
MIT Document Services Room 14-055177 Massachusetts Avenue
Cambridge, MA 02139
ph: 617/253-5668 I fx: 617/253-1690
email: docs @ mit.edu
http://iibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are
unavoidable flaws in this reproduction. We have made every
effort to provide you with the best copy available. If you are
dissatisfied with this product and find it unusable, please
contact Document Services as soon as possible.

Thank you.

*L~YII



i/Os- R-1 jiL

- STOCHASTIC STABILITY RESEARCH FOR COMPLEX POWER SYSTEMS

FINAL REPORT FOR DEPT. OF ENERGY CONTRACT ET-76-A-01-2295

TABLE OF CONTENTS 61 The notion of stability for power systems is
tightly connected with the notion of security.

1. Introduction and Overview This means that it is not enough to require the
2. Asymptotic Analysis and Approximation of: Hybrid system variables to be safely within their

Systems limits. The probability of contingencies that
3. Stochastic Bifurcation and Singular Perturbation would lead to drastic changes in the mode of
4. Stability and Control of Hybrid Systems operation of the system should be kept as low as
5. The Thermodynamic Properties of Markov Processes possible. This implies for example that the
6. Conservative and Dissipative Systems system should have some reserve margins that
7. Deterministic Analysis of Stability would enable it to withstand a reasonable level
References of increased demand on it.
Publications 7) The system is equipped with a number of human

operators whose decisions may affect directly
1. Introduction and Overview the outcome of emergency situations. The opera-

tor is faced with at least two major problems in
1.1 Project Overview carrying out his job. The first of these is the

one of assimilating all the data that he re-
In [WIL 78], we outlined a research plan aimed ceives. The information provided to the operator

at the development and study of several mathematical may contain contradictory pieces of information
models for the behavior of complex dynamical systems and superfluous details, and it may not contain
affected by random effects. The models that we the most relevant pieces of information for
proposed to study were motivated by an examination assessing the system status. The second problem
of the key qualitative features of the long-term faced by the operator is the one of deciding
response of an interconnected power system, in upon the appropriate control action, a choice
situations initiated by random events. which is not always clear for complex powuer sys-

Among these key features were the following: tems.
1) The system equilibrium point has a domain of From these features, we isolated a number of

attraction that is of finite extent. An ex- characteristics that must appear in mathematical
cursion of the system variables outside-of this models of power systems and in the formulation of
domain corresponds to the loss of synchronism the stability problem, in order to capture the as-
in one or more generators. pects of the behavior of power systems described

2) Unpredictable discrete events, e.g. failures of above.
equipment, external events such as lightning A) The models must be nonlinear in order to capture
stroke, cause some abrupt changes in the struc- the nonlinear dynamics of power systems and in
ture of the system which may reduce its secur- particular, to allow for the consideration of
ity, thus making it vulnerable to stress-induced finite extent domains of attraction and multiple
failures (see (3) below) or to other independent equilibria.
events. B) The models must include a continuous part for

3) The system may experience abrupt changes that those variables that vary continuously (e.g.
depend on the system state. A piece of equip- machine angles and frequencies), and a discrete
ment (such as a transmission line) may fail part to model the system structure (e.g. the
because a particular variable (the load on the topology of the power network) and the abrupt,
line) exceeds a limit (the capacity of the discrete changes it can undergo, A logical
line). Also, the system is equipped with many structure for such a model is as a feedback in-
internal discrete controls such as relays and terconnection of a continuous-state system, re-
circuit breakers that respond in an automatic presenting the power system dynamics, and a dis-
fashion to certain system conditions (note that crete-state part modeling the system structure.
these relays may fail randomly, and such fail- A class of hybrid models having precisely this
ures are of the type described in (2) above). structure was proposed in [WIL 78], and some of

4) A change in system structure by any of the mech- their properties were discussed in [WIL 801. A
anisms described in (2) and (3) leads to a large part of this report (see Chapters II and
corresponding change in system dynamics and IV) will be devoted to the study of these models.
hence to a change in equilibrium conditions. C) Stochastic effects must be taken into account in

5) The change in dynamics caused by an initiating both the continuous and discrete models. These
event leads to a transient response of the effects aim at describing some exogenous, random
system during which certain variables may ex- events such as lightning strikes, generator and
ceed their limits. This in turn causes some transmission line outages, load variations, as
new changes in the system dynamics which lead well as some overall system variations due to
to some new transients that can cause further' unpredictable human responses throughout the
changes. Such a cascade of system failures can system. When this feature of dynamic models of
lead to a serious loss of integrity in the power power systems is combined with the fact that
network.. ''



these models must be nonlinear as mentioned in This class of models consists of the feedback in-

(A) above, it becomes clear that these models terconnection of systems involving continuous state

must be subject to stochastic bifurcations. variables with discrete-state systems. However

That is to say, under the effect of random these models are sometimes quite complex, and in

events or of a cumulative number of small ran- Chapter 2 we describe an approximation procedure

dom changes in the conditions of the system, that can be used to reduce the size of such models.
the model describing the power system can This procedure uses a hierarchical decomposition of
change suddenly from one mode of evolution to these models into simpler models operating at vari-

.another. This phenomenon is frequently ob- out time scales. By using the nature of these time

served in the operation of power systems, and scales, some recursive expressions can be obtained
a detailed analysis of stochastic bifurcation to compute approximate, aggregated models valid at
phenomena will be givne in Chapter 3. each time scale. In Chapter 2, we also analyze the

D) To analyze the stability of power systems, we behavi6r of hybrid models when they are subjected

must evaluate the security of operation of the to rare events. To do so, we consider a hybrid

system. To do so, we can compute the diff- model where the continuous state has several equili-
erence between some continuous variables and brium points and behaves linearly in the domain of

the limits imposed on them. In a probabilis- attraction of each equilibrium point, and where the

tic setting, this implies that we should discrete process describes the equilibrium location.

evaluate containment probabilities, i.e. the Under the influence of a small stochastic driving

probability that the state is within a certain term, the continuous state spends most of its time

region, or expected first passage times out- near equilibrium points with brief transitions to

side a region describing the safe operation of transient conditions and subsequent change to another

the system. Also, since stochastic bifurca- equilbrium point. This natural separation of time

tions will occur, we want to compute the pro- scale between the discrete and continuous parts of

babilities that certain chains of transitions the hybrid model is used to approximation the hybrid

will happen, and among such transitions, which model by a purely discrete process.

one is the most likely. Chapter 3 presents a framework for the study of

E) The dynamics of power systems evolve on sever- stochastic bifurcation phenomena in power systems.

al time scales. The continuous states des- Bifurcation is the study of branching in the equili-

cribing the angles and frequencies of gene- brium behavior of dynamical systems in response to

rators vary very rapidly (on a time scale of small changes in the parameters of the system. Such

the order of fractions of seconds) whereas a bifurcation study is important in the study of

the discrete states describing the topology several aspects of the performance and control of

of the network change quite slowly (every power systems, e.g. the load flow equations, transi-

hour, or fraction of hour). This motivates ent stability and emergency state control. For a

the need for the development of a hierarchy good discussion and relevant research in this dir-

of models for power systems, depending on ection, see [ARA 81a], [ARA 81b], [SAS 80], [SAS 81].

whether we are looking at long-term, mid-term Nevertheless these methods of deterministic bifur-

or short-term phenomena. cation are extremely sensitive to the addition of

F) The issues described in D) and E) require the small amounts of noise. Thus, in systems whose

development of methods that could be used to macroscopic description arises from an aggregation

reduce the number of variables needed to des- of microscopically fluctuating dynamics (for example,

cribe the system dynamics. This would be the load nodes in a power system), the predictions

particularly useful in helping the system of deterministic bifurcation are incorrect. In the

operator obtain a clear picture of the system research described in Chapter 3, we seek to remedy

status. Indeed, if the number of variables this deficiency and develop a theory of stochastic

needed to describe the system conditions is bifurcation.
reduced, the operator will have a better In Chapter 4, we consider the problem of analy-

chance of choosing the appropriate course of zing and designing control strategies for systems

action in an emergency. We will show in described by hybrid models. This study is motivated

Chapter 2 that this objective can be accomp- by the observation that the local nature of control

lished by the use of aggregation methods that actions in power systems in a frequent source of

replace a detailed, complex model of the power instability. Many of these control actions fail to

system by a more approximate one containing anticipate the potential impact of other disturbances
fewer variables. in the network and result in overall instability.

