t)B' (2t)A* (2t+1)PB(2t+1)B(2t)n(2t)]
< E{n'(2t)B' (2t)PN(2t)n(2t)] {4.4.61)

" and substituting the values for B and P from egns.
(4.4.38) and (4.4.44) we further get

_eqn.

E(n’ (2t)B' (2t)PB(2t)n(2t)] =

de(zt)+ylz2(2t«1)+y2r2(2t) 5 :
- E > Eln®(2t)] =
L {1+B4a(2t) }
= B da(2t) (1de(22t))-iE[n2(2t)] i%_
L {1+Ba(2t) }
: (4.4.61)

In an exactly analogous manner it can be shown
that
2

E[n' (2t+1)B' (2t+1)PB(2t+1)n(2t+1)] 5’3

(4.4.62)

Combining equations (4.4.60),
(4.4.59) becomes:

(4.4.61),(4.4.62)

E[x'(2(t+1))Pg(Z(t+l))]f}l-E[U(Zt)])E[x'(2t)Px(2t)]+

202

+ 24 (4.4.63)

where D<0 from egn. (4.4.60).

Equation (4.4.63) states that indeed the system
(4.4.38) is mean square stable in both output
and parameter errors. Moreover, the steady
state mean square error is bounded above by

202
lim E[x'(2t)Px(2t)]§_ 5 (4.4.64)
oo 3

lim

o inf E[u(2t)]

(4.4.55).

Although the last proof seems to be more
generally valid than the two preceding it, it
does not solve the problem for all existing
stochastic adaptive algorithms than may have a
different structure in their information pattern.
We simply refer the reader to [ROH 81], section 6,
for a case in point. The continuous-time
stochastic adaptive control convergence problem
is considerably more complicated and the most
rigorous results were obtained by Ljung in
[LJU 77 a b] and surveyed in (i) of this section.

where u(2t) is as defined in eqn.

Our research in the last year, however, has
shown that performance rather than stability has
emerged as a more important issue, particularly
during the transient adaptation phase, at least
under the assumption of exact modeling of the
process. Digital simulation studies of various
adaptive control algorithms have uncovered some
very undesirable characteristics exhibited by
these algorithms, with instability occurring
only in the presence of unmodelled dynamics.

It has been our experience so far, that observation
noise has not caused the adaptive loop to become
unstable, but has contributed to degradation in
the performance of the overall system. We

discuss our findings in section 4.4.3. 1In the
second part of the same section, we also provide




. undesirable properties of adaptive algorithms.

an analytical verification of the oObserved

' 4.4.3 Performance of Adaptive Algorithms

< %
&

" a. Control with Process as Described Above

(i) Experimental Results

An intesive study of characteristics of exist-

. _ing direct adaptive control algorithms was

conducted. The initial emphasis was to understand

. the transient behavior of such algorithms as well
" as their robustness to unmodeled dynamics and

- pbservation noise. Although the simulation results
" showed that no consistent pattern could be pre=-

' dicted, they nonetheless confirmed our suspicion

- that the majority of adaptive algorithms are

characterized by

(1) high-frequency control signals character-
istic of a high-bandwidth system

(2) the extreme sensitivity of the algorithms
to unmodeled high-frequency dynamics
which can result in unstable closed-
loop behavior

{3) 1lack of robustness to observation noise;
i.e.the presence of even a small amount
of observation noise caused the closed
loop system not to converge to the
model but to slowly drift away to an
increasingly higher bandwidth system.

We present below some specific results obtained
for a second order syctem that address the above

- points. The results are typical of the behavior

of most (if not all) adaptive algorithms whether
discrete or continuous time and have been oebserved
even for first order systems quite dramatically.

. The analysis in subsection (ii) will in fact

concentrate on first order systems alone.
Ex le.

In what follows, convergence patterns for a
plant whose transfer function contained an un-
stable pole are described. The plant transfer
function was taken to be W (s) = s + .5 -

P (s+1.5) (s-1)
and the reference model was chosen as
Wm(s) = 5(s+l1.5) . The adaptive algorithm
(s+1) (s+2)
in [NAR 78] was employed to control the plant.

- The reference input was square waves of amplitude

5 and 8 units at frequencies w=.5 and 1.5 rad/sec.
"Snapshot" plots were taken of the closed loop

. poles of the controlled process with the following

assumptions made; (1) if "snapshot" poles move
slowly between consecutive snapshots, these poles
should indicate approximate response to inputs

. at that time; (2) if poles move considerably

between snapshots, they are then meaningless.
The frequency content of the control input was
also analyzed by the use of Fast Fourier
Transforms (FFT).

Two phases were exhibited during adaptation. In

" phase I the high frequency shape was maintained and

the root locus at different "“snapshots" follows

successively the patterns depicted in Fig.4.4.1
It is interesting to note here that the distance
between poles A and B remained constant at the
different time instants.when "snapshots" were taken.
In phase II the poles move as if one were adjusting
the loop gain and the pattern is shown in Fig.4.4.
The control input in the first 2.6 sécs. contained
‘a frequency of 12 rad/sec at the 10 db down point
(of the nominal system) and 50 rad/sec at the 20 db
point. Its log magnitude plot exhibited a large
hump between 65-100 rad/sec. At w = 120 rad/sec
the magnitude went down to the 10 db point, while
at 270 rad/sec it was reduced to the 20 db point.

B - - BUE

Unmodeled Pole
: In this experiment, an unmodeled pole was
- "added" to the plant so that the actual transfer
function was Wp(s) = s + .5 50
: (s+1.5) (s-1) s+50 °
The adaptive system was found to swing between
two vonfigurations in the initial stages, and up
to t=7 secs, as shown in Fig. 4.4.3,

i Up to 7 secs the system parameters change smoothly
and e, < 1 (unit). After t = 7 secs the controller
fails™ completely in its objective and the overall
system becomes unstable with large unbounded
amplitudes in the adaptive signals up to 100 rad/sec
frequency range. The same results were obtained

- when the unmodeled pole was placed at 150 rad/sec

.~ below the 10 db down point of the nominal system.

v In the log magnitude plot of the control input
the peak was up by 6 db at 62 rad/sec and was 10 db
down at 252 rad/sec. ’

Observation Noise

.=

The same system, without the unmodeled dynamics,
was now controlled with observation noise n(t)
bresent at the output. The noise used was white
with variance equal to 1 unit, and with
|n(t)i/r(t) ~ 1/10. The evolution of the controlled
sSystem is shown successively in the diagrams shown
in Fig. 4.4.4.

h From the above, it is evident that as adaptation
Progresses, the system bandwidth is increased. It
is interesting to observe in this experiment that

. the adaptive controller in the presence of observ-

. ation noise performs much better- at least
maintains stability of the process - than in the
case where unmodeled dynamics are present.

{ii)Analytical Verification of the Undesirable
Properties '

In this subsection the undesirable character-
istics discussed in the foregoing are demonstrated
. analytically and some insight as to what causes
- them is attained. The basic problem is that large
.reference inputs force the adaptive system tc try
to react too quickly. This results in a large
" bandwidth system and consequently in the excitation
of unmodelqd dynamics, which brings about instabi-
lity. The additional effect of observation noise

on the increase of bandwidth intensifies the problem
further.

The analysis technique employs linearization of
- the nonlinear time-varying equations that describe
the closed-loop system; this analysis technique
is refered to as "final approach analysis" because
the linearization is valid when the system and




P

" - . e - o " . i * .
reference riodel outputs are close to each other, a '~ . | e(t) = y(t) -y (t) = -

.

fact that occurs during the final phases of
adaptation. In the final approach analysis it is
assumed that the parameters of the controlled plant . ae(t-1) + ¢(t)y(t-1) + ¢2(t)r(t)

are very close to those parameters which would make 1+ pBd(t)

the closed loop characteristics of the process the (4.4.67)
same as those of the reference model. Such a :

situation could develop when the asymptotically ‘where ace) = Y11y (e=1) + (Y12+Y21)y(t Dx(e)+
stable adaptive controller has already been : f 2
operating for a long period of time with sufficient- i + Yazr () (4.4.68)
ly rich inputs and therefore is close to final . i .
convergence. It could also arise when the plant '
parameters are fairly well known under reasonable
a priori knowledge of the plant parameter values
and the adaptation is just employed as a fine-
tuning mechanism. Surely, if an algorithm behaves

We further assume that r(t) r = a constant, so
that at the final stage, y* y*(t-1l) and

d(t) = d*, as defined by eqn. (4.4.68) with y*
replacing y.

poorly under these mild conditions, it certainly ) Then, the overall system error equations
cannot be expected to be useful as a practlcal L can be represented 1n state-space form as
control design. 7 follows: B -
Existing adaptive algorithms, under this ' [ e(t) R T —é(t-lf
analy515, are found to suffer (more or less) from v 1 !
- the same basic problem. they lead to high~gain . ¢, (t+l) ! : ¢l(t)
designs with large bandwidth. In what follows, . SRS S it o2 a3 5 (4.4.69)
.we examine the characteristics of the discrete-time - 8 N : a0
algorithm, discussed in 4.4.2(iii), under the B ¢2(t+l) ' ! ¢2(t)
light of the final approach analysis; no observation - B ! ! 8
noise is assumed present. The method of analysis ] L_ : o L t i N J

applies equivalently to continuous-time systems
also; for a more detailed study of various adaptive
algorithms using this approach, the reader is
referred to [ROH 81]. R _ ) 1 1
Proper Modeling R as = ——— Yllay* - lear

B 1+pRd (4.4.70%)

. 1 3 .
where the column vectors a ,a ,a 3xe given by:

a

The discrete-time system and model are exactly B ‘
as described by eqgns (4.4.34) and (4.4.35). The ) -_Y21ay* 'Yzzar J
control input u(t) is generated in an exactly : s
analogous manner as in egn. (4.4.37), the only |

difference being that the output y(t) is not'noise- [~ By* -
corrupted, i.e. a2 - 1 2
: * - L . *
; 1+pBd L+pBa* + (-yy,By* - ¥, ,8y*r)
u(t+l) = 61(t+l)y(t) + 0, (e+1)x (t+1) - _ 2
-’ * - *
) ! YZIBY Y223Y r
2 .
- t t+1) +
plyy YO (E) + (Y 47, )y (B)r(e+l) (4.4.705)
4. - -
2 - Br
.4.65
+ Y,,F (t+1) }e (£+1) (4 ) 3 1 5
&= * RLAPIS A R PPL
with all quantities defined as before. . 1+pRd
The adaptive laws, similarly, are given by: Ll+de* N (‘Yley*r _ Y228r2)
¢, (t+1) ¢, (t) . ’ -
1 1 - - (4.4.70c)
B = B Ylly(t Le(t) E |
' The above system has the characteristic equation:
5 - 4.4.66a)
: ler(t) e(t) . ( a)

(z-1) [(z-1) (z-a) + Ba*p(z(z+ 9530)1 =0

B (e+l) 6, (E) '
2 2— -y, yie-Delt) - (4.4.71)

#

B B
) There is a marginally stable pole frozen at z = 1
- e 4.4.66b) associated with the eigenvector
Y,, () &) ( !
\ 3 ‘ (: -ty M .
‘The resulting error equation for this system is : e(t-1) = 0; ¢2(t) - rz ¢1(t) (4.4.72)

then: T

Two other poles appear in a d* - root locus as
shown 1n flgure 4.-.5. One pole starts at z=a




" and the ‘other at z=1 and, with increasing d*,
move towards the zeros at z=0 and z= l-p
‘ P

The latter.zero is, however, under the designer's
~control, by use of the parameter p.

: If the additional error feedback terms were
" not present in egn. (4.4.65), i.e. if p= 0,

the zero at z 1-p would be missing. As a result,

< :

‘one of the poles would move along the negative real
- axis towards infinity causing a chatter type

. instability, characteristic of discrete-time-

. systems. Incidentally, this additional term is
- customarily not present in many adaptive algorithms
[NAR 781, [FEU 78], etc.

- Analysis with an Unmodeled Pole

i In order to investigate the effects of un-

' modeled dynamics, the actual plant is augmented

' to have two poles, located at -0, and -0

" respectively. It is also assumeé that there exists
" a second order model with poles at —al, —a2 as
egns. (4.4.73) show:

. Actual Plant: y(t+2) - (a1+a2)y(t+l) +

+ alazy(t = Bu(t+2)

Reference Model: y*(t+2) - (al+a2)y*(t+l) +

% =
+a,ay (t) b2r(t+2)

1
(4,4.73)-

In addition, the following conditions are reguired
. for the analysis:

(i) The reference model is stable.

. (i1) a;*a, = o, ta,
' b
(iii) 2
—_—t = = of eqn.(4.4.35)
1-—(a1+a2)+ala2 l1-a

Conditions (i) and (iii) allow the substitution
of egqn. (4.4.35) with eqn. (4.4.73b) with no
change in (steady-state) respofise for constant

. reference inputs. Condition (ii) is necessary for
the analysis and is somewhat restrictive in the ,
plants and models that can be studied comparatively
particularly more so in the discrete-time case. ’
We also note that although the ensuing analysis
is carried out for constant reference input, it
is actually valid over the range of reference
input frequencies where (4.4.73b) matches (4.4.35).

The control input is chosen exactly as in
(4.4.65), as if the plant were first order, and
- the adaptive laws are described by eqns. (4.4.66).
- The output error equations then become:

. -(al+a2)e(t—l) = ajaje(t-2) + ¢, (t)y(t-1) .
reft) = 1+p Bd(t) .
¢, (£)x(t)
. 2

I:EEETET——u_ .(4.4.74)

C— . . .. - .
The final approach analysis yields the following
characteristic equation:

(2-1) [(2-1) (z°~(a  +a )z + aja,) + Ba*(z(z+p=1))1=0
B
(4.4.75).

The d* - root locus in the figure 4.4.6 shows
that the error system will become. unstable for
large reference inputs.

In some cases it is possible to choose the
adaptive gains in such a way, so as to artificially
slow down the adaptive process when the reference
,inputs are large, resulting in a smaller band-
width system and improved final approach behavior.

; In order to achieve this the adaptive gains
qmust be (nonlinear) functions of the reference
input (and the adaptive signals). However, global
‘asymptotic stability has only been proven for the
.case of constant adaptive gains or certain
restricted types of time-varying gains. Thus, the
rapproach that follows is only theoretically valid
for the case of constant reference inputs. However,
-its’ validity is not limited to the final approach
domain but extends to the entire duration of the
adaptation process.

To improve the final approach characteristics,

the constant gain matrix Fol {Yij} is

4
replaced by the following matrix

1

Y+r2+y*2

Zold

.

T
—new
Then, d* becomes

T
* = * *
d Y _‘IF new ¥

r

with the condition

. 2 + 2

* X
B S e pll
' Y+ y*“ + ¢

crmax old

) <o (T

max  old)”

where G
ma;

: >

Pold and Y > 0.

x(rold) is the‘max1mum eigenvalue of

Both O (T
na

% old) gnd Y are under

designer's control.

h . .
Thus, given an upper bound on B, Gmax(rold)

can be chosen to limit how far along the d*-root

" locus the corresponding system roots can travel.

. direct control of the designer.

Consequently, the maximum frequency of parameter
error variation in the final approach is under the
Also, with an

‘upper bound on &*, the adaptive system is able to

handle any number of high frequency unmodeled poles

.while retaining final approach stability.

. Observation Noise

We have discussed extensively in’(iii) of the
preceding subsection as well as in (i) of this
subsection the case of observation noise in an
otherwise properly modeled system. In (iii) of
4.4.2 we in fact gave a proof for the mean-square
boundedness of output and parameter errors of the




particular discrete-time algorithm studied there.
. We will not, therefore, go into any further detailed
discussion here, since the final approach analysis
corroborates what has already been stated in the
‘above mentioned subsections. The reader is referred
to [ROH 81] for more details, if desired. We
would only like to direct the reader's attention
once again to the importance of the linear noise
forcing term in eqn. 4.4.38 of subsection 4.4.2,
which effectively accounts for the increase in
bandwidth of the overall adaptive system.

4.4.4 Conclusions and Directions for Further
) Research

We have examined in the preceding convergence
- 'issues in stochastic adaptive control algorithm.
Special emphasis was placed on the performance of
such algorithms which seems to be of crucial
importance, particularly in the transient phases
of adaptation and in cases where the proper modeling
assumption in not valid, as is usually the case in
any engineering application. Instability has
quite often resulted under such circumstances,
within the framework of an algorithm which was
designed at the outset to be (globally) stable.

A new method, called final approach analysis
was introduced to analyze the dynamic properties
of adaptive control algorithms with special emphasis
on their robustness to

(a) .generation of high frequencies in the plant
control signal,
(b) excessive bandwidth of the adaptive control
loop resulting in excitation of unmodeled
dynamics and, consequently, leading to
dynamic instability of the closed-loop
adaptive system, ’

(c)

An adaptive control algorithm must have reasonable
tolerance to such modeling error and stochastic
uncertainties before it can be used routinely in
practical applications. However, the final approach
analysis has shown that, currently, such algorithms
‘have unacceptable dynamic characteristics.

noise corrupted measurements.