Our research has been aimed at obtaining a The work presented in Chapter 4 is aimed at under-

fundamental understanding of the qualitative be- standing how contorl actions may affect the stabi-

havior of mathematical models with these features. lity of the overall system and how control strategies

We have formulated several different classes of may be designed to ensure stability. A control

analytical problems that focus on specific aspects mechanism that achieves this objective is the one of

of the power system stability problem. In parti- hedging: the controller identifies regions of hazar-

cular, we have devoted a large amount of attention dous operation and attempts to steer the system away

to the impact of random effects on the stability from such regions. The increased security that is

of power systems. achieved by this scheme comes at the expense of per-
formance, but this is a price that one is often

1.2. Report Outline willing to pay when the catastrophic consequences of

a failure of the system are taken into account.

In order to take some of the previous features In Chapters 5 and 6 we discuss the issue of

of power systems into account, a class of hybrid dissipativeness for power system networks and its

models was introduced in [WIL 78] and [WIL 80b]. impact on the stability problem. This is done in



ZChapter 5 by studying the thermodynamical properties .
of finite-state Markov processes and of hybrid 
models, and in Chapter 6 by characterizing stochas-
tic dynamicla systems which are dissipative.

Finally, Chapter 7 discusses the stability
problem for power systems from a deterministic point
of view. The presence of relays and logical devices
in power system feedback loops gives rise to the

l possibility of discontinuous switching behavior for
the control variables of the system. This switching
behavior is examined, and the stability problem is
discussed in this context.

Over the three years of the research project
discussed here, the following individuals have
taken part in research activities:

Prof. Alan S. Willsky (Principal Investigator)
Prof. Sanjoy K. Mitter
Prof. Timothy L. Johnson
Prof. Bernard C. Levy
Prof. Shankar S. Sastry
Prof. John Wyatt
Dr. David A. Castanon
Dr. Lena Valavani
Mr. (now Prof.) Howard Chizeck
Mr. Marcel Coderch
Mr. Peter Doerschuck
Mr. Michael Propp
Mr. Roland Shomber
Dr. Mark H.A. Davis
Prof. Steven I. Marcus
Prof. Jan Willems

Prof. Wendell Fleming

This project has resulted in the Ph.D. Theses of
H. Chizeck and M. Coderch and in the Master's
thesis of R. Shomber. In addition, Professors
S. Marcus, W. Fleming and Jan Willems, and Dr.
Mark Davis have served as consultants on this pro-
ject and the papers by them listed in the publi-
cations, sections of this report cover some of the
results of this interaction.



2. Asymptotic Analysis and Approximation of Hybrid motion occasionally drives the system to switch be-
Systems - tween equilibrium points. By properly scaling time,

the process is approximated by a finite state model
2.1 Introduction which only follows the changes between equilibrium

points. The detailed behavior of the process inside
As discussed in the previous chapter, the basic each domain of attraction is aggregated into a single

premise of our research effort was to develop analy- state, resulting in a finite-state description simi-
sis methodologies for the study of the properties lar to the ones described in section 2.3.
of stochastic hybrid models. These hybrid models The final paper is this chapter, contained in
were found to be well-suited for the description section 2.5, is an application of the methodology
of power systems because they included both dis- of sections 2.3 and 2.4 to the study of flows in
crete-state and continuous-state components. some simple networks. The networks are described

However, one of the undesirable properties by hybrid models, where the continuous variable
associated with such detailed modeling is that the represent the levels of storage in the system, and
models are so complex that exact analysis of their the discrete variables describe the connectivity
mathematical properties is seldom feasible. Our of the network. One of the interesting effects in
objective in this chapter is to develop an approxi- this model is that of cascading saturation, observed
mation methodology which produced simpler models of when adjacent storages fill up. Our results provide
the hybrid systems that: represent accurately the a simplified, aggregate model which accurately
behavior of the exact model. approximates the behavior of the original system.

Based on the properties of these simplermodels, Although the work we have presented in this
we can determine the overall system stability and section is complete, there are many extensions of
performance. these results which should be investigated. The

As discussed in Willsky et al [WIL 78], the results of section 2.3 apply only to the simplest
.loss of stability in a large power system may be type of hybrid model, where there are no dynamics
modeled as a rare event, a large deviation of the involving continuous states. The hierarchical
system state from its nominal behavior. These decomposition into aggregate models, together with
events may be modeled as occurring in a time scale the algebraic conditions for existence, must be
which is different from the normal time scale of extended to the case where the hybrid models have
operation of the system. Our approximation approach continuous states. The results of section 2.4 re-
will try to make use of such time scale separation present an initial effort in this direction, serving
to develop simpler models which are accurate on to illustrate some of the conceptual differences
specific time scales. between the finite-state and continuous state model.

The first paper, contained in section 2.2, The next section contains some applications of these
studied the asymptotic behavior of finite dimen- results towards the analysis of bifurcation pheno-
sional linear systems whose coefficients depend mena in stochastic systems.
smoothly on a small parameter. The properties of The results of section 2.5 should be extended
linear systems are important for-the understanding towards the analysis of general interconnected net-
of stochastic systems, because evolution of the works. In addition, the special case of power system
probability density in a stochastic system is des- networks should be considered, where the conserva-
cribed by a linear equation. In this paper, we tion of flow law is amplified by voltage considera-
provide necessary and sufficient conditions which tions. This remains the subject of future investi-
characterize when a linear system can be approxi- gations.
mated as a hierarchical composition of simple mo- In conclusion, this section describes the
dels operating at various time-scales. We des- foundation of a theory of approximation which can be
cribe the nature of these time scales and provide used to analyze stochastic hybrid models of power
recursive expressions which can be used to compute systems. These approximate models, based on isolat-
the approximate, aggregated models valid at each ing specific time scales, provide the basis for
time scale. The aggregate models are shown to be stability analysis and control system design.
consistent with the approximate models as the small
parameter vanishes. * 2.2 Multiple Time Scale Behavior of Singularly

The second paper, contained in section 2.3, Perturbed Linear Systems
uses the results of section 2.2 to analyze the
linear models which describe the evolution of the 2,2.1 Introduction
probability distribution of finite state Markov
processes. We establish that these linear models In this section, we discuss the problem of
satisfy the conditions which establish that a valid obtaining an accurate approximation of.. the evolu-
decomposition in terms of multiple time scales tion of the state of a system described by a linear
exists. Furthermore, we describe the resulting differential equation. Our approximation methods
simplified models in terms of an aggregation opera- are based on selecting, based on physical properties,
tion, which produces reduced-dimension Markov pro- such as weak couplings or slow behavior, a small

cess, and a slow evolution. This aggregation opera- parameter C which affects the evolution of the system
tion requires de analisis of stochastically dis- state, as:
continuous Markov processes which have not been
studied in the literature.

The third paper, included in section 2.4, dt x (t) = A() x (t) (2.2.1)
dt

deals with the analysis of hybrid models subject - -

to rare events. In this paper, the rare events
are modeled by a small intensity Brownian motion It is the purpose of this section to characterize
affecting the behavior of a dynamical system opera- the behavior of equation (2.2.1) at various time
ting in one of several stable modes. The Brownian scales T = ESt for positive values of s. In



particular, our goal is to identify conditions on and one of the obvious questions to be addressed is
A(M) such that the system (2.2.1) has a well-defined that of the relationship between x6(t) and x°(t) for
approximation which is accurate at given time scales small S. Specifically, under what conditions is
of operation, as £ approaches zero. x (t) a good approximation of x5(t)? If it is not,

The problem of obtaining approximate models of how can we construct such an approximation? The
ordinary differential equations based on time scale first question is resolved in this subsection and
separation has been studied in the literature under the rest of the section deals with the second
the heading of singular perturbations. A comprehen- question.

, sive review of the literature can be found in the The following proposition states that x (t) is
surveys of Nayfeh [NAY 73] and Vasil'eva (VAS 76]. a uniform asymptotic approximation of x£(t) on any
Most of the previous work in this field has con- compact time interval [0,T].
centrated on developing an approximation valid only Proposition 2.2.1
at a specific time scale, say T = st. Campbell If A(S) is as in C2.2,3) then
[CAM 78], and Korolyuk and Turbin [KOR 781 have
given algebraic conditions on A(£) which charac-im 
terize the minimal integer n > 1 such that an exp {AC)t} exp {Atill O
accurate approximation exists at the time scales c+0 te[0,T]
T = 'nt, and provide an expression for these
approximation in terms of a reduced-order model. for any T < o.
These approximations have been used for the synthe- In general' however, as the next example shows,
sis of two-level controllers and estimators in the it is not true that
literature (see[KOK 80] for a collection of papers).

Our results in this section represent a non- lim sup I expfA(£)t} - exp{A t} l =0 (2.2.5)
trivial extension of the work in [CAM 78], [KOR 78], C+0 t>o
in several directions. First, we provide algebraic
conditions which characterize all of the possible and therefore, in general, x0 (t) is not a good

.time scales 't = GSt for which a reduced-order approximation to x5 (t) for all times t, no matter
approximate model can be obtained. This extends how small E is
the previous results, valid only for the smallest Example 2.2.2
integer time scale. Based on this characterization, Let A(S) be
we develop a hierarchy of aggregated, approximate
'models which can be grouped together-toobtain a E o
uniformly accurate approximation to the system A() = J
(2.2.1), valid for all times tG[o,-). Furthermore,
we identify conditions where such a uniform de-
composition is not possible, and provide restricted then we have:
approximations in these cases.

For the purposes of conciseness, all of the
results are stated without proof. The reader is exp{A(W)t} = , exp{A t} =I

referred to [COD 81], or [COD 821 for the detailed
proofs of these results.

and therefore

2.2.2 Regular and Singular Perturbations

sup | exp{A(.Et) - exp{A t1 ||=1 0
In this paper, we consider semistable linear, t> expA()to

time-invariant (LTI) systems of the form:
If eq. (2.2.5) is satisfied, we will say that

(2.2.2) is a regularly perturbed version of (2.2.4) -
dx (t) AW x E W r XC(0) = (2.22) otherwise, we will say that is is singularly per-
dt (2.2.2) turbed. In what follows we will deal primarily with

singularly perturbed systems because, as we will
whreSeOE , E eJ n and the matrix A(now see, it is the only case where we can talk about

where Se[0, So], x (t) e R and the matrix A(S) different behavior at different time scales. Let
is assumed to have a power series expansion in s, 

us formalize the notion of multiple time scale be-
havior.

Definition 2.2.3
A(M) = E P AA (2.2.3) Let x£(t) be the solution of (2.2.2) and let

p=o P C(e) be an order function. We will say that

x£(t) has a well defined behavior at time
This series can be either a convergent series (and scale t/a(S) if there exists a bounded con-
we will refer to this as the analytic case), or an tinuous function y(t), called the evolution of
asymptotic series, If (2.2.3) is an asymptotic x£(t) at this time scale, such that:
series, then we will also assume that rank A(C) is
constant for 5E (0,c 1. In both cases we will lim sup x (t/atO) - y(t) (2.2.6)
refer to this constant as the normal rank of A() 

S%0o te[ ,T]
which we will denote by nrank.

Our objective is to analyze the behavior of for any 6 > o' T < c, xO.
x (t) as E + 0 on the time interval [0,x). The Equivalently, we will say that the LTI system
system (2.2.2) can be viewed as a perturbation of (2.2.2) has a well defined behavior at time scale

t/ct(s) if there exists a bounded continuous
dx°(t) = A x°(t) (0) = x (2.2.4) matrix Y(t) such that:
ddt A)=xoPt) xo 0) Xo (2.2.4)

dt o o~~



lir sup Iiexp{A(C) t/(c()} - Y(t)jj = 0 Assume also, for simplicity, that A(E) is diagona-
5+0 tQ[6,T] lizable and let X (s), n = O,l,...,s be its dis-

(2.2.7)·n
tinct eigenvalues. Using the spectral represen-

for any 6 > o, T < O tation of exp{A(C)lt we get:

According to this definition, the system in s
example 2.2.3 has a well defined behavior at time exp {A(S)tf = en(t P (c) (2.2.9)
scale t/e and its evolution at this time scale is o n

?~-given by:
where P (s) is the eigenprojection for the eigen-

value X (E) of A(E). It is clear from (2.2.9) and
e~)= 0 the semistability assumption that for expfA(S)t}

o to have a non-trivial, well defined behavior at0
time scale t/a(E), it is necessary that there exists

some eigenvalue Xn(S) such that Xn(S)/a(s) approach
Although in this example the convergence condition a finite value Vn and S + 0. Thus, for a system
(2.2.6) is satisfied even for 6 = o it will become to have multiple time scale behavior in the sense
clear later on that,in general, an arbitrarily small of definition 2.2.3, it must have eigenvalues of
interval around zero must be excluded to obtain different orders of magnitude in E. Our formulation
uniform convergence. is therefore in accordance with the notion of time

The next proposition Shows that semistable scales as a manifestation of eigenvalue separation.
regularly perturbed systems have trivial and unin- This point of view provides some insight into
teresting time scale behavior,. our results. First, the existence of eigenvalues

Proposition 2.2.4 of A(C) that converge to zero as E+0 implies that
If A(S) is a regularly perturbed matrix which zero itself must be an eigenvalue of Ao and that
is semistable for Ee[0,e ] then, for any order rank A(S) must be discontinuous at zero as stated
function C(sc), by propostion 2.2.5. Second, the eigenvalues of

A(S) have always a power series expansion in frac-

lim sup I I expfA(s)t/ca(s)1 P- 0= (2.2.8) tional power of S. Therefore, it is logical to
S4'0 ~I0 texpAT] - o I= 02.8conclude that the fundamental time scales of (2.2.9)

EJ%0 tell,T] must be sought as t/Eq, for some rational q, and
for all 6 > o t < 0 that only a finite number of them can exist.

In addition to the eigenvalue structure, the
where Po is the eigenprojection for the zero existence of the limit of expA()t/() as existence of the limit of exp{A(S0t/a(6)} as C%0
eigenvalue of A0, as defined in appendix 2.A.0 clearly depends on the eigenspaces structure, i.e.,
It follows from the above proposition that, if cn the behavior as 54-0 of P (E) in (2.2.9). For

properly modeled, a system with a non-trivial multi- ntios
example, the eigenprojections P (5) (and also theple time scale behavior will result in a singularly ei en the gne n
eigennilpotents in the general non-diagonable case)

perturbed equation. The next proposition gives have algebraic singularities at = 0 if X () - 0have algebraic singularities at c = O- if k (c) +~ 0
necessary and sufficient conditions on Atc) for 

necesar andbe sinuffiien codti. (see [KAT 66]) and therefore the above limit may not
(2.2.2) tobe singularly perturbed.

(2.22)ro'bsitiongul pertuexist even if there are eigenvalues of order
Proposition 2.2.25 cwihA eit efr e(s). It is this aspect of the time scale problem
The equation (2.2.2), with A(S) semistable for

is a singularly perturbed differential that is overlooked in the heuristic view of time
EG[0,SO ] is a singularly perturbed differentialeuto ifadolirakAE idicnscales as eigenvalue separation and onto which we
equation if and only if rank A(e) is discon- will focus our attention in the following sub-
tinuous at S = 0. O sections.
As a consequence of the above proposition

notice that if Ao is asymptotically stable then any 2.2.3 The Multiple Semistability Case: Complete
perturbation is regular. In effect, if Ao is Time Scale Decomposition.
asymptotically stable so is A(S) for E small enough

and therefore null A0 = null A(S) = 0 for c [0, be a semistable matrix.
We have so far established that the analysis o Let A(), [, ] be a semistable matrix
We have so far established that the analysis with a series expansion Tconvergent or asymptotic)

of semistable LTI systems with multiple time scale of the form:
behavior corresponds to the study of singularly
perturbed ordinary differential equations (o,d.e.)c
and that the presence of weak couplings may produce A (5) = Cp A (2.2.10)

o op
well defined behavior at several time scales only P=O
if the perturbation changes the rank of the system and normal rank d. For our development we first

and normal rank d. For our development we first
matrix A(S). To keep this discussion clear we have need to construct a sequence of matrices A
only considered systems for which A(C) is semistable R = obtained recursively from A () as

R = 1,,...,m, obtained recursively from A (il) asfor Se[0,S 1. As we will see in the following indicated below.
results, t~is is a necessary (although not suffi- t Elw