The final approach analysis is useful becausé it
can be used in a constructive way to adjust the
adaptivegains so as to limit tke closed-loop
system bandwidth and to ameliorate some of the
undesirable characteristics of existing adaptive
algorithms. However, though necessary, the
final approach analysis is by no means sufficient
in the analysis and design of adaptive systems.

The technique is limited to the cases in which the
output error is small and does not change rapidly,
. so that dynamic linearization of the complex non-
" linear (differential or) difference equations
" that describe the adaptation process makes sense.
By itself, it cannot predict what happens in the
truly transient phase; the gimulation results
presented in 4.4.3(i)suggest that even more complex
~and undesirable effects are present.

It is our opinion that a great deal of addi-
" tional basic research is needed in the area of
" adaptive control. Future theoretical investigation
must, however, take drastically new directions than
" those reported in the recent literature. The

R

existence of unmodeled dynamics and stochastic
effects must be an integral part of the theoretical
problem formulation. In addition, future adaptive
algorithms must be able to deal with problems in
which partial knowledge of the system dynamics

is available so that at the very least the inten-
tional augmentation of the controlled plant
dynamics with roll-off and noise rejection transfer
functions can be handled without confusing the
adaptation process. Such augmentation of the
plant dynamics (loop-shaping in the frequency
domain) is necessary even in non-adaptive modern
control systems [DOY 81] for good performance and
stability; clearly, the same technigues must be
used in adaptive systems. The adaptive algorithms
currently available cannot handle the additional
dynamics because the existence of the latter
violates the theoretical assumptions necessary to
assure (global) stability and stochastic converg-
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5. The Thermodynamic Properties of Markov Processes
;5.1 Introduction .

' Classical thermodynamics developed as a de-
scription of systems in equilibrium. Through
Onsager's reciprocity relations, the treatment was
extended to nonequilibrium conditions where per-
turbations about equilibrium preserved a form of
linearity. The theory had a strong phy51cal and a

* ‘weak mathematical basis. -

Attempts have been made to further extend the
theory to describe systems far from equilibrium and
reconstruct it on a firm mathematical foundation.
The need exists for a general axiomatic development
“incorporating only those features of macroscopic
processes which yield both their equilibrium and
nonequilibrium thermodynamic properties. In this
chapter we show that, using stochastic system
‘theory, such an axiomatic development is possible.
.Our approach rests upon the physically reasonable

-assumption that for the purposes of a thermodynamic

"description of a system, the system can be viewed as
an ensemble of particles, each representable by a

. stochastic differential equation describing the

‘evolution of a Markov process.

In Section 5.2, we present an overview of the
principles of thermodynamics, in the context of
nonequilibrium thermodynamics, or the thermodynamics
of irreversible processes. These ideas ~- a
characterization of a thermodynamic system, the first
and second laws, a definition of the equilibrium
state and equivalent conditions, a decomposition of
the flows of work and the entropy production into
inner products of forces and fluxes, and Onsager's
reciprocity relations -~ are captured by the theory
‘outlined in Sections 5.3 through 5.5.

Two examples developed in the literature serve
to illustrate the generality of our approach. As
done by Brockett and Willems [BRO 72], in Section
5.3.1 we analyze the equations of motion for a

~system constructed from a Nyquist-Johnson resistor

and a linear capacitor of time-varying capacitance.

Particularly in developing a model of muscle
contraction assuming the cross-bridge theory, our
formalism is invaluable. Hill [HIL 74, HIL 771,
using statistical mechanical theory, has outlined
a formalism which relates the rate constants and
free energy changes determined biochemically to
the mechanical and thermal properties of contracting
muscle. As we show in a Section 5.3.2 our approach
yields the same results. Furthermore, without
radditional work, we have proven reciprocity of the
model near equilibrium. :

In Section 5.4 we present an outline of the
results which applies to both continuous-state
-Markov processes (Markov diffusion processes) and
.discrete-state Markov processes (Markov chains).

In Section 5.5 we develop an axiomatic ‘frame-
work for thermodynamics assuming a Markov chain
‘description of a thermodynamic system. As shown in
.the previous section, the results can be generalized
-to broader classes of Markov processes, but the
.proofs are most easily followed in the context of
:Markov chain theory.

Directions for further research are brlefly
-discussed in Section 5.6.

‘

5.2 Thermodynamics : T ; .

In this section, we present an overview of the
principles of thermodynamics, in the context of

et

nonequlllbrlum thermodynamlcs, or the thermodynamlcs
of irreversible processes. The concepts presented
in this section can be found in Callen [CAL 601,
Katchalsky and Curran [KAT 651, Lavenda [LAV 78], or
Nicolis and Prigogine [NIC 77].

5.2.1 A Characterization of a Thermodynamic System

T A system is that subset of the universe we iso-
late from its surroundings for thermodynamic study.
An isolated system can exchange neither energy nor
matter with its surroundings; a closed system can
exchange energy but not matter with its surroundings;
an open system can exchange both energy and matter
with its surroundings. A system is described by a
set of internal and external parameters. The state
of the system can be specified by a set of values
for these parameters.

5.2.2 The First and Second Laws

With a change in state of a system, the change
in a state function depends only on the initial and
final states, while a path function depends on the
path through which the change in state is effected.
Thus, the differential of a state function is exact
and the differential of a path function is inexact.
The differential of a state function X can be de-
composed (formally) into the sum of the differentials
of two path functions, as

& =4ax+4,x,
e i
where d X represents changes in X due to the flow
of X befween the system and its surroundings, and
dix represents the production of X in the system.
Using the terminology of Willems' work on
dissipative systems [WIL 72], we say a thermodynamic
system with storage function X is dissipative with
d X

respect to the supply rate and lossless with

respect to the sum of the supply rate and the dis-

] -4.X
sipation rate TEE" The corresponding mathematical
statements are:
d X d.xX d X d.Xx
ax e i e ., i
P M. < L el
dt  dt dt — gt @& 20 62D

The first law of thermodynamics postulates the
existence of a state function E called the internal
energy such that

a _ %"
dt dt
- (5.2.2)
diE =0 ,
dt

i.e., the internal energy of a system is conserved.
In a closed system, the flow of energy between the
system and its surroundings is equal to the dif-
ference of the heat flow fg and the work flow

. , dt
d%l as o s . R -
dE dg dw
dc ~ at _at (5'2‘3_)
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.By convention, a flow from the system to the sur-
roundings is positive for work and negative for heat.
In an open system, the heat and work terms include
contributions due to the flow of matter between the
system and its surroundings.

The second law of thermodynamics postulates the
existence of a state function S called the entropy,
such that :

as _ 48 +dis ~ 4
at at dt = at
g |
— D
=20 . (5.2.4)

-i.e., the entropy produced inside a system is non-
.decreasing as a function of time. A temperature T

‘can be assigned to a system. Then,
das
e 1
at =7 at (5.2.5?

' For an isothermal change of state, at a con-
. stant temperature T,

da d d .
3t E-T ac S = at (E-Ts) .

The (Helmholtz) free energy F is defined as
F=E-TS . (5.2.6)

We define heat flow, work flow, dissipation (entropy
production) rate, internal energy, and free energy as

ool f :
T 4t
1 dw
VeT oa
diS
D= T (5.2.7)
1
U= T E
1
G—'_I'-F

and henceforth assume that the temperature T is in-
dependent of time. We summarize our discussion of
‘the first and second laws of thermodynamics by:

d

: @Fuv=2-w

; - S Q+D>0Q (5.5.8)
at = ‘ |
d
r— =-_<-
TG =W -D<-W.

‘The heat flow Q and work flow W are observable only
through effects produced in the surroundings; the
internal entropy production D is not observable
‘through effects produced in the surroundings.

=6 ana Eso.

= ac T

In

an isolated system W= Q In

mechanism.

a system with W = 0, gg‘i 0. In steady state, all
state functions are ingependent of time, so in a
system where either W = 0 or Q = 0, D = 0 in steady

state.

5.2.3 The Equilibrium State

A steady state can be maintained by a cyclic
For example, in a cyclic reaction

Y
a steady state could be maintained by
uf X

z Y

where a steady flow exists around a cycle. When
detailed balance holds, there is "on the average, ...
‘the same frequency of transition from the condition
[X] to [Y] as from the condition [Y] to [X]. ... the
transitions from [X] to [Y] do not have to be thought
as balanced with thée help of some indirect route such
as [Y] to [z] to [X]," as expressed by Tolman [TOL 38]
When microscopic reversibility holds, as formulated
by Tolman [TOL 38], "any molecular process and the
rcverse of that process will be taking place on

the average at the same rate," i.e., on the average,
a microscopic process is invariant under time-
reversal. Equilibrium is defined as that steady
state for which detailed balance ‘holds, and is
equivalent to that steady state for which micro-
scopic reversibility holds. 1In a reaction system,
there are no oscillations in the approach to
equilibrium.

The equivalence of detailed balance, microscopic
reversibility, and equilibrium are quantum princi-
ples. Thermodynamics assumes D = 0 in a steady
state if and only if the steady state is an equili=~
brium state. An equilibrium state is completely
determined by the external parameters of the system.
There is an equilibrium state in which a system is
at a uniform composition.

5.2.4 Forces and Fluxes

Nonequilibrium thermodynamics gives a structure
for the work flow W and the entropy production D,
which is nonzero for nonequilibrium states. The
work flow W can be written as the inner product of
a vector of fluxes_z and a vector of forces F,
usually as -

= < >
W § I,F, I, P
For example, the flow of electrical work is the
product of current and voltage. The entropy
production D can bg written as the inner product of
a vector of fluxes J and a vector of forces X,

D=5 JX, =<J, X>. A steady state

is an
equiiib%ium state if and only if all forces and
fluxes vanish identically. Close to equilibrium,

a linear relation is assumed between the forces




i . The relationsL,, = L

and fluxes, as
I=LE

Onsager showed that the matrix L is symmetric for
processes sufficiently closed to equilibrium (in the
linear range) as a consequence of the principles

of . detailed balance and microscopic reversibility.

.. are known as Onsager's re-
ciprocity rela%ions.jl
. There have been attempts to describe the evolu-
‘tion of a system toward steady state, far from the
equilibrium state. For a system in which the
"entropy flow is only at the physical boundary of the
system, Nicolis and Prigogine [NIC 77] define a
quantity P as the rate of entropy production. For
.2zexro fluxes or time-independent concentrations at

i the boundary, d P is decomposed as

dt
d p - -4 4
»dtP'EJdtx +ZxdtJ
de dJP .
=5 + 3t . (5.2.9)

For a system far from equilibrium (in the nonlinear
4 p
range)—gz- is nonpositive, with equality if and only

if the system is in steady state, in what has been
called the universal evolution criterion. Note that
d P is an inexact differential.

) The thermodynamic concepts presented here are
based upon a weak mathematical foundation. We shall
show that, by assuming a thermodynamic system
evolves as a Markov process, these ideas can be
interpreted in terms of mathematical properties of
Markov processes.

5.3 Examples

5.3.1 The Example of Brockett and Willems

A Nyquist-Johnson resistor connected to a
capacitor is a simple example of a thermodynamic
system. Brockett and Willems [BRO 79] have ob-
tained some intuitively~appealing results by
analyzing the model. Our analysis shall serve as
an introduction to a general treatment of the

thermodynamic properties of Matkov processes.
' Consider a Nyquist-Johnson resistor at tempera-
" ture T and of conductance g connected to a linear
‘ capacitor of capacitance ¢. Allow the temperature
T and capacitance ¢ to be functions of the time
-t € [t,, ®). The equation of motion for the
;capac1eor charge g is the It6 equation

dq(t) = ;‘{—t—)—' att) +AT(g aw(t)

‘ where k is Boltzmann's constant and W(t) is Brownian
. motion. Assume the capacitance ¢ is determined by
. a control u

de ()

“at = u(t)._

' Then the state equations for the network are

- dq = --%% q dat +1J3§;;‘ dw

o (5.3.1)
dc = udt .
Our thermodynamic system is a collection of

independent copies of the process {g(t), t € {to w)}

Let p(t,q) be the density function of g.

Assumeq(ty) = O w.p.1l. As the density p(t,q)

can then be wriften as the Gaussian density -

p(t.q) ="n L
:"Zﬂ L(t)

either the variance I(t) or the density function
p(t,q) can be taken as the state of the system
at time t.

e 2L(t) ,

Definition 5.3.1. The fluxes of the system are

‘that I(t+T)

Definition 5.3.3.

as
‘and by (5.3.3) 3T = O.

. - _ dp(t,q)
je.g) = o (t) q p(t,q) kr(t)g 3q

: (5.3.2)
u(t) =§E.£E_)_ . .

dt

Note that Kolmogorov's forward equation can then
be written as

op 33

3t~ 3q

Definition 5.3.2. A periodic trajectory of period
T is a solution Z(.) of

<_i_>3_(t_)____a_
Ty 2 o) T(t) + 2k T(t)g ,

(5.3.3)
where c(t) = c(t+T)and T(t) =T(t+T), with the property
= L(t) for some T<®, |

An equilibrium state is a state
of zero flux. Let p (t,q) denote the equilibrium
state of the system with time-independent parameters

c=c(t) and T = T(t). ]
If the fluxes j = 0 and u = 0 then
9 q
3¥q Inp = - &3¢

by manipulation of (5.3.2) and the capacitance c
is constant. Thus

T = kTc

So an equilibrium state

pe(t,q) is the unique invariant solution of
Kolmogorov's forward equation with the parameters
fixed for all times s>t.

Definition 5.3.4. Let the external parameter F

be defined as
F(t,q)

' For an equilibrium state p°

- g9
kT (t)c(t)




4 H

'

" Thus in equilibrium, the state of the system can be

written solely in terms of the external parameter F.

- b

Definition 5.3.5.

Let the internal force X be defined as

1 j(t,9)

X(t = .
m( D *Wwmae P " @ -
:The internal force X = 0 iff the flux j = 0. ;
‘Lemma 5.3.6. f
‘ 5 \ ;

- 5; np=X+F i
Proof: Follows by calculation. ," ;
Definition 5.3.7. Lét the entropy-snbe defined as .

s(t) = ’ziun 2T + In I(t) +1) . ©A

‘Definition 5.3.8. Let the heat flow Q be defined
‘as

Q) =KT(t) <j,F> =kT(t) [ j(t,@F(t,qdg

and the entropy production D as

_ds(t) _ Q(t)
D(r) =5 T(t) =
By calculation, Q = %g-(T - f% .

Proposition 5.3.9. The entropy production

D = k <j,%> > 0,

with equality iff the system is at equilibrium.

‘Proof:

as
at

3o

a . .
—é—t-kfplnpdq—k<J,F>.

. op e
= -k <& > -k <§,F>
k 3¢ iIn p j,F
= k< -2, 1np>-key,
Bql [
—-k<J,--é—- Inp - F>
=k < j, X>
L 42
: = < >
o k< 5729,
with equality iff equilibrium. [N

We thus have the "second law of thermodynamics,;"

& o
dt - T
Definition 5.3.10.

1 _I(t)
2 c(t)

The energy E is defined as

E(t) =

l Proposition 5.3.12.

Definition 5.3.11. The work flow W is defined as

W(E) =3 ul) -2—21'91 . s

¢ (t)

The thermodynamic functions E,

- Q,and W satisfy the "first law of thermodynamics,”

dE
dt"Q-’f%W'
.Proof: :
13_2.
= < —_— >
E P, 3 o .
i So :
& 1L, LD
a ot’' 2 ¢ Pr 73 2

Definition 5.3.13. For a system at constant tempera-
ture T, the free energy G is defined as

For a system at a constant

G=E~TS .

Proposition 5.3.14.

" temperature 4G < -W, with equality iff the system is

dat
at equilibrium.

Proof:
46 _&E .88
dt dt dt

[}

Q-W-1T0 -9
=-W - ID < -W ]

Proposition 5.3.15.
of period T

For any periodic trajectory

T
f () e <o .
T —
0
Proof:
T &
Jat< | ¥ac -0 . )
o TS ) a

Proposition 5.3.16. For any periodic trajectory for
which the temperature is constant

0

T
[ wat
0




" Proof:

- I (k) =kT(t) c(t).

T - e
(T 46 :

Jwae<-["Zat=0 . g

> 5

-The above propositions capture the classical themmo-
dynamic ideas governing the behaviour of heat en- :-
gines. 1If we define the notation f+ to mean the
positive part of a function f, i.e., f¥(t) =

max{£(t), 0}, then Proposition 5.3.15 implies

T <+ T +
0> f—%—dt+of 282 a

TLet T =sup {T(t)} and T ., =inf {T(t)}.
: 0<t<T 0<t<t
Then
1 T+ 1 T '
0 > = I Q'at + : + ‘
27 T . j @ - ohHat
: ) max 0 min o /
‘and |
' +
(0-Q )dt T .
of < - —min_
T max
f otat

0
But, using Proposition 5.3.12,

| wat .

So

I wdt T .
0 < max min

T - T
f Q+dt max
0

which is the classical bound on the efficiency of a
heat engine.