Let P (c) denote the total projection for the
cient condition for the system to have well defined op ( en al pE t fortzero-group of eigenvalueS of A (C). It follows
behavior at all time scales. Extensions of the 0 e au f as semisimple nullfrom Appendix 2A that, if A ~as semisimpie null
results derived for semistable systems to some

structure (SSNS), the matria 0
classes-of non-semistable systems are considered
in section 2.2.4. P (S)A (5) A (C)P (E) P (C)A (E)P (E)

There is an explicit connection between the A () 0 0 0 0 0 0
time scale evolution of the system and the eigen- A1() =

values of the perturbed matrix A(s). Consider the (2.2.11)
system (2.2.2), assumed semistable for S in [0, a series expansion of the form:.

o has a series expansion of he form:

---------- ~~~~~~~~~~~~~~,



AX () -- . - having SSNS. If Ao(C) satisfies the MSSNS condition

A1(W) = Alp (2.2.12) and in addition all matrices Ak,o, k ,=0,1, ..,m, are
P~o semistable we will say that A (£) satisfied the

multiple semistability (MSST) condition. Although

If the resulting first-order term in (2.2.11), A1 0, we will be interested in matrices which satisfy the

also has SSNS we define the next matrix A (£) as MSST condition, all of the results developed in this
in (2.2.11),i.e., 2 subsection hold for the less restrictive MSSNS con-

dition.
A..... P1 (.)A1 (s) P1 (s.)P. (£)A-(£).- ---.-- ---The following proposition provides some insight

A___ _ 1 1 __o 0 into the structure of the matrices Ak(), k=l,...,m,
2 2 and into how they relate to A (£).

Proposition 2.2.8

P A2p (2.2p 13) If Ao(C) satisfies the MSSNS condition then,
p=O 2p for some 1 < 0,

i) Ak(C), k=0,l,...,m have SSNS for 6e [0,e11.
where P1(6) is the total projection for the zero-
group of eigenvalues of Al(c). The recursion ends ii) For 5e(0,51],
at R (Ak(e))=R(Qk(s)) .*-R(Qm())) k=0,...,m

A Pm-()Am () A Pm-1 ()Pm- 2 ()..P o(.)Ao (£) N (Ak())=R(Qo( -)) ..DR(QR 1l())+N(Ao(£))
-A (C.). =- =
m (m N(AO (6)) = R(Po()... Pm()) k=l,... ,m,

Xo iii) If X(6) is an eigenvalue of Ak(e) not
= s £P A (2.2.14) belonging its zero-group then kIX(E) is

p=o mp
po mp an eigenvalue of Ao(s) in R(Qk(s)). Con-

if the matrix A does not have SSNS. versely, if i(5) is an eigenvalue of A0
The following proposition establishes several (£) in R(Qk(e)) then £-k v() is an eigen-

basic properties of the matrices Ak(6) and Pk() value of A ) not belonging to its zero-
Proposition 2.2.6 group.
Let Ak(), k=0,1l,.... m, be the sequence of It follows from Propositions 2.2.6 and 2.2.8

that, if A (£) has MSSNS, the direct summatrides constructed above and let Pk(6), o
k=0,l,...,m, be the corresponding total pro-
jections for the zero-groups of eigenvalues. R(Q ()) R(Q (s)) R(P (....
Denote Qk(E) = I-Pk(s). Then, for £ small m
enough, we have: P (s)) (2.2.15)

i) Pi(s)P (e) = Pj(s)Pi(s) i,j=0,1,...,m

ii) Q (E) Q 0jii) Qi(s)Qj(s) = 0 i = j, i,j=0,1,...,m decomposes A (6) as follows:
0

iii) R = (Qo( s)) G....- R(Qk(6))n R(P (£)

... pk()) k = 0,1, .... ,m
0. kAo(C) = Ao0(6) 0 6 A1 () EmA (: o..60

iv) rank Qk(E) = rank AkO (2.2.16)

v) Qk(s)AO(s) QR() Ak(s) R k where Ak(e) denotes the restriction of Ak(C) on

£X(6)Qk(C) = Ao(C)Qk(s) k = 0,,.....m R(Q k()). Said in another way,

The following proposition establishes that the m
sequence AY(s) always terminates at some finite m. A (s) = .k A (C) Q (s) (2.2.17)

Proposition 2.2.7 ° k=o
Let Ak(s), k = 0,1,... be the sequence of ma-

trices defined by (2.2.11-2.2.14). One of The eigenvalues of A (5) can thus be divided into
the following two conditions (or both) occur (m+l) groups corresponding to the eigenvalues of
at some finite m: Ao(S) in each of the invariant subspaces R(Qk(£)).

i) A does not have SSNS Each eigenvalue of A (5) is of order 63 for some

ii) A (s) = 0 (- 0 if (2.2.10) is asymp- integer j > o and the eigenvalues of order 6k coin-
m+l cide with Ek times the eigenvalues of order one of
totic). Ak(C). Figure 2.2.1 illustrates the structure of

In the analytic case, ii) is equivalent to: the matrix Ak(0), its null space includes, in addi-
m

ii) Z rank A = d O tion to the null space of A (s), the eigenspaces of
k=o kO Ao(£) corresponding to all eigenvalues of order

We will say that a matrix A (5) satisfies the 0(1), 0(s),...,0(£k -l) while its range includes the

multiple semisimple nullstructure (MSSNS) condition eigenspaces of A (e) for all eigenvalues of order
if the sequence of matrices A (s) can be constructed o(ck-l). The construction of the sequence Ak(C)

up to a stage k = m for which condition (iii.) of can thus be viewed as a way to separate the eigen-

Proposition 2.2.7 is satisfied with all matrices values of Ao(0) in different groups according to
their asymptotic order as C+0. The actual calcul-
ations required to compute the matrices Ak(s) will

P. (s) .... P ()A (e) be discussed later.

Ak = lim -k 0 0 k-0,1, ... ,m The following theorem illustrates the conse-
0+o £k quences of the MSSNS condition for the multiple

time scale behavior of exp{A (s)}t



Theorem 2.2.9 - Furthermore,
If A o() satisfies the MSSNS condition then m

0 m

m e =R (A00) 0.. - R(Am ,o ( N (Ak,o))

exp{Ao ()t} = k () exp{Ak ( )e } + k=o(2.2

Po m - As the above theorem shows, the sequence of
matrices Ak , k-O,l,...,m, completely determines

=... . . ..............kt} .m ; an asymptotic approximation to exp{A (E)t} which

= k=o k k 5kt} - ml captures its multiple time scale behavior. We now
use Theorem 2.2.10 to show that systems which satisfy

m e{ )A() k}the MSST condition have well defined behavior at all
k=-o x/ ep{Q k ()Ak e 5 kt} time scales and that the matrices Ak determine ak_-io k - ko 

set of reduced-order models of the s•stem.
mx rC Qk( 3 k(£) £kt} The following corollary gives an explicit form-

exp Qk k ula for the evolutions of exp{Ao(E)t}.

Corollary 2.2.11
Let Ao(E) satisfy the MSST condition and let

Theorem 2.2.9 corresponds to the splitting of Ak 0 Pk and Qk' k=0,l,...,m, be the sequence
the evolution exp{Ao(e)t} according to the direct of'matrices specified in theorem 2.2.10. Then,

sum decomposition of (2.2.15). Under the condition i) im s le =0
of MSSNS, this splitting corresponds also to a de- i) lim sup <t<T exp}- 0k(t) = 0

composition into parts of exp{Ao(C)t} that evolve
at different time scales. For example, Qk(C) exp Va > 0, VT <

{Ak( )Ekt} does not change significantly until t is
of order 1/ek. Theorem 2.2.9 thus gives a consis-
tent spatial and temporal decomposition of eq. ii) lim sup j IexpfA (e)t/ } - ? (t i = 0
(2.2.2), which is very convenient to study the multi- C+O 6<t< 

ple time scale behavior and also to derive uniform V6 > 0
asymptotic approximations of exp{A (C)t). wheretk(t) is any of the following expressions:

As we have proved in Prop. 2.2.1, exp{A(o)t}
is a uniform asymptotic approximation to exp{A(C)t} ti + ..
on any compact time interval [0,T]. It is quite k(t ) = k o oexp Ako .o k

clear, however, that this approximation does not
capture the multiple time scale behavior of a sing- = P .Pk. l expfA t. Oo Pk-1 e ,o
ularly perturbed system. To construct an approxi- It is now immediate that the evolutions of
mation which captures this behavior, we have to expfA(E)t} at time scales t/Ek, ck(t), k=0,1,.,m
require it to be uniformly valid over the infinite can be combined to produce a uniform asymptotic

can be combined to produce a uniform asymptotic
time interval [0,a).

time .nternral .O~m). approximation to exp{Ao(C)t} as follows:
The next theorem gives the desired approxima-

tion under the assumption that A (C) satisifed the m k m-l
MSST condition. exp{A ()t = k t - P P + o()

Theorem 2.2.10 o k=o k=o

Let A (£) satisfy the MSST condition and let (2.2.20)

Ak(E))? PO- and QkWE), k = 0,l,..,m, be the This equation shows that only the behavior at
sequences of matrices constructed in 2.2.14. time scales tiCk k=0,l,...m, is needed to capture

the main features of the evolution of exp{Ao(C)t}

over the infinite time interval [0,o). It is clear

lim sup Ilexp{A (£)t} -) (t,C) j[= 0 (2.2.18) from Theorem 2.2.10, however, that the limit
C+0 t>o

lim exp{A (E)t/ct(5)}
where c(t,s) is any of the following expres- C+O
sions:

m exists for any order function a(s). Indeed, if

4(t,£) = QR exp{l=Akok t } +P P .. P ak(E) = o(ok) and Ek+l = o(ak(e)), k=0,l,...,m-l,
k-o 0 0 -then

= I exp{A, O 5 kt} -mI lim expAo(s)t/tk(s)I = Po' k;

m k
= 1 exp{Ak k t I
k=o and for a (£) o(£=),

{k% ko E lim exptA()t/a( s) } = P ... P

with Ak o lim Ak(S), Pk = lim Pk(E) and _ 
5£+J0 Thus the system has well defined behavior at all

=k lim Qk()'* time scales even though only a finite number of
them, that we will call its fundamental(or natural)



time scales, are required to capture the main fea- follows that:
tures of the system's evolution. We now show that
a reduced-order model of (2.2.20) can be associated
with each fundamental time scale. To interpret the N(Ak,o) R(Ao o) ... R ( ,o) R(Ak+l,)
matrices Ako as reduced order models of:

dx(t) A(C) x (t) x (o) = x (2.2.21) k=o
dt o

.' ....................... ' .....- '-.. ....... 'If we now choose a basis adapted to (2.2.27),

valid at different time scales, notice that the the matrix Ak o will have, in this new basis, a
asymptotic approximation block diagonal form with only one non-zero block.

That is, if T denotes the change of basis matrix,
m k then

exp{A ()t} = Qk exp{A ck t} + P ...P + o(l)
0 k=o kO o m -1

(2.2.22) T,.oT = diag {0,0,...,0 , 0 ,.....,0}

where Ak is a full rank square matirx of dimension
and the direct sum decomposition: equal to rank A Using this change of basis we

k o
can write the result of Theorem 2.2.10 as follows

=IR = (Q .. R(QM) ( R(Qo...) 1 m k

exp{A (C)t} = T exp{ Z TA T s t}T + o(l)

imply that if x (0) e R(Q ), then x (t) remains in k kwo
R(Qk) for all t > o except for terms which are -d t 
uniformly negligible as +0O. Thus R(Qk), k=0,l,,,m T iag{e e ...t eA , I} 

and R(P ...PM) can be thought of as almost invari- (2.2.28)
ant subspaces of the system (2.2.21) [WILL 80].
Furthermore, the parts of x£(t) that evolve in diff- showing that, to first order approximation, the sys-

erent subspaces do so at different time scales. To tem (4.53) can be thought of composed of (m+l)

describe the part of x£(t) that evolves at time uncoupled subsystems

scale t/Sk to first order approximation, the follow-
ing model can be used: dy k(t)

dt = AY (t) k=O,l,... ,mdt kk
dyk(t)

dt = Ak,0 Yk(t) k=O,l,..,m (2.2.23) each running at a different time scale.
If the MSST condition is violated, then at least

If Yk(o) = Qkxo then for some-time scale. t/a(£), the limit

-yk(ck t) = Qk x (t) + o(l) k=0,l,..,m (2.2.24) lim expfA (E)t/a(e)1

uniformly for t > o, and once again a uniform
approximation of x£(t) can be constructed by com- does not exist. In this case a complete time scale

bining the solutions of the reduced-order models decomposition of the type developed in the previous

(2.2.23) as follows: propositions is not possible. Some partial exten-
sions to systems that violate the MSST condition are,

m possible and will be considered later.

x (t) =k Yk(ES t) + P ...P x (2.2.25) Two examples will shed some light as to what
=° °m happens when the MSST condition is violated:

Example 2.2.12
Notice also that Consider the matrix

~~~m F: ~~~~~~~~~~~0 -2E

k. rank Ako = rank Ao(E) (2.2.26) A o() = e -2c
k= O

1 l -2 _

and therefore the combined dimensionality of the It is semistable for ce[0,1] and it has three
reduced-order models (2.2.23) equals the dimension real eigenvalues
of the original model.

This decomposition of (2.2.21) into a set of = 0, = -2 + o(l) 2 = + o( 
reduced-order models is more easily visualized us-
ing an appropriate change of basis. From Theorem The matrices A and A (see section 3.4.5

2.2.10 we have: for an algorithm to com~p6e them) are given by:

R C R(A ) 6) .2....... 3 0 ) W -1 O

J --=CAo o o ) ° 0 0 0 0 0
00 I 1, ...

(2.2.27) 1 -2 0 -1/2 0

and by the SSNS property of the matrices Ak it and the MSST condition is violated because
-k, - A1,0 does not have SSNS (it is nilpotent).

1.0-



A direct computation of exp{A(S)t} gives This behavior does not contradict the stabi-
-. . - ---ity properties of Ao(S) because even though

exp{A (e)t =X 1X { for every E[0,1]

2 1
sup Ilexp{A (E)t}l = K(s) < V vt > o

(A -X ) A 1t e(E- ) 1 )t t>
2 (e -1) (elt-1

2 1 X(e 1-1) X (e -1) the bound K(S) - X as S+0.
........1---.- 1 ...I. -........ This example illustrates one reason why

even systems which are semistable for se[o0,E]

o t 1 may fail to have well defined behavior at some
1 2£e time scales. The next example illustrates

another such reason. O
11 t°i-ek it 1 Example 2.2.13

0 -e (E- 1 )e
(c-A1 )e ,Consider the matrix

20 ~~~ ~~ ~-(~e -1) ~ 2_2£ 2 c 
2E(e 2-1) (e 2 The matrices A for this example02 A2

2 1 0 0- oet 1o
02 210 (Xl-E+)e -2ee It is semistable for S > o and it has three

eigenvalues

p exp{A 2 20 e (= -2,e X = -- ic
o oo -t,2

The matrices A and A for this example
and we have the following time scale behavior:cause of theare:

lim exp{Ao( )t presence of terms of the type e sin

A This example illustrates that the exis.0 11 0 0 -1
-: e {A Oo ot} 0 1 0. and the MSST assumption is violated because

0 (1-e 2)/2 e A1,0 has purely imaginary eigenvalues .
A simple calculation givest

lim expA ()t to have well defined behavior at all0

A -A Theorem 2.2.14 t - tBecause A2 0 + ) t exA 0 ee cst e sin matrices

t0,0orde 1/£/2 as +0 ane sin tt e cos it

Clearly the system has well defined are seistabe but havior

behavior at the imeiscale t/2 eve thughi.at time scales t and t/ but expA(then )t/2 }he limit

2} This is so becaus ......does not have a limit as ()0 because of the
|lim expfA (E|)t/E:presence of terms of the type e- tsint/a.

SO 0 This example illustrates that the exis,
tence of slowly attenuated oscillation (re-

does not exist,2let us look at the entry (1,2) flected as purely imaginary poles in one of

of exp{Ao( )t/ the matrices A ) impedes the existence of
well defined bhavior at some time scale.

2}) 2 1) The next theorem established the fact that for
(expA (E)t/2l2 = [ (et 2 )

o 1, 2 t I an arbitrary Ao(e), MSST is a necessary condition

for exp{A (O)t} to have well defined behavior at all
1 1 time scales.
-12_11 Theorem 2.2.14

Let Ao(E), Ee[O,E O] , be a stable matrix with
a series expansion in powers of C and let

BecAu + o(kC the first term is of A k >_ 0, be the sequence of matrices

order 1/C as s$0 and therefore it diverges. contructed in (2.2.10) - (2.2.14). If A

Thus, the O.d.e. does not have well defined AI,o..A Qi,o are semistable but At O
behavior at time scale t/S2 even though iZ is not, then the limit
has a real negative eigenvalue of order E
This is so because

lir exp{%A(E) t/Cq } t > 0

I exp{A (s)t/2} I' as CO0
o



does not exist for any I < q < 2 + 1. Further- A0 0
more, if A- , has a pole on the imaginary axis
(zero included) which is not semisimple thens A = P A P

10 = 01 o

lim sup Ilexp{A (s)t}II = 
+0 t>o A20 = P1Po(A02-A 01A A 01 )PoP1

These results indicate that multiple semistabi-
1'-lity is a necessary and sufficient condition for a A0- P. P.P (A 0-A A$ A.02 -A A#A +

system to have well-defined multiple time scale
behavior. The behavior of the system at different
time scales is then determined by the matrices Ako. A01 A 0 01Ado1 - A02 10 02
We now focus our attention on ways of computing
these matrices.

It is convenient to think of the sequence of 02 10 01 01 1 - O A 01A A02
matrices Ak(S), k=0,l,..,m, constructed in (2.2.10)-
(2.2.14) as defining a rectangular array of matrices
Ai, i=O,l,.. ,m, j > o, as shown in Fig. 2.2.2. By 01 00 01 10 01 00 01 o 1 2

definition of the matrices Ak(£), it follows from
As shown in Proposition 2.2.15, the computationAppendix 2.A that the (i+l)th row in Fig. 2.2.2 can

be computed from the ith row using the formula: of A k=0,1,2,3, does not require the construction
of the full triangular array shown in Fig. 2.2.2.
Instead, the first column is directly derived from

A, = - (-1)P S (R1 ) the first row. It is reasonable to expect that this
Ai+l,j p= v +- ij i pattern of simplifications goes beyond the third

1 P step and it thus seems possible to derive a recur-

kl +..++l P-1 sive formula for the matrices AkC. Here we do not
'v>0o,~k.>0 attempt to derive such a formula nor do we address

i- '' :i- the question of how (2.2.29) should be computed so

(k (2K. .A_ (2.2.29) Sthat a minimal effort is required. Let us just
S, .l. S ( . iv +i point out that, the different terms are quite simi-

p lar and with a good strategy the computational effort
required should not be as large as it seems at first

0,1, ...,m j > 0 sight. For example if,

where Ao(S) = A + CB
0 0

(o)
S.- P. we have:

1 io

S =(Ai k > 0

(Pi is the projection on N(A. ) along R(A. ) A = P BPi 1,o 1,o 10 o o
and A.#0 devotes the group pseudo-inverse of Aio).
Notice'that the structure of (2.2.29) permits to
grow the array Ai,j triangularly: A10 is computed A = -P P BA BP P
from A0 0 and A0 1; A2 0 requires A 1 and All which in
turn involve A o, Aol and A02, in general, to com-
pute the first column up to Ako involves the mat- 30 P2P1P (BAeBAJOtB - BBA#OBABAOB) PoPP 2
rices Ai., i=0,...,k, j=0,.., k-i. As we have al-

ready seen, only a finite number of matrices Ako Notice that perturbations of order S can result
need to be computed. It follows from (2.2.29) that

in well defined behavior at several time scalesthis requires only a finite amount of computational . In
~~~~~~~effort.~ ~t/£ which is not a commonly recognized fact. Ineffort.