Define an equilibrium trajectory Xe(e) as
Under suitabhle smoothness
assumptions, the function *

>

) £ un krGed)

0

kT* (t) c*(t)

is a solution of

-as(e) =-2—2— 1 (t) + 2kT*(t)g
Tat e -
where c*(t) 2 lim c(%) and T* () 2 1im T(i;'-) [WIL 79].
€0 0

For a system at a constant temperature T the
work extracted from an equilibrium trajectory

where

]

v

e
L -Yic—- —;—'-k'r(ln‘Z'(r + 1n I® +'1)

= -%kr(ln 21 + 1n 5% .

{ But

kT < p, -ln p°>
=%kT:(ln 27r+1nch+—k—§—c—)

=E+%k’1‘(ln 27+ 1n 59 .

=E -G% .
So
d e
— % - >
at kT P, -1lnp
_ g _ &
T dt dt
=0 - (W - W .
By calculation
S =-k< p, 1n p> .

Thus for a system at a constant temperature T

d

dat

kT € p, 1n é% >

P

d e
3E (6-67)

=-W-Ww -D<-(w-u) .

and for any periodic trajectory

T T
jwdt<'[wedt .
) “ o

Through the appropriate definitions, the dif-
fusion process q has acquired a thermodynamic flavour.
In the next section, we show such is also.the case
for a Markov chain model of muscle contraction.

5.3.2 A Model of Muscle

The mechanism of striated muscle contracfioh»igb
explained by 2 hypotheses [HUX 74]:




"(i) The length of striated muscle changes through
. a sliding movement of thin (actin) filaments
relative to thick (myosin) filaments.

(2) Active movement results from a cyclical inter-

’ action of projections of the myosin filaments --
cross~bridges--with actin sites. The cross~
bridges act independently of each other and can

‘.« j - -~ be modeled as passive instantaneous elastic

elements in series with active force generators.

The first is the sliding-filament theory, now uni-
versally accepted; the second is the cross-bridge
theory, now widely accepted.

There are constraints upon any model of muscle
contraction. Hill [HIL 74, HIL 75, HIL 77] has
presented a theoretical formalism combining statisti-
cal mechanics, thermodynamics, and chemical kinetics
to delineate the class of models which can describe
energy transduction in muscle. We have been able to
develop a theory which yields the same results, but
rests on a solid mathematical foundation. 1In
[PRO 81], we have presented a detailed treatment of
a biochemically- and structurally-based model of '
muscle contraction (which contains proofs of many of
the theorems quoted here).

We consider a muscle fibre as a collection of
independent units. A unit is one cross-bridge
associated with a one-dimensional periodic array of
actin sites. A cross-bridge can bind to only a group
of 2 sites per period. The site separation s = 55 3§,
the period A = 385 ﬁ, and the separation between the
cross-bridge joint and the actin site £ = 150 A. As
in Figure 5.3.1, we let x be the position of a point
on the actin filament eguidistant from the nearest 2
sites relative to the Y = 90° position of a cross-
bridge (which we shall henceforth call the actin
position), x € [-A/2,1/2). Due to the lack of
register between the myosin and actin periods, the
actin positjons x should be distributed uniformly
over a 385 A interval.

We shall characterize our structural unit of a
cross-bridge and its associated array of actin sites
by the cross-bridge conformation (the biochemical
state of the cross-bridge) and the actin position
(the position of the nearest set of actin sites
relative to the cross-bridge). 1In a contraction, as
in Figure 5.3.2, we can imagine a set of actin sites
appearing to the right of an unattached cross-bridge.
The cross-bridge will execute a random walk through
a sequence of biochemical states. 1In any attached
state, the cross-bridge will assume an angle de~
termined by the actin position and the site to which
it is attached. However, the angle at which a cross-
bridge will be found attached with greatest prob-
ability depends upon the biochemical state.

) Consider a single structural unit of a cross-
bridge and its associated array of actin sites.
Let

T = [to,é)

be the time set of interest. Let the conformation of

the cross-~bridge at time t be given by

: ‘. A L Tty
E(t) € E = IUI'UI

where I Q {1,2,...,9} is the set of unattached states,

I é {1‘;2',....9'}'i$ thz set of actin-site-1-
attached states, and I'' & {1'',2'',...,9''} is the

set of actin-gite~2-attached states. Let N be the
cardinality of the state space E (which, for the
An vivo reaction mechanism of [PRO 81], is 27).
Let the position (relative to the cross-bridge)

at time t of the set of actin sites which were
nearest the cross-bridge at time to be given by

X(t) e R .

Define an equivalence relation = on 1R by
i

o4
x £ y if and only if Ix—yl = nA, n=0,1,2,... ,

where A = 385 A is the actin period. The set of
equivalence classes of Rmodulo = is

4 a2, v

R/E=
For any x € IR, we shall denote the equivalence class
containing x by [x] and consider [x] as an element
of A. Then the equivalence class [x(t)] € A is the
position (relative to the cross-bridge) of the set
of actin sites nearest the cross-bridge at time
t-~the actin position at time t.

Given the initial actin position x_ at time t_,
the positional process {x(t), teT} is deterministic,
i.e., it is described by the ordinary differential
equation )

dx (t)

Franie -v(t);

X(to) = xol
where v(t) is the shortening velocity. Define the
density function p(t,x) by

x .
Jz p(t,x)dx = Prix, < [x(t)]1 < x3},

*

< x.. Then

€ A, %, 5

for xl, b3

2
Lemma 5.3.17,

The density function p{t,x) satisfies

p(t,x) _ op(t,x) -
3t v(t) " H P(tOIX) -PO(X) . -

There is thus no diffusion term in the positional
process. Let A/2

P_ = {p: p(x) > 0 for all xeA, p(x)ax=1} .
x A2

Then

‘Theorem 5.3.18.

Given (5.1) with Py € Px' the solution p(t,x) € Px'
t > to. "

Given the initial actin position x_, or equivalent-

ly, given the positional process {x(t , teTl}, we
shall assume the conformational process {§(t), teT}
is a Markov step process characterized by a set of
N(N-1) transition rate functions (a,. the rate for
the transition j*i) 1)

Sy



{ai.(t) = ai.(X(t)):i,j € E, i#j, teT} e p"'_ épr{%;(t"') = ilF,'(t-) = j}, tet_ ,
associated with the directed graph for the state . . to be given by -
space E (Figure 5.3.3).. Assume intercommunicating y . iy e
states with a5 # 0 if and only if ag # 0. Let : + AJY ., 1EI. JE {i,1',ir'}

. .. . P-- =
1 {0 , otherwise .

4
é = (ai]) ’

Tet

where a,, = -I a,,. The transition rates will have ) . = pr{ _
| igy pi(tlxo) - p(t,ilx)) = Pr E(t) =

‘different values at different temperatures and at . i .

different concentrations of ATP, ADP, and P,. In 1lx(to) = xO}'

active muscle, on the time-scale of cross—b%idge . A

.cycling, nucleotide concentrations are maintained Then g(t[x ) = (p.(t(xo)) satisfies Kolmogorov's
constant by external reactions. Thus to describe forward equation ’

the thermodynamic properties of muscle we can con- .

‘sider the transition rates at a fixed temperature & ‘ .
:and fixed concentrations of ADP and Pj, but para~ 3 p(t xo) _ a tl

" meterized by the time-independent ATP concentration dat T Ale, Ixg= v(ndthpleix,) .
QER4. So v i : i

. aij = aij (a,t) = aij (a, X(t)) :

A = A(a,t) = Ala, X(t)) . L . teTwt, 5 pltylxy) = p, (5.3.5a)
, o

t

‘S ificall, ref i to the directed graph for E
peciticatly, referring to the di grap ! and the boundary conditions

r s sy r 1
Kji(x(t))ur (1.3)5{(2,1):(2 1Y), ' E(t+|xo) = £+g(t-’xo), 4t€Tx , (5.3.5b)
(211'111)} ’ o]
where
P =t
Ky (X(8)) [ADPT, (i,)el(9,1),(9',1"), = = WPy -
1t ve Let
aij(a,x(t)) ﬁ (9r+,1'"} €
. : x(t) = [x) - [ v(Dar]
Ky ()[BT, (1,3)el(6,7), (6,7, | , tg
(6",7")} and
pi(tix(tn = p(t,i|x(t)) = pr{E(t) =
LKji(x(t)), otherwise , il[x(t)] = x(t)}

(5.3.4) = pri{&(t) = ilx(to) = xo}
where K., is the rate constant for the transition c
3. .
Muscle structure dictates that a cross-bridge = pr{g) = 1lx(t0) = [x(t) + f vinarl}
can bind to only the nearest set of actin sites. t %
With finite detachment rate constants, there will = p,(t I‘x )i _Ix(t) + I v(mdaT
be a nonzero probability that a cross-bridge will * 0 *0~ t *

not detach from an actin site by the time it has 0
passed into the range of the next set of actin

sites. To ensure detachment with probability one

and avoid introducing singularities in the parameters,

Then p(t|x(t)) 4 (pi(t‘x(t)) also satisfies

s 1
we let | . | dp(t|x(t))
L {talx(t)1==2/72} = {t: (xy- fv(myael = : &% = A(a,x(t))p(t]x(t)), terxo;
(¢ to e .
- N -A/2} | g(tO}x(tO)) =B, | - .
and require boundary conditions at any t € Tx . and the boundary conditions

The set Tx. is the set of times at which the cgoss—

+ + . - '
bridge passes from the range of one set of actin Rt |x(t)) =R p(t|x(t)), ter, .

sites to ‘the next. . - e 0
By definition, detachment with probability one et : e e e s e e o e ~ -
is the occurrence with probability one of the .

transitions i' =+ i and i'' =+ i. Thus we require PE = {E : pi > 0 for all ieE, § pi =1}.




Y
BN

Then ' e, T

Theorem 5.3.19.

Given (5.3.5) with p €P_, the solution p(t|x.)
pltlx(t)) e P, £ >¢ it 0

0 *
- _Note thap
ap (t|x) 3p(t]x) dp(t]x) ax
& " T YT a
: - 3p(t]x) ag(tlx)
Ve

'

So for xeA p(t|x) satisfies

3p(t]x) 3p(tx)
'——éz‘——"—' v(t) 5=t 5(a,x)g(tlx);

pty|x = Bq-
The boundary conditions (5.3.5b) become

pi(t,-X/Z) = pi(t,A/Z) =0, ieI'vr'’

Note that we can distinguish between p, (t|x) =
Prig(t)=i|x(£)=x} and p, (t|x ) = Pr{E @) =i|x(t)=x)
by writing * 0 0

_ : t
pt]x) "E(tlxo)lxo=tx+f v(t)ar]
t
0 .
t =pl(t
B( Ixo) E( IX)L;:[xo-ft v(t)dr] :
to

. We now consider the joint process {E(t), X(t),
teT). ’

Proposition 5.3.20.

The joint process {&(t),x(t),teT} is Markov.H
Define the density function p,(t,x) = p(t,i,x)

for the joint process {&(t), X, £er} by
*2
xf Py (b0 ax = PrlE(e) = i, x <(X(6)1<x,} .
1

Then

iemma 5.3.21.

The density function p(t,x) é (p, (t,x)) satis-
fies 1

dp (t,x)

[ S— T + _}_\_(a,x)g(t,x)‘ H

3t = vt
(t - (‘) A .(5.3.6)‘
B(ty/x) = p, x. = Eopo(x) '

T g OR(x) A
2

CIpy(e,mM/2) = (£,0/2) =0, ieT'UI' . W

‘Let
P= {p: pi(x) > 0 for all ieE, xel,
A/2
; I pi(x)dx =1} .
R e W e
:Then %

Theorem 5.3.22,

: Given (5.3.6) with gopg(x)'a P, € Py, and
-po(x) € Px' the solution p(t,x) € P, t > to..

A single-structural unit is characterized at
‘time t by the cross-bridge conformation £(t) and
the actin position ¥(t). The joint process {§(t),
x(t), teT} is Markov: Assuming a lack of coupling
between structural units, a muscle fibre becomes
an ensemble of independent copies of the process
{&(), x(t), teT} and the properties of a structural
unit are the properties of the ensemble.

A muscle fibre is a thermodynamic system. The
system I is thus defined as (5.3.6). The state of
the system I at time t is the vector probability
density function p{t,x). The state space is the
space P of all density functions of the process. We
now show the system I has the expected thermo-
dynamic properties.

Definition 5.3.23.

We shall call the unique solution of

v gyt A(ax)plx) = 0;

ie1I1'or’
where v° and o are independent of time, a stead
state. We shall say the system I evolves to the
steady state pS(.) if, given the state trajectory
{p(t,-), ter},

lim p(t,-) =p°(:) . ]
>0

Proposition 5.3.24,

If the system I evolves to a steady state,

then po(-) is the uniform PDF. )

If p.(*) were not a uniform PDF, then p(t,x) =

:po([x+v5(t-t0)]) would be periodic with period

A

i 10_1 sec, for v® on the order of a velocity of
v

contraction. The force (5.3.10) exerted by a muscle
fibre in steady state during a constant velocity
contraction shows no such oscillations ([JUL-75].
Furthermore, the lack of register between the myosin
and actin periods suggests the function p(t,x) de-
scribing the distribution at time t of actin
positions x is the uniform PDF. We shall therefore




take <) (x) as the uniform PDF and show that the : - 9p, {t,x) ) 3pi (t,x)
system L evolves to a steady state when v=v® and gt = v(t) 3 + L J,.(t,x), i€E.
o are time-independent. _ _ x 3j

With p(t,x) the uniform PDF, 3
S E

iti — 4 =0
g(t,x) = E(t!x)p(t,x) The steady state condition v 3 Z J, i or

z Jij = 0 for v° = 0 does not exclude co%tplmg

1 .
7 ] =3 E(t]x) : 3 o
Bl e e < 73 4 22-1<Y o fluxe‘s and rotational fluxes. When the
1 fluxes are identically zero, a steady state cannot
=3 R(tix ) . . . ; . X X
A 0 X =[x (£)+ !t () dt] be maintained by any cyclic mechanism. We dis-
0 € . tinguish such a steady state as an equilibrium state.
0 .
With v=v" time-independent, Definition 5.3.23.
. € .
_ - The equilibrium state is that steady state for
é(“'["o tj vinarl) = 5‘“'["0 vt tO)]) which v = =0 and J = 0. We shall use the
0 2 . “notation E for the probablllty density function of
= A(q, [xo-vs((t+—s—)-t0)]). the equilibrium state. B
: v The thermodynamic condition of detailed balance
Theorem 5.3.25. , is equivalent to equilibrium by definition. The
! s ) : thermodynamic condition of microscopic reversibility
For v = v # 0 time-independent, is that of time-reversal invariance, as follows.
X s s A ' U
1lim p_(tlx ) =p (t,x ) =p (t+t — Ix ) Definition 5.3.30,
- 0 0 - S (¢

oo . v .

s We shall say the joint process {&(t), x(t), ter}
and p (t]x ) is independent of the initial distri- is invariant under time reversal if, for all t, seT,
bution B(t0|xo). [} i, jeE, x, yeh,

Theorem 5.3.26. . p(t,i,xls,j,y) = p(s,i,xlt,j 1Y) .

For v=v" time-independent and p(t,x) the uniform where p(t,i,x[s,,j,y) is defined by
PDF,

lim p(t,x) = Es(x) = x (t ]x ) . *2

o x,=x : j plt,i,x|s,j,y)ax = priE(t)=i,

x
and Es (x) is independent of the initial distribution 1 xlf_x(t)f_leg(s)=j,X(s)=y}
Eo(x) and the time t. [}
In a steady state, the average behav1our of a ‘ for xl X, eh, xl<x2 B

A
single cross-~bridge over the time perlod -5 ylelds
the time-independent state of the syst'em.v Theorem 5.3.31.
Corollary 5.3.27, '

The system I is in the equilibrium state if and

The limiting distribution : only if the process {E(t), X (t), teT} is invariant
s . s s under time reversal. W

B (tlxo) = AE “xo"’ (t'to”) - N As is to be expected from kinetic theory, we can

. h
We can distinguish the equilibrium state as a show

particular steady state, as follows. Theorem 5.3.32,

Definition 5.3.28,

A steady state is the equilibrium state if and

The fluxes of the system I are the probabilistic . atij (a,x)
. if V=i ——
flljxes ) ‘ only if V=0 and closed path 1n aji(a,x) 0 for
Jl.(t,x) = (a,x)p (t,x) ~ a (a,x)p (t, x) all xel and for all closed paths of the directed
3 . graph associated with the state space E. I}
i, jeE, xel . : The equilibrium constant for the reaction i+*j
and the deterministic flux v(t). @ : K, = —-1-
ji .
The fluxes Ji' are elements of the matrix J = (J,.). 2 e e e
Note that inj= -JU. We can rewrite (5.3.6) as 13 Corollary 5.3. 33

A steady state of (5.3.6), with A given by (5.3.4),
is an equilibrium state if and only if v=0 and for




S S

call xeh,

K, .K..,
=dAl -1 for the closed. paths

- (5.3.7a)
KiiKing

: 1y ,

_(5.3.7b)
iter 3

K, Koo, : |

E—l—ll—ff—— = 1 for the closed paths (5.3.8a)

ii'lKilljcl

i 5

g

(5.3.8b)
ill#j!l :

’

fand
[ADP][Pi]

‘ Kivp
where KHYD = Kll,lpr :

In equilibrium, we have the relation

o =a0a
e

. oA e _ e
Jij(x) =0 = aij(x)pj(x) aji(x)pi(x) .

So the equilibrium state g?(x) is determined by

(=3 e
Pi(x) } aij (a”,x)
e e .
PJ. (x) aji(a +X)
€y = L
Lp(x) =5 .
1

Note that Theorem 5.3.32 guarantees

e . e
I a, (o™ ,x) 24 (x)

closed path aji(a?,x)

1 <
closed path p?(x)

) In order for the systeme. to evolve to the
equilibrium state at some ATP concentration and zero
shortening velocity, we must choose the x-dependence
‘0of the parameters K; .- such that (5.3.7) and (5.3.8)
‘are satisfied for ali xel. As physical observation
‘confirms the existence of the equilibrium state,
i.e., a steady state of zero force and zero flux
{Proposition 5.3.36), we shall sq choose the para-
meters Kij' Then by defining u = &n éL, the system

2 will evolve to the equilibrium state if and only
‘if u=0 and v=0. We shall consider the system as
controlled by inputs u and v.

! Given that the uncontrolled system evolves
‘to the equilibrium state, one might wish to know
how far the system I is from equilibrium. The state
functions of thermodynamics can be thought of as
distance measures on P, the space of all density
functions of the process {E(t), X(t), teT}. (We
choose a temperature scale such that Boltzmann's
constant k is unity and by considering the system
; at a constant temperature take all quantities in

" 'the entropy S of the system L as

-t

-units of entropy.) We define the free energy G of
‘the system I as

Az p; (t,x)
p; (t,x)In

G(t) =12 dx

iz

. (5.3.9)
p; (x) : ‘

k8

A2
s(t) =-Z pi(t,X)]ln
A2

P. (t,x)
— AKX

’

e
p; (x)

Eand the internal energy U of the system I as

A/2
u(t) = =2 J P.(t.x)lnp?(x)dx .
i i i
-A/2

The input u is a force =-- the chemical potential
of ATP--and the input v is a flux--the shortening
velocity.

Definition 5.3.34.

The flux J conjugate to the force u is defined
as

A Y a4
= q;E,G(t))I

3=0, v=0
and the force E'conjugate to the flux v is defined as

A_ 29

o ]

= d

2 5.3.10
F (I G(t))lE?QJ v=0 ( )
From (5.3.9) we compute the rate of change of the
free energy as

Af2

. (t,x)

4 ) Py %y
EEG(t) = ; 3¢ Pi(t,X)ln cog ax
T2 pi
A/2 Bpi(t,x)
+2 ot dx

a2
A/2
)
= Z [v (t) g;pi(t,x)
T oa72
pi(t,X)
+ I Ji' (t,x)] 1n o dx
;| ] Py (x) .
A/2
=% I J, . (t,x)
io3<i 3
. -A/2
a, . (alx)/a- . (a,x)
« In ij 11 dx

e e
it Rkt Ehale
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~v(t)I J p. (t,x) 33_ ln—il——-'———-dx . -+ . .we can consider ln ——:(—t'—&)—- as the free energy of
i i x e x . : p, (t,x) .
-A/2 Py ) , , a cross~bridge in state i and at position x and
, A/2 I, (£,x) '
. , ij ax : 3 p, (t,¥)
.+ 2 J..(t,x) In|1+ 21n —— as
, i j<i ij aji(a,x)pi (t,x)J : 3y ey
N R =A/2 ‘ Y y=x o
P e et e g e e e W LXTR e e e e
A/2 X the force exe#ed on the actin filament by a cross-
=u _ (J21(t'X)+J2'l' (t,x)+JZ, e (t,x))dx ?ar:.dge in state i and at position x. Then
-1/2 ,
A/2 . F=k 3—1Jzﬁﬁ:ﬂf
- v(t) I (£,%)* |- == 1np® ax T )ex M e '
- I pi X 3% Pi (x) pg () (x) X=X (t)
; + =-\/2 .

b A/2 ; becomes the mean force exerted on the actin filament,
; J 14 (t,x) which can be observed as an output of the system X
-z .Z : Jij(t'x) 1n |1+ o (0, P, (t xi] ax. [PRO 8l]. Thus the mean ATP flux J and the mean

i <4 -A/2 i F A T force F are outputs of the system I, observable as
’expected values.
. From Definition 5.3.34 we obtain Definition 5.3.35.
A2 ‘ .
- The work flow W is given by
gt} = (7, (t,x)+T (t,x)+7 (t,x))ax
2 ] 1] L ] e L4 — —
-)/2 1 21 2t W=-Ju+ Fv . L
A/2
F(t) =2 P, (t,x) - [_a_ax_ lnpz(x)]dx . Define the external forces Fij as
i “\/2 ai . (0,x)
-1 i, 3 fei
As Fij (%) n'aji(a'X) ,» 1, JEE, j<i,

d i U
I =3 E{(Total transitions from 1%2, 1'+>2! 1''+2'") the internal forces Xij as

~(Total transitions from 2+1, 2'+>1' 2''+1'")}, J.j(t,x)
- 1n i i s
_ X, 4 (€20 T TR i T
J is the mean ATP flux, which can be observed as an 3t .
output of the system I [PRO 81]. A
P ySt L 1 s the heat flow 0 as
A/2 5 A/2
- _ g5 e _
F(t) -i I pi(t,x) [ T lnpi(x) dx 0 -; E I Jij(t,x)Fij(x)dx '
-A/2 I a2
A2 .
3 . P (t,x) and the entrop%: Izaroductlon D as
=1z Pi (t,x) % In - dx A
i, p;(x) D=1I I I, (e,x)¥ . (t,x)dx .
/2 i i i<i Tij ij
72
3 Pr (¢) (t,x) The entropy production D>0, with equality if and
1 = E % In P S _ only if the system X is at equilibrium. The first
; Pz (t) (x) |x=x(t) : and second laws of theromodynamics follow:
.and ' ) A ‘ V & yg=0-
: A/2 S U=0-w
; / pi (trx) ' . at
: G(t) =2 pi(t,x) 1n S dx a
l-A/Z Pi(X) A a—ES=Q+D_>_-Q
: ' ‘ 2 e=-W-D< -w
Pe (g (EX(ED) o at . = .
Pr (¢) (x(t)) In a steady state, the state functions U, S, and

G are time-independent. So in steady state W =Q =
=D £ 0, with equality if and only if the steady
state is the equilibrium state. As the heat flow




" Q and the entropy production D are independent of the steady state 25(~) is reciprocal if the operator
‘equilibrium state, the work flow W is independent of el )

‘the equilibrium state in steady state. In steady
‘state we can write

HS: (8v,8u) + (87,6F)

Fu=F -0 is self-adjoint, where - (Sv,6u) .and (87,8F) are
related by the dynamical system
y =®+D>Fv, e

Congm B e S USRS DU U UPISS (R S ey . O ST S -
e g :

i.e., the free energy of ATP (u) is both dissipated
‘as heat (-Q = D) and converted into external work - A .

(Fv). The efficiency of muscle is the efficiency of oF = Cl_é'g:-!- D8u : (5.3.11b)
‘the transduction of chemical work flow from the ;

—E'E‘Asg}glsu + B8vi Sp(e) =0 T T6.3.11a)

reservoir controlling the ATP concentration to the = :
system (Ju) into mechanical work flow from the - 6F = czég ! i (5.3.11c)
‘system to a weight in the surroundings (Fv). We : :
thus define the efficiency N as the ratio of the ‘where 8p is defined as the solution of (5.3.1la) and
‘mechanical work flow to the sum of the mechanical - the parameters of the system are defined by
‘work flow and the heat flow from the system to the . ;
‘surroundings (~Q). So ; ' 38p (t,x)
; | i s
: _ _ { i ASE =v ——g‘x——'— + é_(a,x)ﬁp_(t.x)

n=-—Y_- ?’— <1 in steady state . - 1

Fv-Q Ju : ! B = (bi)

‘ Although J and F are averaged quantities,
we can still show that they both vanish only in

s ..
-K, . ap; €1(1,2 1'2° 1ve,2v
a steady state that is the equilibrium state. ij (xyopy (x), (3,3) {a.2 .« o2t}

1 — s 3 - 1] L] e e
b; (x) = Kji(x)apj(x),(1.3)6{(2.1),(2 1,(2',1'n}

Proposition 5.3.36. [3
In a steady state, |F| =0 if and only if the 0 .
steady state is the equilibrium state. M , : » otherwise
Using Corollary 5.3.27, we can transfomm the aBs x)
expressions for the mean ATP flux and mean force to ‘ B. =
'integrals over the time period A/vS. -2 9x
Proposition 5.3.37.
‘ ¢%p = DU
In a steady state, for any TET . ‘ (i, Hele2,n, (2,19 ,1'01}
s t A/2
I=% o | | k., ®0adp, (£,x)-k, . (x)6p, (t,%)dx
K., (x (t,x)-K, . (x)8p. (t,x
Mapelen, 2719,27,10) 34 I00p; (Ex) =K, 5 () Op, (&
=-A/2
+(ANT) \/
2
(a; 4 (@ [x,=v" (t=£ ) 1) : .
‘ e
T s. . - . Cz§2 = i J Gpi (t,x) . [— 5—;{ Inpi (x) dx]
- - - S -A/2
. pj(tlxo) ay; (@, [xy=v= (¢ to)]pi(tlxo))dt /
‘ A/2
s T+ (A/v°) { s s
F=23 p; (tx ) . D=a | (ke ()4 5, (0P (RIHC yrp0 ()
A . 1 0 ' -A/z
: i T .

i

| . Py x)ax . W
[ I B
[ 9x lnpi(x)

dat , n . :
x=[xo—vs (t-to)] , . Let the operators

2 2 N
Close to equilibrium, we can show that the B = (El EZ) PR LA, R
‘linearized input-output relationship of the system
‘I is reciprocal -- thus the model statisfies the Cl 2 N 2
reciprocal relations of thermodynamics. . . ' -, C= c : LA, R >R .

, . 2
Definition 5.3.38. .

. We shall say the system linearized about a Then




y B* Lz(A’ ]RN).,. =2 .

[ a2 L 1
I e, max
i
=A/2
Bxg = | A/2 aps(*) _ ¢€L2(A,IR]
FiE B e e X. - ¢' (X)dx . s e e
: ds i !
a2 i A |

o= (Cf €5 B2, EY

- 1
Nt

Kygix)e, (i,3e{(1,2,(1,27,@*,2)}

o} (x) = {500, @pelen, @31, 1)

0, otherwise

*
C2 =C, = [ I fnp° (x)] .
Lemma 5.3.39.,
If the linearized system (5.3.11) is a continu-
ously controllable and observable realization on
12 (A, IRN'l)of the input-output relation between -

(8a,8v) and 83,8F), then reciprocity implies the
existence of an operation T such that

AT = TA*
CT=28* . | ]

Theorem 5.3.40 .,

The system I linearized about the equilibrium
state is reciprocal. Furthermore, if the linearized
system (5.3.11) is a continuously controllable and
observable realization on LZ(A, ]RN-1) of HS, then the
system I linearized about a steady state is recipro-
cal if and only if the steady state is the equili-~
brium state.

Proof:
( <m)

For the system I linearized about an equlllbrlum
state, we find

b0 = -pl(x) ¢ (x)

3p% (x)
i - .8 _ .9 e
e = pi(x)( o lnpi(x)) .

8

B = 'diag(pi)(:* R

Also by calculatlon

A = a(®,x) = diag(p] (x))A’ (@°,x)diag] —L
P. (x)

]w

. Ve
= dlag(p %) A*diag [

!P (1}

Hence, for the system I linearized about an equili-
‘brium state

AYR

D o0
K% = B 4 e
: 0 0
= B* |-aiag)i—| |aiag (p%) e taiagl-L
= . g e g Pi g e
P; P,
D o
. [— diag-(pﬂf:* + S (t)
0o o
D o0
= B*eA*t Cx + S ()
)
= 1w,

where H°(t) is defined for t ¢ R,.

(===>)

We prove sufficiency, given the linearized system
(5.3.11) is a continuously controllable and observa-
ble realization on LZ2(A,RN-1) of HS, by proving
its contrapositive, i.e., we prove that if the
steady state is not an equilibrium state, then the
system I linearized about the steady state is not
reciprocal. Using Lemma 5.3.39, we need only show
that no T exists such that

AT = TA*

CT = B

for a nonequilibrium steady state.
If such a T exists, then

A(Tl) =TA*1 =0

By Theorem 5.3.26, the steady state solution ES is
unique. So




e e

C(TL)

]
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for all nonequilibrium steady states, by Proposition
$» 5.3.36. So no such T exists for a nonequilibrium
steady state. W

Equilibrium is equivalent to time reversibility
defined in terms of the conditional probabilities,
as in Theorem 5.3.31. We now relate reciprocity
of the system I linearized about equilibrium to a
form of time reversibility defined in terms of
the work flow, using a result of Day [DAY 71].

As the linearized system is time-invariant,
we let t = -» without loss of generality. Then
for firsg—order deviations of the inputs u and v
about their equilibrium values (of zero) the work
flow

W(t) = =J(t)u(t) + F(t)v(t)
tlaw | u(s)
I HE (t-5) ds .
> v(t) v(s)

The total work done by the system I is thus

00
W) ,v(-)) = J wt)dt .
-0
We shall say the inputs u(-) and v(-) are the

dynamical reversals of the inputs u(.) and v(-) if
for all t € R, :

a(t) = u(~t)

x(t) = x({-t) .
So the inputs (-) and v(.) are the dynamical re-
versals of the inputs u(.) and v(.) if for all
t € R,

u(t) = u(-t)

vt

_axw [
dat drt

] = -v(-t).
T==t

Then

Theorem 5.3.41,

e e¥

If Ho(t) =H (t) for all teR , then for the
first-order deviations of the inputs u and v about
their equilibrium values and for all piecewise
continuous u and v the total work done by the system
I is invariant under the dynamical reversal of the
inputs. ]

In this example, we have shown that our class
of models which describe energy transduction in
muscle exhibits the properties required of any model
of a thermodynamic system--the evolution of the
system to a steady state, the equivalence of time-
reversal invariance and the equilibrium state,
reciprocity of the linearized system if and only
if the linearization is about equilibrium, and

dissipation inequalities related to the second law.

We have derived expressions for the ATPase rate

and contractile force and have shown a simple
method for calculating the ATPase rate and con-
tractile force in steady state. In [PRO 81] we
show how the values found for the structural para-
meters and rate constants can be incorporated into
a model to predict the physiclogical properties of
muscle. Thus here we have shown that our class of
models is plausible as an explanation of energy
transduction in muscle. In [PRO 8l1] we prove that
the model in our class of models which has its
parameters determined by biochemical and structural
data mirrors reality by predicting the physiological
data.

5.4 An Overview of the Subject

. 5.4.1 Preliminaries

In this section, we present the outline of an
axiomatic framework for thermodynamics assuming a

‘Markov process description of a thermodynamic system
‘L. Our purpose here is to show how the results apply

to both continuous-state Markov processes (Markov
diffusion processes) and discrete-state Markov

processes (Markov step processes) and demonstrate
how seemingly-unrelated examples fit rather nicely

into our framework.

Consider a Markov process {X(t), teT}, where
T = [t.,®) is the time set of interest. Let the
process X describe the motion of a particle in a
state space X. As the thermodynamic system I,
take an ensemble of particles -- a collec¢tion of
independent copies of the process X. The state at
time t,of the system I is then the density function
pt(') = p(t,+). The state space is the space P

of all density functions of the process X.

Statistical mechanics considers a thefomdynamic
system as an ensemble of particles. The theory of
the Brownian motion of a particle in an external

-field of force is based on the Langevin equation,

which describes the evolution of a Markov process
(e.g., [KAC 69] and [NEL 67]). Thus the ideas

that a macroscopic thermodynamic system is an en-
semble of microscopic particles and that the motion
of a microscopic particle can be considered a Markov
Process have a solid basis in physics. Starting with
this assumption -- that a thermodynamic system is a

collection of independent copies of a Markov process —-

we proceed to develop the theory of thermodynamics
rigorously, which is an original approach.

The transition density function p(t,xls,y)
satisfies Kolmogorov's forward and backward equations.

The distribution function P(t,I) = Pr{x(t) € T'} =

g‘p(t,x)dv. As the density function p(t,x) =

E{p(t,xls,y)}. s<t, Kolmogorév's forward equation

defines the evolution of the state p, on P. The
operator of the backward equation is the adjoint
of A - Ax,

The state space X can be continuous or discrete.
For a discrete state space, we give a topology to
the set X by associating a directed graph with X.
The expressions of vector calculus can then be

defined for a discrete state space.