Although algorithm (2.2.29) is attrative for the MSST case, the sequence jA ends at some m for

its recursive nature, a closer look at its structure which
reveals that it involves a large number of super- m
flows computations. Without addressing the issue ' rank A = nrank A (C)
of which is the most efficient way to compute the k=o 0

matrices A we will now give an explicit expres- Consider first
ko . We now derive an upper bound for m, Consider first

sion for the matrices A0 0, A10, A2 0 and A3 0 in terms the linearly perturbed case Ao(E) = A + CB and
of the first row in Fig. 2.2.2. o

ofPte .frositirown Fig.15 2.22.let n be the dimension of A (C). The eigenvalues
Proposition 2.2.15 of A (E) = A + £B are the solution of a polynomial

of degree n with ooeffictents that are' themselves

A )A 2 3 + 3(E) polynomials in e of degree < n. A simple argument
A S A02 + 03 + ( shows that there can be no eiqenvalue, A(s) f O0

of A (£) such that X(e) = o(en). In effect, let
then the matrices Ak0O k = 0,1,2,3, are given o

by:

S + P 1 (E)s + ... +p 1 (E)s+ po() = 0

~~os~~~----------- ··--- ~~~~---- ~~- - - - -~~~n-1 



i be the characteristic polynomial of A + EB. The of the matrices ARo violates the semistability

coefficients P . (C) are polynomials in e of degree condition. The following proposition gives the

< i. Then, partial time scale decomposition for this case.
Proposition 2.2.17

n-i +l ,n-2 Let Ao(E) satisfy the MSSNS condition and let

(n-) + pn l(£) >(E) P1(E) Ako k = 0,1,.. ,m be the matrices defined in
equftions (2.2.10) - (2.2.14). Suppose that

Pc( s ) Ako, k 0 , are semistable. Then,

X (E) :i) lim sup ljPQ(£) exp{A ()t} -

S40 t>o
If X(£) were of order o(En

) and po(g) / 0 then (Et)| =0

po (E)/X(E) + X as s + 0 and the above equation
cannot be satisfied. If pOC() = o then the same where
can be set about

m k

n-2 n-3 +. (e,t) = t Qk exp(Ak t} 1 ...
X(s)n + p (CS)(E) n ... + P2(o) mk=o

k#t

+ (- 0 ii) lr sup lexpfA o(S)t/S
} - k(t)IL o

which cannot be satisfied unless p (-) = o. Pro- for all V6 > 0, T < X

cending in this way it is concluded that if A (s) =

o(S ) then X(s) = o. It then follows from Proposi- k = o,. .. R
tion 2.2.8 that Ak(s) = o for k > n and therefore e)t/k
m n. Similarly, in the case of a non-linear per- lim ) exp ()t/

turbation of finite order, C+0 6<t<T

P . ,k(t) -

A (S) = a .
0 j=o v o6 o, VT < :k = +1l,..,m

we have m < n-p. where
In addition to this upper bound on the slowest

time scale the number of fundamental time scales exp{A t) + P ... P
(i.e., time scales for which Ako Y 0) can also be k k e o t k