" 5.4.2 Characterizations of Equilibrium '

We can write Kolmogorov's forward equation as

a
EI (t,x)av =-J n * Jdas

T

" ¥ for ‘all regions '€ X, where we define probabilistic

fluxes J in terms of the state p_ and the parameters
of the operator A of the forward equation. If a
unique invariant solution of Kolmogorov's forward
equation is the initial state, we say the system
L is in a steady state. The steady-state condition

n*Jd dS = 0 for any region X does not exclude

ar

circulation around 3T, the boundary of I'. When the .
fluxes J are identically zero, a steady state can-
not be maintained by any cyclic mechanism. We thus
call that steady state for which all fluxes vanish
identically an equilibrium state. The thermodynamic
condition of detailed balance is equivalent to
equilibrium by definition. We prove a state is an
equilibrium state if and only if the intertwining
operator equation

AM =M Ax
t Pt

holds,-where M is the operator multiplication by

t
P - We then use this result to show the system I
is in equilibrium if and only if the condition of
time reversal invariance holds, defined as
p(t,xls,y) = p(s,x}t,y) for all t, ser, x, yeX.

When p(X) & [ av < =, there is an equilibrium
X .

state which is independent of x, which we call the

- -homogeneous state. The homogeneous state cor—
responds to the thermodynamic condition of uniform
composition. Using the result that the system I
will evolve to the homogeneous state if and only
if the operator A is self-adjoint, we show the
system will evolve to the homogeneous state if and
only if the condition of positional reversal in-
variance holds, defined as
plt,x|s,y) = p(t,y|s,x) for all t, se T, x, yex.

The condition of time reversal invariance can

be stated in terms of the joint probabilities as
p(t,x; s,y) = p(s,x;t,y). This gives a physical
meaning to the condition of zero flux -- namely,
the system is in the equilibrium state if and only
if for any regions I‘l, 1"2 C X,

E {(Total transitions from Tl to Fz)

¢

- (Total transitions from F2 to Pl)} = 0;

; " We define external parameters F and internal
‘parameters A of the thermodynamic system I.
Knowledge of the internal and external parameters
is equivalent to knowledge of the operator A. For
a system which evolves to an equilibrium state p®,
-Vin p® = F. Thus an equilibrium state can be
written solely in terms of the external parameters.
As gﬁc 1n p®(x) -dx = 0, for all closed paths CC X,
if a“steady state is an equilibrium state, then

§C F(x)-dx = 0, for all closed paths CCX. We prove
.a steady state is an equilibrium state if and only

——
i i

if é F(x)+dx = 0, for all closed paths CCX and an
equigibrium state is a homogeneous state if and only
if F=0.

The connection between the intertwining equation
time~reversal invariance, and the condition on the
external parameters was first studied by Kolmogorov
in the context of Markov process theory (and using a
different terminology). Recent references are
[KETI 79] for Markov chains and [KEN 78] for Markov
diffusion processes. However, these ideas are dis-
cussed in the framework of time-reversible Markov
processes and not connected to thermodynamics.

For continuous-state Markov processes, we
are able to characterize processes for which
p(t,xls,y) = p(s,,Rxlt, Ry) in steady-state, where
R is a linear map from X into itself. If R is a
diagonal matrix with entries either 1 or -1 (a
signature matrix), then p(t,xfs, y) = pls, Rx[t, Ry)
corresponds to the condition of dynamic reversibility,
a special case of which is discussed by Anderson
[aND 807.

5.4.3 Interactionsof a Thermodynamic System with
Its Surroundings

To model interactions of a thermodynamic system
with its environment, we describe systems with time-
dependent parameters. The evolution of a Markov
process can be described by a stochastic differential
equation. We shall say two thermodynamic systems are
interconnected if the parameters of the stochastic
differential equation describing the evolution of
one process (or both) can be written as functions of
the other process (or both). The state of an inter-
connected thermodynamic system is the probability
density function for the joint process.

The external and internal parameters of the
joint process are functions of (x., x.), where

’
. 2
x1 e Xl, x2 € Xz, and Xl X X2 is %he state space of

the joint process. We in addition take the parameters
as functions of ul(t, X0 X ). where u is an external
control applied to one or %oth systems -- we thus
allow both open-loop and feedback controls. In the
absence of either work or heat flow, thermodynamics
suggests a system will evolve to equilibrium. We
formalize this thermodynamic idea with the as-
sumption that a thermodynamic system will evolve to
equilibrium if and only if the system is uncon-
trolled.

Our formalism allows us to control a thermo-
dynamic system of interest either directly or by
controlling a thermodynamic system to which it is
connected. For that part of the process which
evolves deterministically through the action of the
control, we define deterministic fluxes V such that
for the system to evolve to equilibrium, V must be
equal to zero.

-5.4.4 The Dissipation Inequalities of Thermodynamics

Let us now consider a thermodynamic system I,
which may be an interconnection of thermodynamic
systems and acted upon by external controls. Given
the uncontrolled system evolves to the equilibrium
state, one might wish to know how far the system I ‘
is from equilibrium. The state functions of thermo-
dynamics can be thought of as distance measures on
P, the space of all density functions of the process.

Define the distance between states p% and p?__,




S

' ‘ 1 2 pt(") :
given that x(t) = x, as A(pt, pt) = 1n ( 3 ).

: : Pt(x)

The Ffunction A has two valuable properties. 1f
_pi =P, the state of the system %, and p ps, a

;steady state, then E{d A(pt(x), pt(x))} = 0.

i} Furthermore, the function |A| is a metric on R,.

- It can be verified that only multiples of A possess
‘these two properties.

We define the free energy of the system I at
time t, G(t), as

a(t) = E{A(p, (x(£)), p(x(t)))},

ﬁthe entropy of the system I at time t, S(t), as
S(t) = E{A(l,pt(x(t)))},

and the internal energy of the system I at time t,
(), as
u(e) = (@, pl (=)},

where pe is the equilibrium state to which the
system will evolve when the control is set to zero

at time t. We find
pt(k)
G(t) = J’ p, (x) ln ——dv >0,
% pt(x)
with equality iff pt = o:,

S(8) = - I P, (x) In p_(0&V < 1n U(x),

with equality §ff P is the homogeneous state,

U(t) [ P, (x)1n pL(x)av > 0 .

X
We interpret the free energy as the distance of the
system I from the equilibrium state, the entropy
as the distance of the system XL from the homogeneous
state, and the internal energy as the distance of
the equilibrium state from the homogeneous state.

(1))
' (H ) p(x%
The function I p (X) 1n ) dV appears fre-
2
X p(x)

quently in the statistics and information theory
literature (e.g., see [WIL 76]) and is known by
many names, including the "average weight of evi-
dence in favor of H, against H_, given H;" [WIL 76].
Aside from incorporating this %unction, our ap-—
proach is original.

External work forces are defined through the
‘Fréchet derivatives of the free energy flow
dac
at
.at equilibrium conditions. Similarly external heat
forces are defined through the Fxéchet derivatives
of the entropy flow dS with respect to the fluxes

with respect to the fluxes J and V, evaluated

J and V, evaluated agtequilibrium conditions. The
external forces conjugate to the probabilistic

fluxes J are equivalent to the external parameters
F in the case of heat forces and are the difference
of the external parameters F and their equilibrium

forces can be defined as expected values.

,values F° in the case of work flow.
‘forces conjugate to the deterministic fluxes V are

5.4.5

The external
e s

ptVyA(pt,pt) in the case of work forces and -

dy __

at v

describes that part of the system -which evolves

deterministically. If V is independent of x, these
If VY'V=0,

ptvyﬁ(l,pi) in the case of heat forces, where

the heat forces wvanish.
We define the work flow W and heat flow Q as
inner products of the fluxes and their conugate

forces. The dissipation rate D, defined as
S X
'%E - Q, can be expressed as the inner product of the

‘probabilistic fluxes J and appropriately-defined
‘conjugate internal forces.

The free energy G,
entropy S, internal energy U, work flow W, heat
flow Q, and dissipation rate D satisfy the dissipa-

‘tion inequalities of thermodynamics and have the

required values in steady state, equilibrium, and
the homogeneous state, which we interpret as the

.equilibrium state of an isolated systen.

Reciprocity

The deterministic fluxes V and external work
forces determined by the external parameters F-F€
can be considered as inputs to the thermodynamic
system X. The outputs of the system I are then the
probabilistic fluxes J and the external work forces

VyA(pt,pg) computed from the system state and in

many cases expressible as expected values.

We say the thermodynamic system I linearized
about a steady state is externally reciprocal if the
operator mapping the inputs to the outputs obtained
by linearizing the system is self-adjoint. We prove
the system I linearized about a steady state is
externally reciprocal if and only if that steady
state is the equilibrium state. A similar result -is
obtained for internal reciprocity when we consider
the map from the probabilistic fluxes, internal
parameters, and state to the internal forces. Thus
under our assumption that a thermodynamic system
evolves as a Markov process, Onsager's reciprocity
theorem can be stated precisely and proven. :

Usinga.result of Day [DAY 711, we show that,
just as equilibrium is equivalent to time reversal
invariance expressed in terms of the conditional
transition probabilities, external reciprocity is
equivalent to the invariance of the work done by

the system I under time reversal of the inputs.

5.5 The Thermodynamic Properties of Markov Step
Processes

In this section, we develop an axiomatic
framework for thermodynamics assuming a Markov step
process description of the system. The results
presented in this section can be generalized to
broader classes of Markov processes, as indicated in
the previous section. .

Consider a Markov step process E(t), teT =
[to,w), which describes the motion of a particle.

A thermodynamic system I is a collection of inde-
pendent copies of this process, represented
mathematically as an ensemble of particles.

The state of the system I at time t is its dlStrl-
bution function p{t). The state space will be
the space of all distribution functions of the




[ .

- ‘Definition 5.5.2.

C Few®

fwhere the entries of the A(t) matrix are a,

S(t) process.

Assume that {E(t), teT} is a conservative Markov
step process with state space E = {1,...N}, with
infinitesimal generator the bounded operator A*,
whose entries are a* (t). The entries a, 1 can be

1nterpreted as lnflnlteSLmal transition rates, as
_px{E(t+s)

The probability distribution of &E(t) is descrlbed
" by the Fokker-Planck equation, as

= A(t)p(t); plty) =p

, (5.5.2)
) =

agi(t). Let f% denote the space of all pr%ﬂability

measures on E. Then, equation (5.5.2) defines an
‘evolution on P because the Markov process is
conservative. We will assume the following condi-

‘tions on the process &.

Assumption 5.5.1. The Markov chain of transitions
associated with the process.E is irreducible. Every
state is reachable with finite probability from every
other state. B

Assumption 5.5.1 guarantees the following conditions
[KEI 72]:

(1) A unigue solution of (5.5.2) exists which
is a steady state solution, denoted E?,
with all entries strictly positive.

(2)

The nullspace of A is of dimension 1.

We define a thermodynamic system I as (5.5.2). The
state of the system is p and the state space is f%.

The fluxes of the system I given
by (3.2) are the elements of the matrix J, where

=a;4p; - Py - L]

J, .

13

We can interpret the fluxes as outputs of the
thermodynamical system, from the equation

J.. E {Total transitions from j to i}
ij dt

- E{rotal txansitions from i
to j}

Notice that Equation (5.5.2) can be rewritten as:

4 -
ac P (t) =L Jij

3

S B (5.5.3)

Since the fluxes can be written as expected

. values, we consider them externally observable;

that is, the fluxes are outputs of the system Z.
Consider now a thermodynamic system which does not
interact with the environment. We model these .
interactions as affecting the parameters of A. When
the parameters of A are time invariant, we define a
steady state as follows.

Definition 5.5.3 A steady state Es is the unique

solution of the equation

The steady state conditions § J‘iJ

‘exclude rotational fluxes.

=380 =i} = af (s + ols) (5.5.1) )
' .state for which J = 0.

o do not

When the matrix of
fluxes J(t) is identically O for t > t , a steady
state cannot be maintained by any cyclic mechanism.
We distinguish these steady states as equilibrium

states.

Definition 5.5.4. An equilibrium state is a_steady
We use the notation p~ for

the probability distribution of an equilibrium state.l

Definition 5.5.5. The process £ is invariant under

»where Cg(t]s))ij

time reversal if, for all t, s € T,
P(t]s) = B(s]t),
= jlEs) =i}. |

With this background,‘we can establish a number
of results, which can be easily verified:

{E()

= Pr

Lemma 5.5.6. The state p(t) is an equilibrium state
if and only if :

= {diag p, (0 }a* {diag 1/p,(®)} . W

Corollary 5.5.7.[KEI 79] If the steady state S is an
equilibrium state, the N eigenvalues of the matrix
A are real and

= > > 7 >
Al >‘2—'--7— >‘N ° a
Corollary 5.5.7 shows that the approach to

equilibrium is without oscillations as all the
eigenvalues are real.

Theorem 5.5.8. The system Z is in an equilibrium
state if and only if the system has time reversal
invariance. W

Note that 'Theorem 5.5.8 is the mathematical
version of the statement in Section 5.2 that micro-
scopic reversibility holds at thermodynamic equili-
brium. In addition to the concept of equilibrium,
we want to identify the equilibrium state which
corresponds to a uniform distribution. This is done
in the following results.

Definition 5.5.9. The homogeneous state is that
equilibrium state where

e 1

i< - L

Definition 5.5.10. The process § is invariant under
positional reversal if, for all t, s €. T,

P(t|s) =P'(t]|s),

where ' denotes transpose. |

Lemma 5.5.11. The system I will evolve to the
homogeneous state if and only ifAa =2'_, @

Notice that Lemma 5.5.11 and Lemma 5.5.6 provide

' a characterization of systems which evolve to

homogeneous states. Namely, the system will evolve
to the homogeneous state if and only if the condi-
tions of position reversal invariance hold. To have
time reversal invariance, the system must be in an




f’éQﬁlllbrlum state, from Theorem 5.5.8. To have

position reversal invariance, the system must evolve

to a homogeneous state, but it does not have to be
there yet. Thus, we can have position reversal in-

.variance at any time if A is symmetric, whereas time

reversal invariance depends on having achieved a
. steady state. .

Adopt the convention that if a; ] = aji =0,

A a,. - I o

I Es l \
. the ratlo<;~l = 1. Wlth thls conventzon, we de-

. ji

‘fine the forces Fij as:

Definition 5.5.12. is defined as

The force F, .
i)

‘ a,.

F,. = =1pn —4
ij a,.
i

‘The elements of the set {Fij; i, 3 € E, i> 3}

‘are called the external parameters of the system I.
The elements of the set {é ;7 1.3 € E, i>j} are

called the internal parameters of the system Z. W

Knowledge of the internal and external parameters
of the system is equivalent to knowledge of A,
provided that aJ # 0 for j < i.

In equilibrium, we have the relation

e e e

J;, =0 =a2a,.p. - a..p.
i3 aszj a]lpl
Hence,
g pe
F,..= -1n(—~]-'-).
i3 Pe
]

That is, for systems which achieve thermodynamic
" ‘equilibrium, the forces are always finite and the
parameter set {Fij' aji; i>3} completely specifies

the process. 1In addition, the equilibrium state of
the system can be written solely in terms of the
external parameters Fij'

Definition 5.5.13.

Let Xij be defined as

J. .

X.. =1n(1 + =) ,

ij a,.p. ®
jiti

The elements of the set {Xij; i>j} are called

internal forces. B
It is easy to verify that the internal force
xij is zero if and only if the corresponding flux

Jij is zero. Hence, at steady state, the internal

forces are all zero if and only if the steady state
is an equilibrium state.

Lemma 5.5.14. Consider the transitions of the &
process as a directed graph between the states in
E. Consider any cycle in the graph, also referred
to as a closed path. Then

z xi.+ z F,, =0.
closed path J closed path 1]

The proof of ‘this result is a typlcal proof
By definition,

Proof:
of results in this section.

Ti3 T %% T %ifs

.Hence,
P. Ji' a, s
in — =-1n(1+——-1-) +ln-;—l
S e e pj e ji i — — ji C e e e e
= - xij - Fij .
'In addition,
. pi
T in— =1Inl=0 .
closed path pj
Hence,
z (xij+Fij)=0. | ]

closed path

With this result, we can characterize the forces
Fij associated with a system approaching equilibrium

as conservative. This result is expressed as:

Theorem 5.5.15. A steady state is an equilibrium
state if and only if

(a) I F,.

9 0 for any closed path of
closed path *J

the directed graph of the process.

. = i i ., =0 £ i, jJ €. E.
(b) aij 0 implies a:]1 or all i, jJ
If, in addition, F;, = 0 for all i, § € E, the

equilibrium state is the homogeneous state. M

The concepts and results described so far apply
primarily to systems whose parameters A are con-
stant, so that no interactions with the environment
are obtained. For nonequilibrium thermodynamics,
these interactions must be modeled explicitly. This
is done in the rest of this section.

The interactions are modeled through the time
dependence of the matrix A. We assume that this
time dependence is caused by an external deter-
ministic process controlled in the surroundings
of the system. Let 0(t) be the state vector of this
dynamical system. We assume that the coupled
evolution of the thermodynamic system Z and the
state o is given by

?{ = A(F(t),alt))plt); plt) =pg
J J(F(t) ,alt) ,plt))
L a=-YEw,I®am); k) =0 (5.5.4)
E(e) = E(alt), u(t))
alt) = g(g(t;)‘,‘;(;c):)‘,. -
whe;e F,a, J are vectors composed of F.., a,., J..,

r= T A i3’ 7347 Tij




DS S When u(t) is zero everywhere, let

13§, and u(t) is an external control.

>We have
assumed that a,. = 0 implies a., = 0, so that F, .,
ij : ji ij

.is finite and F, a describe the system.

-Assumption 5.5.16. For any pair of initial condi-
tions (a ' Eo)' and any bounded, integrable control

‘u(t), there is a unique solution to Equatlons 5. 5 4).

o%@) =lima(t s a, p) . 4

-0 o’ B ‘
'Assume that g? is independent of the initial distri-
.bution P,- Assume that the unique solution of

! [

i s s s _
L REEtE).0), ate),0pe) =0

i

,is an equilibrium state, and that, for u(t) not -
ldentlcally zero, there exists no steady state which
is an equilibrium state. @B

By assumption, the system I will evolve to
equilibrium if and only if the process which de-
‘termines the parameter values is uncontrolled. The
equilibrium state is unique and dependsonly on the
values to which the parameters are driven before
‘the controls are released.

Definition 5.5.17. Let p®(t) denote the equilibrium
state solution of the uncontrolled system (5.5.4)with
the initial condition 0 = a(t). We call pe(t) the
refenence equilibrium sPate at time t for the thermo-
dynamic system. [ ]

Since the fluxes J(t) are externally observable,
the process 0(t) can be controlled externally. Thus,
the parameter set

{F(t), att), p®(v), 3p°,

a0,

v(t), terT}

can be viewed as the external interactions of the
surroundings with the system I. In what follows,
we show how these interactions can be interpreted
in terms of work flow, heat flow and other thermo- -
dynamic concepts.

The state functions of thermodynamics can be
thought of as distance measures on [ Define the .
dlstance between states p~(t) and pZQt), given that
E(t) as

P]-. (t)

2 i
AMp; (), p2(t) = 1n (——n) .
i i 2
p, (t)
1

The function A has two valuable properties: If

(t) g(t), the state of the thermodynamic system
z, (v) = p°, its steady state, then

o d 1 2 B
E{a-é- Apj (v), pi(t))} = 0.

Furthermore, the function lAl is a metric on [0,1].
It can be verified that only multiples of A satisfy
these two properties. Using this conditional dis-~

tance, we define the thermodynamical properties of
I.

Definition 5.5.18. The freé‘enéréi:of the'system B

by

T T s =E{AQ R e )

-logarithm function.

Z at time t, G(t), is given by

c(t) = E{A(p, (v), pz(t))} .

The entropy of the system L at time t, S(t), is given

—— e e e et

The internal energy of the system I at time t, U(t)
is given by

u(t) = E{AQL, p?(t))} . a

Notice that p (t) depends functionally on 0(t),
from Definition 5, % 17. Hence, all of the state

functions are dependent both on the state of the
‘system p(t), and the initial value of the parameters

a(t), when the system is left uncontrolled. In
other words, the state functions depend on the
complete state, p(t) and a(t). Using the
functional expression for A, we can evaluate the
concepts in Definition 5.5.18, as follows, in terms
of the state p(t) and the reference equilibrium
state p®(t).

p (t)
G(t) =L p; (t) In ( =) (5.5.5)
e .
i p; (t) ‘
s(t) = 2 —pi(t)lnpi(t) (5.5.6)
i
e
u) =12 —pi(t)lnpi(t) . (5.5.7)

i

These expressions lead to some simple relations be-

tween these functions, due to the properties of the
These relations are summarized
in the following theorem.

Theorem 5.5.19.
and U satisfy:

The thermodynamic functions G, s,

(a) G=U -5,

(b) G(t) > 0, with equality if and only if
p(t) = pe(t).

(c) s(t) < 1n N, with equality if and only
if p(t) is a homogeneous state.

(@ u(t) >0. N

:It is easy to see that the relations between the

state functions described in Theorem 5.5.19 cor-

‘respond to the classical relations of thermodynamics,

summarized in Section 5.2, Equations (5.2.1) -
(5.2.6). In the next definition we identify the
thermodynamic concepts of interactions with the
environment.

Definition 5.5.20. The deterministic fluxes at time
t are the elements of the vector V(t) which describe
the evolution of a(t). The external forces Fw J

\'4
EWI , and eqJ

are defined as:




w,J ) ! ;

BV = w= (3 G(E) :
0g © dt J=0,V=0

w,V 3 d ;
E'' =-35 (55 G) |

- oV 4t J=0,V=0 :
-5 R e e
F -5z (7 s(v)) .

E 37 ' at 3=0,¥=0

These forces are defined at equilibrium condi-
tions, J = 0, V = 0. The forces represent the ef-
fect of variations in the external input set when
‘the system is at equilibrium. A stronger charac-~

.terization of these forces can be derived using the

-expressions in Bquations (5.5.5) - (5.5.7). Define
gé(t) as the vector whose elements F:.(t) are
‘arranged similarly to F, and are defided by
o p; (t) ‘
Fy4(0) = -1n (-3 . (5.5.8)°
pj(t)

Then, from (5.5.5), we can compute the rate of
change of free energy as

d 4
= G = Z ((-—p )ln(—~—-) + 3% Py

at R dtlnp)'
i

(5.5.9)
The second term in (5.5.9) drops out becausetotél

probability is conserved. The remainder can be
written as

(=]
P. . .
E‘dt‘G=Z Lo InCh -2 I g in D o+
i<t j i34 P;
Z p. (;L 1n p . V() (5.5.10)
i a(t)
From Equation (5.5.10) and Definition 5.5.20 we
obtain
o) = E(o) - 2°(0) (5.5.11)
v 3 e
U@ == f P 3g P ®) ey (5.5.12)
i = F) . (5.5.13)

The next result characterizes the effects of
‘these forces.

Theorem 5.5.21.

(a) z
closed path

Assuﬁe.g is constant for t>s. Then,

F?fJ(s) = 0 if and only if the

system will evolve to the equilibrium state.

w,J

(b) (s)

evolve to the equilibrium state.

= 0 if and only if the system I will

Fq'J(s) =0 if and only if the system
T will evolve to the hamogeneous state.

() if {ai A,... %—A};s of rank N-1, then F'" ()=
; 1 Oy

; 0 if and only if the system I is in equilibrium
: at tlme t.

.Notice that the assumptions on @ imply that the

iinputs F(t), Fe(t), g (t) and =— Sa

'stant. The proof follows from Lemma 5.5.14 and
Theorem 5.5.15.

Recall that J, F are conformally arranged
vectors with N(N-1) entries. We now define work
flow as the effect of forces and fluxes.

in p:(t) are con-

The work flow W is given by

Definition 5.5.22.

F ,J <v, w V

W=<_J-

The heat flow Q is defined as

J
Q= <J,§?‘ > .

The entropy production D-is defined as

_d o
D=3S-9Q . ]

Lemma 5.5.23. D =<J,X> > 0, with equality if and
only if the system is at equilibrium. B

The proof follows from the identities

L=<, - <y, MV>- <5,x>5.5.10)
V
<—%:—U=..<E,§-_e>...<y_,_f_-"“ > (5.5.15)

and from the fact that J,., and X,. have the same sign.

Lemma 5.5.23 verifies thejthermo }namlc statement

that entropy production D is positive, and zero

only at equilibrium, as stated in Equation (5.2.4).
Using the results of Lemma 5.5.23 and Equations

(5.5.11) and (5.5.12), we obtain the first and

second law of thermodynamics, Equation (5.2.8):

I W
acv=¢

d

S =2+D2>0
d

— = =} =D < <
3t © W =D < -W .

The thermodynamic state functions U, G, S,and D
can be interpreted in terms of the theory of dissi-
pative systems as described in [WIL 72]. The free
energy of the system is a storage function, G. The
entropy production D is the dissipation rate of the
thermodynamic system, which is nonnegative. Hence,




the thermodynamic system is dissipative..

In steady state, all of the state functions are
constant. Hence, the work flow W, heat flow Q,and
the negative of the entropy production D are all
equal and negative. If the steady state is an
equilibrium state, all of these quantities are zero.
This implies that W must be independent of the
reference equilibrium state, in any steady state.

. We will write WS explicitly as a product of forces

and fluxes, with the forces independent of the
steady state, using concepts from graph theory
and circuit theory. ‘

Note that, in steady state, I Jij = 0, so :
H J :
Kirchoff's current law is satisfied for the graph of
:the Markov process, with Jij considered as a current.

These currents can be written as a set of indepen-
‘dent loop currents flowing around closed paths of
‘the graph [BOS 65]. Thus,

I

ij
k
all loop ’
currents k

‘ Jij = X g

where 0.7 = {0, -1, 1} depending on whether link ij
is in loop k or not and its orientation. Note that
J,. ==J,..
ij ji
With this notation, we can write W° as

s

W =Q=<J,F> by (5.5.13)

=3I I J,.F..
i §<i B4

=% I I o) IF,.
i j<i 1loop currents 1]

k

= z I I F.oo»

loop currents closed path 23
k of k

Notice that W° is independent of the reference
equilibrium state, because the sum around any closed
path of F$¢. is zero.

Congider now an uncontrolled system with time-
independent parameters. By Assumption 5.5.16, the
system approaches an equilibrium state. By Theorem
5.5.21 EV' is zero; hence, the work flow W is zero.
However, the heat flow is zero only in steady state.
This leads to the definition of an isolated system.

‘Definition 5.5.24. An isolated system is an uncon-
trolled system with time independent external para-
‘meters and constant internal energy U. W

‘Lemma 5.5.25. The internal energy of the system
X is constant if and only if the reference equili=-
‘brium state is homogeneous. [

Theorem 5.5.26.
-then

If a system is an isolated system,

(a) W=Q=20

(b) Eq,J - Fw,J =0

a
-— s >
@ esz0 - W

We can also obtain the equivalent statement of
the universal evolution criterion of Prigogine
[NIC 77]1. Define a variable 2 as the rate of
entropy change. That is,

4

A ='3€ S .

Then, Equations (5.5.14) and. (5.5.15) imply

a a Py
—-—2Z==3r ¥ J,, == (In="
dt i o§<i ij 4t P.
P,
+ 3 mH g
i3 F H
i
at - at
where
4.z P,
d i
—_— == I J,. - (In (—))
dt i< ij dt pj
1, 4 2
==L =g p) >0
1 . 1

with equality if and only if the system has reached
steady state. This is the equivalent statement of
Equation (5.2.9).

In a macroscopic sense, we can consider the
fluxes V and the forces EV'J as inputs to the
thermodynamic system 5. The outputs of the system
canbe viewed as the fluxes J and the forces F¥«V.
In other words, the inputs to the system are the
external parameters and the deterministic fluxes,
while the outputs are expected values computed from
the system state. In addition, the fluxes J, the
internal parameters a,and the state p define the
internal forces X. Concepts of reciprocity involve
these input-output relationships, as well as the
internal relationship between state and internal
forces. Close to equilibrium these relationships
can be expressed as linear, leading to the next
result.

Definition 5.5.27. The thermodynamic system L
linearized about a steady state p® is externally
reciprocal if the operator H® : (v,w) ---> (x,y)
is self-adjoint, where (v,w) and (x,y) are related
by the dynamical system

ac2TRL A+ BT+ BW
X=Cu+Dyv
Y= ng + ng ’

and the parameters of the system are defined by
A

S=H
. ss

El ) w,J (ap) -
F ss
5.2 = oV (2p) ’ss




fThe' system I is internally reciprocal if the opera-
tor L: (J, &, p) --> X has

3 3

= X =0 =x=-X , and !
da —lss 9p —|ss

2

_}_{_I is symmetric - a

External reciprocity involves the input-output
relations of the thermodynamical system, linearized
about a steady state. Internal reciprocity looks at
the relation between the internal forces X and the
internal parameters J, &, and p. We can now
characterize rec1proc1ty in terms of equilibrium
concepts.

'By definition, we know

J, .
X,,=1n (1 + —=1—) |
i3 a..p.
3i¥i
_ Therefore,
%y 8-k 8(5 - 1)
oJ, s
k1l |ss ajlpl + Jij
s . .
3Xi, ) Jij Sk - 3) S(L - i)
Sak h 75
li|ss
pi. 31(1 + ——s_l;’,s_—— )
3X, . J 6(1 - k)
- | B
dp s ¢
+
k |ss ‘P, (alel Jlj)
24 ax .
‘Hence, for 35 and 3 to be 0, it is neces-
: ss ss

sary and sufficient that the fluxes J be zero, at
‘steady state. Th%s condition also guarantees
' X

xsymmetry because —3—‘5‘— is diagonal. Since J is zero

:at equilibrium states, we have proven:

Theorem 5.5.28. The system I linearized about a

_that

steady state is internally reciprocal if and only if
the steady state is an equilibrium state. W

If the linearized system H° in Definition 5.5.27
'is a minimal realization on RN"! of the input output
‘relation between (v,w) and (x,y), then external
reciprocity implies the existence of a matrix T such

1

aSt = T@S)"

C B!
Hea [T,
S E,

This follows from the assumed symmetry of #° and a
representation result of Willems [WIL 72]. &n
additional characterization of external reciprocity
‘is provided in the next theorem.

Theorem 5.5.29. Assume that the linearized system

N-
H° is minimal on R 1. Then, the system I is

externally reciprocal when linearized about a steady
‘'state if and only if that steady state is an
equilibrium state. B

Barlier in this section, we showed that equili-
brium was equivalent to time reversibility in terms
of the conditional transition probabilities. It
turns out that external reciprocity is equivalent
to a form of time reversibility in terms of the
work flow. This is based on a result of Day [DAY 71].

Let to = ~©, For first-order deviations of

the forces Ew,J' denoted by if_w'J, and fluxes V,
denoted by v, about their equilibrium values, the
instantaneous work flow at time t is

0 SN B £
W(t) = . < H™ (t-s) > ds ,
' 00 ¥ ! ¥

The total work done by the system is thus

©

("I, v = [ wmwat.
-

Define the time reversal of a function f(t) as f*(t).
Then, Day's result implies that, for all piecewise .
continuous _f_w'j, v, if the linearized system is
externally reciprocal, then

(£, v) = T ) *, v

which corresponds to time reversal of the inputs.

For a minimal system, Willems [WIL 72] es-
tablished that the matrix T is symmetric. In our

case, whenever the system is linearized about an
equilibrium state, the matrix T will be given by

T = diag(p]) -

We can consider linearization of G for small devia-

" tions of p about ge. For Equation (5.5.5), let g

be the perturbation of G; then,

: 1 Py _pe)z e -1 e

9=$5"‘—;—"—-=5((2-2)"£ -pMh.
it e o
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‘This function is called the coenergy of the system in

- [WIL 72], and serves the role of a storage function
‘in establishing stability results.

5.6 Directions of Future Research

We have made the assumption that a system con-
_ sisting of an ensemble of identical particles,
} corresponding to a thermodynamic system, can be

i studied in terms of the properties of a Markov
‘process. This leads to the development of a theory

-which corresponds rather nicely to thermodynamics,

.describing both equilibrium and nonequilibrium,

~linear and nonlinear processes. This correspondence

i provides a basis for the analysis of complex physi-
i cal systems operating under thermodynamic con-
< straints and hope of applying a theory of stochastlc

“control in a physically-meaningful manner to such

. systenms.

,' The above results have been developed rigorously
' for Markov step processes with a finite state space
‘and formally for Markov diffusion processes.

‘ A program for the future should include:

(1) A rigorous development of the results for
Markov diffusion processes.

(2) Better characterizations of interconnections
of thermodynamic systems and the reference
equilibrium state.

(3) A generalizaton of the performance bounds

for periodic trajectories of Example
5.3.1 to the general case.
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The actin position x and the cross-
bridge tilt angle y. For unattached
states Y is independent of x; for
attached states

Fig. 5.3.1

/2 + tan-l(x - s/2)/%,
CB attachment to site 1

/2 + tan-l(x + s/2) /2,
CB attachment to site 2

By convention, x decreases in con-
traction, when the actin filament moves
to the left relative to the myosin

« filament (indicated by the arrow).
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Fig. 5.3.2. A set of actin sites appears to the
right of an unattached cross-bridge.
The cross-bridges attaches and cycles
through 2 attached states, each with
different preferred angles. As the
angle at which the cross-bridge is
attached decreases, the probability
of attachment becomes sufficiently

small that the cross-bridge detaches.
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Fig. 5.3.2 A directed graph for the state space E.

. The states are numbered clockwise, from
M for state 1, A{-M for state 1', and
A *M for state 1''. We have let M=myosin,
A, = actin-site-1, Az = actin-site-2,
T = ATP, D = ADP, and P = P,. The super=
scripts *, **  and + distin%uish bio~
chemical states.




6.

“posed using Lyapunov function ideas.