easily bounded. From the rank condition:
~~~~m °- ~~~p0...P -1 exp{A t} O

Z rank A = rank A (£) The above result indicates that, under the
=o ko 0o conditions of the Proposition, the multiple time

:it follows that the maximum number of non-zero NkO )'s scale behavior of A (C) up to the time scale where

among A0 0 , A 0 1 ..,A is equal to n-nrank A ('). the MSST condition is violated is identical to the
00 01 Om o MSST case, From there on-, however, the projection

2.2.4 Partial Time Scale Decom~poctlkion P (C) must be introduced to anihilate the behavior
at time scale t/cS which involves unstable or

In this subsection we analyze the multiple oscillatory modes. It is important to note that,

time scale behavior of singularly perturbed systems. in. general, the projection Pj(E) used in (5.1),

that do not satisfy the MSST condition of section 'cannot be substituted by its leading term (nor by

2.2.3. In general, these systems have well defined any finite number of terms in its power series

behavior at some time scales but not at all time expansion). Because of this lack of robustness,
scales and their behavior over the infinite time this result is of minor importance for applications;

interval [0, 00) cannot be reconstructed from their without some extra conditions, the multiple time
-evolutions at different time scales. However, it scale analysis of MSSNS systems which violate the

may still be useful to be able to isolate the t'me MSST condition at some time scale is feasible only

scales at which they have well defined behavior, up to this time scale.

and to compute their evolutions at such time scales. Assume now that the matrix A (C) is stable for

This is the problem we address now. Ee (O, o]. Stability implies uniform boundedness of

At a first level we distinguish between systems expfA ()t} with respect to t, i.e.,

which, although they do not satisfy the MSST condi-

tion, they do satisfy the MSSNS condition, and sys- sup Iexp (A (st} = K(C) < t>o
tems which do not satisfy the MSSNS condition. For tso 

system with MSSNS, the sequence of matrices Ako'
k = 0,1,... ,m, can be fully constructed as indicated but, as shown by example 2.2.12 and the example
in section 2.2.3. The MSST condition is violated- below, for singularly perturbed systems K() may

if one of these matrices has an eigenvalue X # o become unbounded as c+0 (even if K(O) is finite
such that ReX > o. The strategy to obtain at least as inwexample 2.2.12)

a partial time scale decomposition of exp{A ()t} Example 2.18o Example 2.2.18
is to multiply exp{A (E)t} by the projections that Let
anhilate the evolution of exp{A (E)t} at time scales
where the reduced-order model is not semistable. A0()) i -£]

For clarity we treat the case where only one



This is a stable matrix with eigenvalues ii) lim sup lexp{Ao(E)t/ek} - (t) I- o

E+O %t$T 0k

X, = -£E ire
- 1,2 VS > o, VT < X k = O,l,..,,

and a simple computation gives: lim sup kP exp(A (S)t/k -

that,0 for this example. the unpertubed system

= Po '' P k- 1 exp AkotE

As= Ai(0) = p001 It is a simple matter to extend Proposition
A00 A( 0)=where: 

is not stable and it is therefore clear that uniformly stable systems may fail to have well de-

the s perturbation has stabilizing effects. O fined behavior at certain time scales because of the
The kind of behavior discussed above indicates presence of oscillatory modes in some of the reduced-

that in some systems the -dependence, in addition order models These oscillations become of
to generating eigenvalues of different orders of infinite frequency when seen at slowe r time scales.

magnitude in 5, also models near instabilities. As It is important to notice that the appearance of such
we have seen the presence of increasingly large unattenuated oscillations in some of the reduced
amplitudes as E+0 precludes the complete multiple order models Ako does not necessarily imply that.the
time scale analysis of these systems. We now ana- - matrix ,o(£) has some purely imaginary eigenvalues.

lyze the multiple time scale behavior of systems Instead, they could as well correspond to eigenvalues
in which the £-dependence does not give rise to with a negative real part that converges to zero
increasingly large amplitudes as E+0. faster then its imaginary part. For example take

We will say that A (E) satisfies the uniform 'X,( = s+i. In this case expfX(s)t} is seen as a
stability (US) condition if: pure oscillatory mode at time scale t while at time

scale t/s,iwhen the attenuation effects are beginning

H expfA (E)t} | < K Vt> o eo, E I to be felt, the oscillations become of infinite fre-
o o quency. To avoid this lack of well defined limit at

slower time scales the oscillatory modes must be
for some K > o and independent of S, The following excluded fromconsideration; this can be done using
proposition states that US is a sufficient condition the adequate projections as indicated in Proposition
for MSSNS. 2.2.20.

Proposition 2.2.19 The fact that the projections required to anihi-
If Ao0 () is uniformly stable then it also sat- late the undesired modes are Esindependent makes
isfies the MSSNS condition; if any of the Proposition 2.2.30 much more useful the Proposition
reduced-order models Ako has eigenvalues on 2,2.18 for applications.
the imaginary axis they must be semisimple. 0 In all the results derived so far, the decom-
Uniform stability guarantees MSSNS but not position

MSST because some of the matrices Ako may have
purely imaginary eigenvalues. The following pro- m k

position shows how to carry out a partial time scale exp{A o()t} = t Qk(s){exp Ak(s)e t}

decomposition for US systems. k= 
Proposition 2.2.20 + Po(e) .. Pm( ) (2.2.30)
Let Ao(e) be uniformly stable and suppose that,
all the reduced order models Ako, k = 0,1,..,m, together with the fact that
are semistable except Ago. Then:

m
-i) lim sup lP exp{A()t} - rank Ako = nrank Ao () (2.2.31)

E+O, t>O 0 k=o

, (s,t) I | = o have played a fundamental role. If the MSSNS con-

dition is violated then this decomposition is not
feasible. It is still possible, however, to derive

£ m k some multiple time scale results from a reduced
*i(f,t) = k Qk A 0 t version of (2.2.30). We briefly discuss this case.

-kit Suppose that A (E) is such that the sequence of

matrices Ak(S) constructed in (2.2.10) - (2.2.14)
PoP1 Pm ends for k = p because Apo does not have SSNS, and

that



E rank Ako < nrank A (E) .. - -_;.·. ~ : different time scales and we have shown that these
=o ° 0 reduced-order models can be combined -to approximate

the original system. The usefulness of this model

We can decompose exp{A (s:)t} as follows: simplification technique depends on two counts:
0 i) It must be shown that problems posed for

P kt the original system can be approximately

exp{Ao()t} = Z Qk () exp{Ak(e) e t} solved by combining the solution of some
kO° -related problems posed for the reduced

+ p() P( -- (2... ..232) - ....... .... order models with some reduction in com-
- P ()'''PP plexity and

and the multiple time scale analysis developed for ii) it must also be shown that the calculations
MSSNS systems can now be performed up to time scale required to compute the reduced-order models

p do not exceed the savings in i).
t/CP . the fact that Z rank Ako is not equal to In the next section we show that for an im-

k-o
portant class of systems, the MSST condition is

na a h r P whose always satisfied indicating that the results devel-
eigenvalues of Ao(C) that are of order ofcP) whoseeigenvacuest o will (t tcaptredy oi prtl oped in this chapter have a wide range of applicabi-
effect will not be captured by this partial time

lity.
scale analysis. Furthermore, systems which violate
the MSSNS condition at stage p are not uniformly 2.3 -Hiqrarchical Aggregation of Finite State Markov
stable and the limit Process

lim exp{A (C)t/SP1 +} 2.3,1. Introduction

In this section we apply the results presented
p+ (e)t/s+ 1 in section 2.2 to the study of Finite State Markov

can not exist because exp A (t Processes (FSMP) with rare events.
as s+0. If Ao(£) is asymptotically stable it may The presence of rare events in a FSMP is modeled
well be possible that the system has well defined by introducing a small parameter e in its matrix of
behavior at slower time scales t/0e, I > p+l, when transition rates. As an introductory example, con-
the effects of high amplitude transients have dis- sider the process ne(t) depicted in fig. 2.3.1. Its

appeared. The techniques we have used, however, matrix of transition rates is of the form A (C) =

tdo not seem adequate to treat this case, More work A + cB and can be thought of as modeling a system
is needed in this direction. °-is needed in this direction with the following characteristics: it may operate

in two different modes corresponding to the two sets
2.2.5 Summary and Conclusions of states E1 = {~,2} and E2 = {4,5} A rare event

(a failure alarm, for example) puts the system in
In this section we have studied the asymptotic state 3 where a fast decision is made whether to

behavior of exp{A (M)t} over the infinite time in ontine operating in theisame made whether to
0 continue operating in the same mode or whether to

terval [o, x) for change it. Whilein state 3, another rare event

(a wrong decision, for example) may put the system

A(C) = k A k out of operation (state 6). At a first level of
kO °k simplification we can imagine a reduced-order model

which only describes changes in the mode of operation

We have formalized the notion of multiple time and failures, neglecting the evolution of the system
scale behavior and that of reduced order models of while in a given mode, An even coarser description

the system of the system would be provided by a model which
only distinguishes between working and non-working

dx (t) _ A (e) x (t) . states. Given the structure of the process, transi-