‘tions serves as an important guide.

- The solution of (6.2.1) is denoted by E

Theorem:

Conservative and Dissipative Systems

6.1 Introduction

One of the important problems in the study of

. interconnected power systems is the transient stabi-

lity problem. This problem has attracted consider-
able attention recently and methods have been pro-
In construct-
ing the Lyapunov function the idea of energy func-
One of the
objectives of the present work is to develop a
theory of stability of stochastic differential

' systems based on ideas of conservation and dissi-

pation of energy which would be applicable to
stability (stochastic). problems for power systems.

;At the same time, this theory must contain as a

- special case the deterministic theory of stability
fbased on ideas of dissipation as the variance of

" the noise processes involved tends to zero.
" the deterministic case such a theory was developed
‘by J.C. Willems [WIL 79].

In

As a result of these considerations it was
decided to take a closer look at conservative and
dissipative linear systems, even in the determinis-
tic situation. It is shown later in this chapter
that the theory of conservative linear systems is
intimitely connected to Scattering Theory as de-
veloped by Lax and Phillips [LAX 67] and many of
these ideas extend to linear gaussian systems.

We also show in this chapter how recent results in
stochastic differential equations provide the
right framework for extending the ideas of Willems
for dissipative systems to a stochastic setting.
6.2 Recent Developments in Stochastic Differential
Equations (Kunita) [XUN 81]).

Suppose we are given

(i) Bt— (B,",...,B ), t € [o,T] which is
an m-slmen51onal Brownian motion.
(ii) X (£,x),...,X_ (£,x), t € [0,T], x € R
are d-vector-valued Lipschitz continuous
fynctions i.e. X (t,x) = (z}{t,x),...,
X3 (t,%)) . J
Consider an Ito equation

d

m .
xo(g,Et)dt + 551 xj(t,Et)dBt.

A continuous d-vector process &

ag (6.2,1)

t

is called a solu-

~tion of (6.2.1) with the given Initial condition

Ej = x, if it is Ft measureable for each t > s
and satisfies

? t .
X ¥ J

o (x, Er)dr + 51 J hj(r,Er)dBr
(6.2.2)
(x,m).

We then have:

(Kunita)
We can choose a modification of the solution

' in a way such that for almost all w

(i) Es ¢ (X,0) is continuous in (s,t,x).
’
(ii) & (x,0) = E & (x,w))w).
k10t Larty TELE
holds for any tl < t2 < t3 and x.

- (iii) The mapx-*E & (x.m): :Rd-* ]Rd

7 isa homeomorphlsm for any s < t.
The significance of this theorem is that stochastlc
differential equation behave exactly like ordinary
differential equations except on a null set.

6.3. Dissipative Systems

" In order to extend the definition of dissipa-
tiveness to a stochastic setting we adapt the frame-
work of Willems [WIL 79]. Using the notation of
Willems, a dissipative system (deterministic) in
state space form is defined by a triple {z,v,s},
with I a system in state space form on X x W (X =
state space, W = space of external_variables), V:
Wx R -+ R such that V(w(*);) € L loc for allwe I
(s = external behavior) called th& supply rate
and S: X x R * R a function called the storage

“function, such that the dissipation inequality

- 6.4.

> S(x(tl),tl)

el
1
S(x(to),to) + j Viw(t),t)dt

% (6.3.1)

in satisfied for all t t and (x,w) € I.

If the above 1nequa11ty holds with equality the
system is said to be conservative.

For the generalization to stochastic systems,
consider equation (6.2.1) together with the obser-
vation equation

dy, = h(E) at +an_,

(6.3.2)
where y_ is a p-vector-valued random variable and h
a map from R4 to RP which is assumed to be square
integrable and N¢g a prvector-valued Brownian motion
independent of £,

We then extend the definition of dissipativeness
to a stochastic setting by refering the dissipation
inequality to hold in one of two following ways:

t
l H
V(@B .y )at > S(E_‘.t ty)

t 1
[<]

SE, ,t) + [ (6.3.3)
[e]

for almost all w
or

e

E{S(Et ,to) - s(Et ,tl)] + I Ev(dBt,yt)dt >0
o 1 t
° (6.3.4)
(E denotes expectation).

The two definitions of d1551pat1veness a priori lead
to different results. Nevertheless they need not
be contradictory. These ideas will be developed
further in a forthcoming paper [MIT 82] using the
theory developed by Bismut [BIS 81]. It leads to
the study of stochastic variational problems involv-
ing stochastic integrals in the cost functions and
makes essential use of the ideas of Kunita c¢ited
earlier.

Stochastic Calculus of Variations

The idea developed in the previous section is
related to the study of stochastic calculus of vari-

‘ations and stochastic mechanics as developed by




‘portant role in the work of Propp and Wyatt,
.. Chapter - 5)

3

'Fleming [FLE 8lal. 1In this work a certain logarithe~
" mic transformation relating linear parabolic equa~

tions and Bellman-Hamilton-Jacobi equations plays
an important role. These ideas have also been
extended to the context of non-linear filtering by
Fleming and Mitter [FLE 81b].

It is felt that these ideas will play an im-
(see
since it gives stochastic varia-
tional interpretations of Fokker-Planck equations.

6.5. Linear Conservative Systems and Scattering

Theory . .

.

In this section we discuss the relationship

-between linear conservative dynamical systems and

Scattering Theory as developed by Lax and Phillips.

‘For simplicity we consider the discrete~time situ-

- ation.
" an appropriate conformal transformation.

The continuous-time case can be handled by
For all

‘definitions and notation see either {NAG 70} or
: [LAX 67].

- where Dp,: T, ~ X, D

Consider the system

x(t+1) = Fx(t) + Gu(t)
() : (6.5.1)

y(t) = Hx(t) + Ju(t)

where u(t) € U, x(t) € X and y(t) € Y where U, X
and Y are finite dimensional spaces and we have
arranged matters such that U and Y are isomosphic
to subspaces of X, and F: X > X, G: U+> X, Ht X > Y
and J: U > Y are linear transformations,

We assume that (I} is controllable and ob-
servable and it is also conservative, that is,

Hxw |12+ [aer || =[x [12+ ] yer |13,
- (6.5.2)

¥t > 0 and ¥x(o). This is equivalent to the matrix

[F G

H D

It can also be verified that F is
It can then be proved

being unitary.
a contraction.

Theorem: (IZ) is unitarily equivalent to
T D*
(N-F) B "T*lv (5.3)
T T*

o being an invariant sub-

' space of X and Dp: X - DT' UT subspace of X, Here

T is a contraction.

For (5.3), form the Nagy-Foias characteristic func-
tion

(r-z1)"*

T*

¢p(z) = = T*[D, + 2D, »

It 'can be shown that ¢_(z) is a contraction

" in the interior of the unit disc where it is analy~

tic, System (N-F) is controllable and observable
if and only if T and T* are asymptotically stable,
<: Define

- are asymptotically stable, OT is unitary,

eT(ei"‘) = lim  ¢_(z)
- S i¢ T
zre

‘FPor a (N-F) system which further satisfies T and T*
Now
consider the unitary map

. ‘.,A..IDT SRS 1t N v e e e v
¢) on
T D s
TI

k=1, &0, @O0, 80, @
Let ‘

0 = .00, 0. 00,

0, =0,@0,0 ...

Firstly, U is the miﬂimal unjitary dilation of T.
Now the quadruple (U, D_, D+; X) is a Lax-Phillips
system,

Define

4 ,
S(z) = P, (U - z1) | .
s O

where D & and D_ considered as embedded in K, and
P denotés projection. This is termed the Heisen-
berg Scattering matrix. This coincides with the
Nagy~Foias characteristic function considered
earlier. The significance of this result is that
the spectral structure of T gives all the infor-
mation about conservative systems.

These ideas can be generalized to a stochastic
setting, where u(t) is now thought of as a white
Gaussian sequence; by working with spectral den-
sities. Conversely starting from a Gaussian pro-
cess y(t) it is possible to define the scattering
matrix by means of a canonical procedure, The
definition of the scattering matrix may be illus-
trated by means of the following diagram, The de-
tails of this work will be avialable in the forth-
coming report be Avniel and Mitter [AVN 82].

Causal and
Causally
invertible

Linear
T ransformation

Causal and
Causally
Invertible
Transformation

inverse
Fourier
Transform

v Fourler v
[  {Transform

innovations

[

Backwards
innovations

Figure 6.1.




" -| exence-equation model is obtained.

7. Deterministic Analysis of Stability

7.1 Introduqtion»

The presence of relays and logical devices in
power system feedback loops at all levels gives

behavior of the control variables of the system as
functions of time, While the methods of stochastic
stability provide a more general framework for the
evalution of stability of discontinuous systems,
they do not in many cases lead to a useful char-
acterization of sample path properties. Yet these
are often essential in assessing the validity of

a complex model, since they may be readily compared
with actual operating records. In most cases of
practical interest a deterministic model or models
can be derived from a stochastic model by setting
noise terms to their mean values or considering
each possible value taken by a discrete random
variable, etc. A differential-equation or diff-
Classical

- | stability theory deals with the asympotitc pro-
iperties of trajectories generated by a system in a
given initial state or set of initial states.
Classical stability theory for discontinuous systems
is not well-developed, and even basic questions of |
existence and uniqueness need to be resolved; the :
rmeans for resolving such questions are often diff-
%erent for deterministic and stochastic systems. |
H In order to highlight the major effects of !
idiscontinuities on stability a class of piecewise-
‘constant systems, termed diced systems, have been
;examined in detail. This analysis, described
:below, leads to the conclusion that, in addition to°
%the usial issues of stability theory, discontinui-
‘ties may lead to a fracturing of trajectories and

‘a growth in the number of possible solutions to

jthe dynamic equation. This "chain-reaction” effect
‘has not been traditionally studied by stability
‘theorists: it may be viewed as a new type of in-
:stability. In other words, not only the magnitude
‘but also the cardinality of trajectories may be
‘dynamically unstable. This calls into serious i
‘question many of the proposed methods for predicting
the future behavior of a power system; in the pre-
‘sence of discontinuities, trajectories may be un-
predictable.

Other qualitative aspects of deterministic
power system models have been studied in related
works ({[JOH 81a,b], [WIM 81]). These include re-
presentation of asynchrony, dynamic modelling of
.multitasking,.and realization theory. ,

7.2. Stability of Diced Systems - Preliminaries

Diced systems, as defined here, are finite-
dimensional, autonomous, continuous-time dynamic
systems governed by equations of the form (£) =
£(x(t)); %o(te) = x,ER%, t 2 ty, where £ : R® * RV
is piecewise~constant with discontinuities only on
the surfaces where one or more coordinates of R
take integer values. A diced system in R“ is very
easy to illustrate: the plane can be divided into
a uniform gird, and within each square a vector
representing the magnitude and direction of f is
shown (Figure 1).

Existence and uniqueness of a solution for any
fixed initial state, x, can be studied using a

o
generalization of the method introduced by [FIL 64}:

"{tion points and times, {x(tj),t;}.

rise to the possibility of discontinuous (switching)
.
i
i

‘simulation "faster than real-time"
'strategy.
-is not treated here, the results suggest that signi-
ficant economy of real-time computation might be
‘achieved by approximating the dynamics of a diced

‘n-tuples of integers (Z).
‘represent an n-tuple of binary numbers (B = {9,1hH.
Let x; (x):
‘of the open set {x = [x3,...,xpleRD

of solutions, multivalued extensions of f onto its
discontinuity surfaces are required. Every tra-
jectory can be represented by a sequence of transi-

Definitions of various types of stablllty and
instability can be constructed from an examination
of the invariant limit sets of the trajectories. '
For diced systems, the range of asymptotic behavior
of trajectories starting from different initial
conditions can be exceedingly rich. The possibility
of approximate global stability analysis using non=-
deterministic automata is examined and its limi-
tations are indicated.

In practice, diced systems might be viewed as
approximations of continuous or discontinuous
systems. In the former case, for instance, we
might seek the best piecewise-constant (finite-
element) approximation to a continuous system.

Wang ([3] has presented an application of this type

for solving partial differehtial eguations. In

the latter case, a state space diffeomorphism

might be used first to transform the discontinuities

of a system to lie along coordiante axes, and then §
i
{

a diced approximation could be developed which
would preserve the discontinuous behavior of such
systems. The potential practical advantages of
diced approximations lie in a reduction of in-
(formatlon storage requlred to characterize a system
‘and the possibility of assessing its approximate
asymptotlc behavior without a detailed simulation.

' For example, at the time of a known failure
‘of a power system, it is often desirable to pre~
‘dict the long-term consequences of various control

istrategies so that an operator can decide among '

‘them. Yet the system is too big to store all possi-
‘ble consequences in advance. A practice which has

thus been followed in some cases [EWA 68] is toruna
for each control’
While the issue of approximation accuracy

system. However, they also suggest that the patterns

‘'of stability and instability exhibited by such dis-
continuous systems may be highly complex and that
‘analytical methods are not likely to yield clear-
icut predictions about global stability.

Let i = [iy,...,1 1€2™ be a multi-index on the
‘Let b = [bl,...,bn]EBn

RD - R be the characteristic function
Jig < %y < 1y
+1, k=1,2,...,n}
Definition: A diced initial value problem
(IVP) is specified by a system of ordinary differen=~
tial equations

x(t) = £{x(t)) ; x(t) =xer’; t >t (7.2.1)
o} o - O
where £ : R® + R has the particular form
£x) =L £ X (x) ;b= 0eB™ (7.2.2).
iez

and f, xER for each multi~index i.

The surfaces of discontinuity of £ may be
classified by their dimension. Let 1(b) : B®
{1,...,n} be a function denoting the number of "l's
in the binary n-tuple b. For fixed i€Z , consider

traectories may exhibit sliding mode segments and | the sets
higher-order non-differentiable behavior as illu- ( n ‘ o
3 . X s - = i < < i if = .2.3
strated in Figure 1. In order to obtain existencs Spi xeR | i, <% <ig if bi 0 . )
ik = X if bk =1, k - 1,2,,..,nt
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Trese may be viewed as the set of submanifolds "at-
tached to"thé point x = i.* For example S,;i is the
interior of the n-dimensional cube indexed by its

vertex at x=i; S;; (the shorthand 1 denoting b = )
[1,1,...,11) is the single point x=i. The submani-
folds of dimension p associated with x=i are

s° ={s, | 1) =n-p} p=0,1,...,n (7.2.9)

1

This notation provides a compact classification of
all of the subsets of R™ which are of interest.

In the next section, conditions for well-
posedness of a DIVP are examined. This is done by
extending f to its discontinuity surfaces (from
{f } we generate {fb }, b # 0eB™). Then a con-
structlve procedure can be used to generate solu-
tions k(t) = . ¢(t,ty,x,) for each x,ER", t ER and
hence to define the transition map ¢: R X R X R
|* R, . Let X denote the function space in which
. jtrajectories are defined. This leads to the

‘Ifollowing

Definition: A diced system is an autonomous
dynamical system (X,Rn,¢) (See [WIL 711).

Stability has been viewed as a qualitative
property of a dynamical system, and concerns the
asymptotic behaviors of trajectories x(-) = ¢(-,tq,
X5) as %Xo€X is varied. Stability of diced systems
is discussed in Section IV. Two useful notions
iwill be those of the positive limit set and the in-
‘variant set [WIL 70].

Definition: The set @ C R™ is invariant with
‘respect to the system %(t) = E(x(t),t) if for any
X0 there is a tg such that the motion §(t, torXg) !
belongs to § for all t > tg. }

Definition: The set I TE? is called the posi-
tive limit set of a bounded motion ¢ (t; torXgy) if, |
for any point p € I, there exits a sequence of times
{tn} tending to infinity as n*®, so that

lim d(t ,t ,x) ~-p
R LICNCRE R ]

(7.2.5)

In applying these definitions it will be use-
ful to recall that a function x(t) is periodic of
period T > 0 if x(t) = x(t+T) for all t; "the"
period of a periodic function is defined as the
least T for which this equality holds.

717.3. Existence and Uniqueness

.

consider the DIVP (7.2.1), (7.2.2). Defining
solutions within the cubes S,;j by integration is
entirely straightforward; all difficulties arise
in attempting to extend solutions across the dis-~
continuity surfaces of f; in general, there is no
unigue continuation. Various possibilities are
(a) To restrict the class of £ so that continua-
tions are always unique (this is very restrictive
indeed, and essentially eliminates many interesting
oshenomena from consideration).
(b) To eliminate the non-~continuable surfaces from
the domain of £; however, then all points on all
trajectories leading to such surfaces must also be
aliminated, and a large part of the original domain
of definition may ultimately be excluded.
{c) To choose an ad hoc rule for continuation of
solutions; however, it proves difficult or im-

'The obvious injection of the integers into the
xeals is implied.

jIn this way a viable deterministic existence theory

]possible to do this in a self-consistent and unbiased
manner. . ) )

A fourth alternative has been selected here:

(d) To sacrifice unigueness and continue all sol-
utions through a discontinuity.

can be developed, at the cost of considering a count-
table number of alternative solutions. A "physicall
justification for adopting this approach is that

in the presence of small perturbations of the ini-
tial conditions, a solution near to at least one
alternative solution will occur.

‘A constructive procedure is given for defining
solutions.. To simplify its presentation, a multi-
valued continuation of £ to the surfaces Spj, b # 0
is first defined. 1Initially, f is specified on the
submanifolds ST = {s ;} of dimension n. The con-
tinuation procéeds recursively to submanifolds,
sP of dimension n-1, n-2,...,0, Recall that SQ is
the point set {xeRP|x = iy, iy an integer}. Nota-
tionally, a single valued fbi will not be distin-
guished from a multivalued £,_,, the implication
being that the prescribed ruEé is applied to each
possible value of fpj in turn, and the set of all
results is retained. Let p=n. Suppose fpj are known
on Si, p £ g £ n. Then fbl can be extended to S
as follows, for eachllaz

Suppose Sblesp . Let indices jj...jn_(p 1)
:denote the ordered nonzero positions of b, ile., !
b: =1, k=1,..., n-(p-1) and bJ—O otherwise. The |
§ k neighborhoods of Sp; of diménsion q, p € g < n,!
ican be defined as follows. For g=n, consider all |
indices I formed by decrementing i k by one for any:
:subset of the subindices kf yees, D=(p=1), 1nclud1ng
ithe null—set then Sgy es~ ‘is a neighborhood of S
where b = 0. For q = n—I, consider all values b
hav1ng a single "one" in one of the positions jji..
Jn-(p and for each b, form I from tge remalnlng :
‘n—(p—l} 1 indices as above; then SE”€S~ is a !
’nelghborhood of Spj. For g = n-2, conSider all
values b having "ones” in any two of the positions
31,..., Jn-(p-1) and from each $ and I from the ez,
remaining n*(p-l) -2 indices as above; then SgIESI
is a neighborhood of Spj. This procedure is
continued until g=p. -1 ;

The values of f on Sbl sP are determined
from the values of f~~ on each of its neighborhoods
‘SbIrSQ, p<g<n. I? is thus sufficient to give the
‘proceéure for determlnlng fpi, assuming that these
‘values on higher-dimensional submanifolds are known
i(i.e., the values can be determined recursively).
§Deflne Sgy to be an input submanifold to Spi if
(fbl)jl 0 for all ! such that by = 1, and for all
remaining £ in the set 31""'3n— 1y () <0
for those & such that I, = i ,,whl?e (f51) > 0 for
those £ such that I, = ig-1. Define Sgy to be an
output submanifold If (f§3), = O for all % such tha
bl = 1, and for all remainz%g £ in the set 31,...,
In-(p-1) * (£57Y4 > O for those % such that Ig = ip
while (fpi)g > for those such that 12 = ig-1, Note
that those sefs for which (£fgy)g # 0 when By =
need not be considered. So long as the set of out—
put submanifclds of Spi is non~empty, fpi 1s assign-
ed the set of all values fp; on the output submani-
folds. 1If the set of output submanifolds is empty,
fpi is assigned the set of all values fpj on the
output submanifolds. If the set of output submani-
folds is empty, Spi is a generalized sliding sur-
face. Consider f§} on ShieSk in the input set. If
this set is empty, set f£j] ="0. Recall that SpYeS»
is formed by keeping i unchanged in all but one
position, say ji, of b, so B = [bl,...,b -1 0,
bjk+l""'bn] and either I = i or I ~ [ll""’le -1

bi

v R
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"1 £ to all of R® is completed.

‘The time tj is defined as follows: for each & such
s that (fpji)Q is nonzero, let (ty)g denote the first

'if Sbi is in the input set then (£j])

tt1 = minl(ty)gl and £y =
ithen t
jwise, x; defines new values of b,i; and p, and the

Lype l'ln] Thus there are a maximum of 2(n-(p~1))
surfaces in this subset of the input set. These
surfaces are- considered in pairs to determine the
admissable values of fyji:; using the example above,
ik < 0 and if
Spy is the input set (fgy)s > 0. If bothelements
are members of the input se% then

£

bi [(f~~)

(£ (£x.)..1

bi Iy
(7.3.1)

bl - S. .kf-‘vr]/[(fw’?)

while if only one is in the input set, let

fbi
The set of possible values of £ , on a generalized
slidipg mode is completed by considering each
Spi€Sy in this manner. 1In all such cases, (fbi)j ;
=1,...,n~(p-1) are zero, so that further mo- "X
tion occurs on Spj itself.
Thus, the procedure for extending the functien
The complexity of the
procedure arises from the large number of possibil-
ities which can arise. A number of such special
cases are illustrated on Figure 2. Evidently, the
procedure for extending f is not the only one which
could be devised. In the next step, construction
of solutions, however, it will become apparent that
the underlying principle has been to define f in a
manner which preserves all trajectories that might
arise from each initial condition.
Let XoER® be given as the initial condition
of (7.2.1) at t = to; let Spi€S; be the smallest
submanifold containing x5. Let fpj denote one of
the extended values of £ on Spj. Define

0

{ + - : <T < .3.
¢.T,to,xo) X fbi(T to) : to T <ty (7.3.2)

T > ty such that [¢(T,to,xo)]g is an integer; then !
dlegrtgixg)s I fpy =0,
# Xo, and this solution terminates. Othex-

solution process continues:

= b I (TR G B ST
(7,3.3)]

¢ (Trterk)

On those surfaces where fy; is multivalued, each
possibility mustbe examined In turn; inthis sense,
¢ is also multivalued, Each trajectory pieced-
together in this fashion can be summarized by a
sequence {xk,tk}, k =0,1,... in some cases, these
sequences are finite and in other cases infinite.
By inspection of {x } alone, a corresponding sew
quence of regions {Ok} where Uke{sbl} is the min-
imal submanifold containing X}« can be constructed.

A solution of (7.2.1), (7.2.2) is then defined
in the obvious manner, as any ¢(t,t,,x,) constructed
by the continuation procedure (7.3.3). It has the
property that for any finite admissable k, ¢(t,tgo,
X,) is piecewise continuous on [to,tk]. This sol~
ution by continuation is said to be asymptotic if
lim t An asymptotic solution is piecewise
cBntinuous. For purpose of the present work, a
solution will be said to exist if the state-~space
continuation is asymptotic.*

= ©o
.

*Morecver if lim tk7‘ @, golutions by time-continu~
ation could be defined; howvever, their properties

will not be explored here.

|<F for all i, then (e, _,x ) - xol < F (e~
for all ¢€H(t (XS) .
Proof: Thed extension of f to £ always

Asymptotic solutions need not be unique, but the
rate of growth in the number of solutions can be
bounded as a function of k, since the maximum num-
ber of output submanifolds can be bounded above for
any Spj. If there is only one asymptotic solution
through (xo,ty), it is said to be unique. Continu-
ous dependence of ¢(t,ty,x,) with respect to xg,
of course, is not to be expectedfor t > tl.

7.4.

Stability

The usual definitions of stability presuppose
a solution which is well~-posed in the sense of
existence, uniqueness, and continuous dependence
on the initial data. Diced systems, in general,
do not possess the last two properties,  One al-
ternative is to nevertheless use the standard no-
tions of stability, restricting their domain of
application to those initial states for which the
usual notions of well-posedness are (locally) satiss
fied. Unfortunately, the set of such initial
states appears quite difficult to characterize and
thus imposes an awkward restriction on the appli~-
cability of this alternative.

Another alternative, introduced here, does not
impose such restrictions, butweakens the notion of
stability that is employed. Stability is viewed
as a gualitative property of a trajectory, and a i
system is then said to be stable when all of its ;
trajectories share this property.

Definition: The motion of diced system (7.2. IL
(7.2.2) initiated at (tg,x.) is

M(t X)) = {¢(t, toex ), >t | ¢ is a transition ,
function initiated ;

at (t_,x_ 1}

i
which is the set of all trajectorles originating at’
(torXo) - 1

Definition: The motion M(t X ) of a diced ,

system is said to be i
{{a) Bounded in magnitude if there is a constant
® > 0 such that

max

deMit % ) {sup [l¢(t'to}xo)fl} <@

>t
- O

(b),'Bouﬁaed in cardinélity if there exists a con-
;stant N such that

sup {cardinality of M(t X )} < w
t>t

The concepts of boundedness in magnitude and
cardinality are independent. In both cases, the
only difficulties occur at t3®, since (a) any
d(t,t ,x ) is by construction bounded for all
£init@ t§ and (b) the cardinality of dt,to,xs) is
finite, by construction, for all finite t. The
following propositions are almost immediate.

Proposition 7.4.1: In (7.2.1), suppose Ific‘

guaranteed that |lf .‘ <F, and the constructlon
procedure (3.3) guarénteed that the estimate of the
proposition held for each t. gq.e.d.

Proposition 7.4.2: Let ll] |11]+...+[1 l
Suppose for system (2.1) there exists™B > O
such that for all |i| > B, and k = 1,...,n,
i < 0. Then M(t Xy ) is bounded in magnltude.

Proof. For any i such that |i]| > B, every

(£ l)k
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/tion process cannot termi
‘such i,

set; Spbi COptaing output, submanifolds with the same |
]i or smaller Ii], and input submanifolds with the
same |i| or larger |il; further more, S
outputs to Syy with 17] <Lli‘. Thus the construc-
]i]mis”reduced at! least once every n.in-. .
tervals; hencekeveryvsolutioqmsatisfieswJ¢(t,t X ﬂm
< B for t sufficiently large.| Thus M(ty,x,) is °

magnitude-bounded.

AU
Proposition 7.4.3:m_guppbsewthatwforveverym

Then the motion M(tg,xs) PE (7.2.1), (7.2.2) is
bounded in cardinality.

. on
its output submanifold or the;%alue,zero. If a ?
trajectory enters Sy, it;either continues uniquely
to the output submanifold, or terminates at Spj.
In either case, the cardinality of the solution can-
not increase during its construction., -———--- - -

Thus there are two notions of instability for
diced systems: solutions may become unbounded in
magnitude, and/or they may become unbounded in
cardinality. This second form of instability is
new: a trajectory can fracture and ‘a chain reac-
tion of subsequent fractures may ensue--~the com-
plexity of the process grows without bound.

Next, a notion of stability is put forth.
Suppose that the motion M(to,xo) of a diced system
is bounded in magnitude and cardinality (or simply
"bounded"). Then a set SC R® consisting of a
finite union of the submanifolds Sp; is termed a
positive limit set of a (bounded) trajectory ¢(t,
torX,) if for any point xeS, there exists a se-
quence of times {T,}, tending to infinity as k°®,
so that R e S
ii2)¢(rk.t°,xo? j f‘v— 0 (7.4.1)
where ) (denotes the set-membership metric, i.e.,
if x€Sy;, A ;T o T

Yy=x( = ' _o“_'yé's'l'); )

sy

In applying this definition, it is important j
to recall the standing assumption from Section 7.3,
that all trajectories are asymptotic, so that suchj
sequences {Tk} exist., " ;T o T T

Definition: A bounded motion M(to,xo) of a |
diced system is termed pointwise stable if all tra-
jectories ¢(t,tq,x )€ M(to,%o) have the same posi-!
tive limit set. The motion is locally stable for
XoE€Sp; if all trajectories ¢(t,ty,x)€ M(ty,x), ‘
XESp ;. have the same positive limit set.
tion is globally stable if all trajectories ¢(t,
to,x) have the same positive limit set. =~~~ T

Concepts of uniform stability will not be
discussed since only time-invariant diced systems !
are considered in the present account.* !

*The results could be extended in this direction

for systems with continuous time-variation; however
discontinuously time-varying systems may not be con-
tinuable, as Filippov pointed out.--- -~ - - - . -

i RAATI LA it
AL MATERIAL

,alwaysuﬁj,w._

ate for ]ii{ﬁlﬁﬁiandfféﬁ’AfHE?ﬁrocedureTthafitk
... assumption that. %g_tkhéﬂ&.ﬂ“This.suggestswthat a

-l ment_of stability.
{iezn, beB", Sp; has at most one output _submanifold] ]

URGANIZ/A fining stability notions. To simplify the remain-
. Proof: The éxtensioh procedure of Section | ing concepts it is now assumed that the trajector-
7.3, shows that ;in this case;fy; takes the value

FINAL SIZE 8%, X 11

Pﬂ £act, the eyaluation of stability, accoxding to
ithe definitions given, can be based merely on know+
fledge of the sequencew{o 3_of_submanifoldswcontain-
ing {xy}, since it is known from the constriyction
> typ and from the asymptotic

liway to generate the sequence {o}} autonomously
without explicit integration and generation of {xk.
FHO%y} would be particularly valuable in the assess-
___This_has_not_been achieved yet,

___knowledge of the time-structure {ty} of in-

dividual solutions can bel of further value in re-

lies are uniquely-defined .{e.g., as occurs in Pro-
'position 7.4.3) and bounded. Suppose ]I is a posi-
‘tive limit set of such a solution in the conven-

‘tional sense of Section7.2 (eg. 7.2.5)). Then in
'the usual manner it can be shown that Il is bounded;
‘closed, non-empty and invariant, the last~propertyé
‘being a consequence of time-invariance. In fact, |
'as a consequence of finite-dimensionality of R%, - -
"all such solutions are asymptotically almost-peri-:
odic {DAF 74]. Two cases of special interest are

the asymptotically constant (equilibrium) solution
and the asymptotically periodic solution. These -
can be identified directly from the sequence {xk, ;
tk} characterizing ¢ (t,tq,x5) e

Proposition 7.4.4: If the sequence {xk,tk}

"is finite of length N, the positive-invariant limit
'set consists of one point, the last value xy (for

which tyy = ®). If the sequence {xk,tk} is jointly
periodic of period m for k > N, then the positive-
invariant limit set is a cycle (closed curve) in

‘RR,

Proof: For the first case, note that the con~
struction procedure automatically defines ty =
when the sequence is finite, and this implies a
constant solution for t 2 . In the second case,
note that since {xk,tk} completely specify ¢(t,tg,
xo), ¢ must be periodic tyemtxr k > N, whenever
{xx,tx} is periodic (in fact, the solution is a
linear interpolation between these points).

It is interesting to note that for diced sys-
tems, the establishment of an equilibrium or per-
iodic solution after a finite time (ty) is often
to be expected (whereas this would be considered
exceptional in the case of continuous differential.
"equations); however, in some cases almost periodic;

. solutions may also exist, "~~~ T ommmmee
|

7.5,
{

Discussion and Conclusionsg

: " The present account of the stability of ‘diced,
‘systems leaves a number of questions unanswered :
“and raises some new ones. A study of methods for';
. temporal continuation of non-asymptotic solutions §
-is needed; such solutions may represent a new sort;
‘of sliding mode which can arise in higher dimen- ‘
sional spaces, as suggested by an example of [UTK™
78]. The possibility of extending the techniques !
developed here to time~varying systems has been |
. :mentioned; Filippov's general existence results ]
:apply to this problem. A study of the partition-";
ing of initial states which is implied by the pro-
posed stability definition would also be fruit-
- ful; what properties are shared by initial state P
sets giving rise to the same asymptotic solution?
In general, it would appear that the initial states
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fwithin a glven,xeglon Spi.-can, ultimately end up
iw1dely dispersed. The p0551b111ty of using an
lautomaton to simplify therpropagatlon of solutions]
lhas also been raised. The approximation of contin-
'uous systems by diced systems has noétTbeen ex+iST PAGE HERE
plored but under appropr;ate conditions, a_ bound._ e
.on the approximation erro¥r should be achlevable.__l:: I
5 In spite of the questlons that are unanswered,
- some modest progress has been made toward definingUTHOR
the stability properties of diced systems. First R
‘a constructive continuatipn procedure for higher l
'dimensions has beeﬁ'found; the problem readily
evades one's intuition above n = 1,2 and even 3TH&ANIZATION
endless combinations of difficult situatlons may .Jw_w,
occur. Second, a compromise on the issue of un1qﬁ3; !
ness has been put forth: the number of admissable |
solutions at any finite time is bounded. Third, .|
the concepts of stability have been generalized. - £
to provide meaningful criteria for discontinuous
systems of diced type. ‘¥~ s " o e
Returning to the electric pawer system ex-
ample cited in the opening section, it would appear
that the implications of the research might be very {
disturbing, for two primary reasons. First, a new ;
type of instability-~an unbounded growth in the
number of possible solutions with time-has been :
identified. Second, and independently, the partie~ !

tioning of the initial state--at least in worst~ g T
~case situations--based on asymptotic properties, '

appears to be very fine and irregular; thus a small
perturbation in the initial state may give rise to
completely different asymptotic behavior than is
found for the unperturbed initial state. Both of
these phenomena imply that the future behavior of
a diced system with a (approximately) specified
initial state may be fundamentally unpredictable;
if the long-term future consequences of a present
control policy are unpredictable, the problem of
choosing the best policy becomes more difficult
and planning must be done with a shorter horizon.

Solutions

Illustration of Nonulqueness of

.
|

\| S|~
-
\

\
\

A diced System in‘RZ;“"--MWWH
f

~~Figure 7.1:
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