dt = A e x W tions between states in E and states in E are

likely to occur only for times of order 1/e while a

valid at different time scales. We have identi~- failure, requiring two consecutive transitions with

fied several conditions on A (C) which give rise to rates of order E, will take place at times of order

qualitatively different asymptotic behaviors. The 1/ 2

hierarchical relationship among these conditions It is clear from this example (see section
is visualized in Fig. 2.2.3. 2.3.6 for a full development) that the connection

The most important result is probably the fact among rare events, multiple time scale behavior and

,that multiple semistability is a necessary and reduced-order (aggregated) models is intuitively

sufficient condition for a system to have well de- appealing in FSMP. In fact, several authors have,
fined behavior at all of its natural time scales, in different contexts, used aggregation ideas in the

If a system does not satisfy this condition then past." Simon and Ando [SIM 61] were probably the
a time scale analysis of it will not be adequate first, Curtois [CUR 77] argues in a somewhat heuris-
to capture all of the different system's features. tical. way that aggregated models for Markov chains

Conversely, if a system has a well defined multiple are useful in the analysis of computer systems while

time scale behavior, then, when it is correctly [DEL 81] use aggregated models to simplify control
modelled, this model must result in a system matrix problems for Markov chains. The most complete treat-
that satisfies the MSST condition. - ment to date is given in [KOR 78] where the results

For MSST systems we have developed a metho- are not restricted to FSMP but include Markov pro-

dology to compute the different reduced-order models cesses with unbounded infinitesimal generators as

of a system which describe its evolution at well. All these works, however, either introduce



conditions which guarantee that the process under A matrix P is the transition probability matrix of

consideration has only a two time scale behavior a Markov chain if and only if:
(i.e. t and t/E) or restrict their attention to a (i) P > o (2.3.2)
certain time scale. In any case only one aggre-
gated model is proposed for a given system. In (ii) P.m = D (2.3.3)
line with the multiple time scale results presented
in section 2.2, our results extend previous work on where Iis a vector with all components equal to

FSMP aggregation by showing that: one. A matrix satisfying (2.3.2) and (2.3.3) is

i -- --(-i) FSMP with rare transitions can always be -called stochastic. For our later-work we will be---

aggregated. mainly interested in the behavior of pn as n - a.

(ii) In general, such processes exhibit multi- We shall say that a Markov chain n(t) with transi-
ple time scales and several aggregated tion matrix P is ergodic if the limit

models are possible, one for each time
scale. lim = P

(iii) An approximation to the original process, n-w

which is uniformly valid at all times t,
can be constructed by combining the set exists, Notice that in this case PP = PP = P and

of aggregated models. that P is a stochastic projection. We shall refer
The probabilistic evolution of a FSMP T (t) to it as the ergodic projection of n (t). The follow-

with transition rate matrix A (C) is completely ing theorem specifies a canonical form for the tran-

determined by its matrix of transition probabilities sition probability matrix of a ergodic chain and for

which is given by: its erqodic projection.
-\Theorem 2,3.1 [KEM 601*

SP (t = exp{A (-)t} A stochastic matrix P is the transition pro-
o bability matrix of a ergodic chain iff by an

adequate ordering of the states it can be

An application of the multiple time scale techni- written in the following form:

ques developed in section 2.2 to the asymptotic

analysis of Pc(t) is carried out in this section.

Specifically, we show that if Ao(s) is the matrix 11 0
of transition rates of a FSMP then it satisfies

0 p
the MSST condition (see section 2.2.3) and there- 22

fore PE(t) has well defined multiple time scale P (2.3.4)
behavior. The reduced-order models that describe . mm
the evolution of P (t) at each of its fundamental
time scales are then interpreted as aggregated P P

models of {(t) obtained by collapsing several m + m+l,m+l
states of ln (t) into a single state of a mo'el
that describes events in n (t) of a certain level with the submatrices P.. i = 1,2,...m satisfy-

- of rareness. Each of the models is a FSMP and n 11
ing P.i 5 0for some n. > 1.

they can be ordered in a hierarchy, where eachsome ni

model describes the evolution of fl(t) with a Its ergodic projection then takes the form:

different degree of detail.
The section is ordered as follows: In 2.3.2,

2.3.3 and 2.3.4 we discuss some preliminary material P; 1 0 . .. 0
on FSMP. The emphasis is placed on stochastically
discontinuous Markov processes, i.e., processes 0 2 2

which may undergo an infinite number of instantan-. p P 0 (2.3.5)
eous transitions in a finite time interval. This mm

kind of processes which have received little:
Attention in the past are very useful in inter- , P P 0
preting the multiple time scale behavior of P£(Ct. lm+l m,m+l

Basically, if n5 (t) is analyzed for times of order
t/sk, all transitions that occur at faster time T
scales look as instantaneous and a stochastically with Pkk = k' k=l, . ,m, for some vector

discontinuous process is adequate to approximate p > such that V =1 and P 
the behavior of ns(t) at the time scale of in- k T k k = 1 and P,m+l m

6 'P for some vector 5>o such that Zterest. The existence of aggregated models and a k k k 
method for computing them are discussed in sections 6 = n .
2.3.5 and 2.3.6. One example is given in section k
* 2.3.7. The canonical form (2.3.4) determines a partition of

the state space

2.3.2. Ergodic Projections of Markov Chains m

U X )UX(2.3.6)
A stationary Markov chain n(t), t=0,l.,,, kl T (2.3.6

taking values in a finite state space X = {1,2,
...,n} is completely characterized by its trans- *Our definition of ergodic chain differs from that

tion probability matrix, P, whose elements are of IKEM 60]) Ours is consistent with the notion of

the one-step transition probabilities: ergodicity used for other processes. [KEM 60] allow

the existence of cyclic classes and therefore in

------ . = P In(t) = j In(tl - i} ij e x (2.3,1) general no steady state probabilities exist.ij = r t) j In(t-) = iij e x (2.3,1



The sets Xk are called ergodic classes and XT is the
set of transient states. Once the process enters a lim P(t) IT - (2.3.16)
ergodic class it never leaves it. If the process t+0
starts in a transient state then it leaves XT in a
finite number of steps w.p.l and XT is never re- always exists. It follows from (2.3.13) - (2.3.15)
entered. The vectors Pk k=l,...,..m are the ergodic and the continuity of P(t) that IT satisfies:
probabilities of the chain Pkk with state space
Xk and the jth component of the vector 6 k is the 1 >0 , = R2 I (2.3.17)
probability that the chain will get trapped in -

ergodic class Xk if it starts at the th transient
state. For latter developments it is convenient and
to write the ergodic projection P in terms of some
of its right and left eigenvectors with eigenvalue

~P(t) = P(t)~ = P(t) (2.3.18)
1. Notice that by the structure of P in (2.3.5)
there are at least m linearly independent right
eigenvectors with eigenvalue 1 given by If n = I then n(t) is called stochastically contin-

uous, otherwise it is called stochastically discon-
T T 0 o0 T T tinuous. The following theorem gives a unique chara-
rk k 0k ] k=l, ..,m cterization of P(t) in terms of a set of parameters.

(2.3.7) Theorem 2.3.2
If P(t) is the transition probability matrix of

where 1 k is a vector of ones with dimension equal a conservative FSMP then

to that of the block Pkk' A complete set of left
eigenvectors of P with eigenvalue 1 is readily P(t) = T exp{At} t > o (2.3.19)
constructed as follows:

for a pair of matrices IT and A satisfying:
T T T 
k [0 0 ... 0 Pk 0 ... 0] Tk l,..,m

(2.3.8) i) n > 0, .11 = IL , 2 = 

Let V deonte the (nxm) matrix whose columns ii) TA = Al = A

are the vectors rR and let U be (mxm) matrix whose
rows are the LR's. Then we have:

iv) A + cT > 0 for some c > 0.

V · U = P (2.3.9) Conversely any pair of matrices A, T satisfying
the above properties uniquely determine a FSMP

U ·V = I (2.3.10) with transition probability matrix given by

( C2.3,19).
We will refer to (2.3.9) as the canonical product We shall refer to the projection I = lim P(t)

decomposition of a ergodic projection. , 
as the ergodic projection at zero and to t~e matrix

2.3.3. Finite State Makov processes Basic
Definitions A = lim P(t)-

t+0

A Markov process n (t) taking values in a fin-
ite state space X = {1,2,...,n} is completely\. as the infinitesimal generator of P(t).

characterized by its transition probability matrix, Example 2.3,3

P(t), whose elements are the transition probabi- Consider a FSMP n(t) taking values in X = {1,2,

lities: 3} with transition probability matrix:

P .(t) = P fn(t) = j to) = i} -Xtt -Xt -t
r ple p2 e 1-e

i,j e X, t > o (2.3.11)t Xt -t
P(t) = e p e 1-e

An (nxn) matrix-valued function P(t), t > o is the
transition probability matrix of a Markov process
taking values in X iff the following conditions
are satisfied:

with P1 + P2 = 1. Its initial projection is:
(i) P(0) = I (2.3.12)

(ii) P(t) > o , Vt > o (2.3.13) P2 

(iii) P(t) n1 = (2.3.14)

(iv) P(t)P(T) = P(t+T), Vt, t > o (2.3.15) im P(t) = P1 P2

It can be proved ((DOE 38], [DOO 42)] that if P(t) - -t+0 

is a transition probability matrix then it is L 0 0 l
continuous for t > o and the limit



and its infinitesimal generator: .T exp{At}, If 7r.. = o (the diagonal elements of IE)
--theni -i(h) o and therefore

-p~?1 . , . Pr{n(r) = i, Te [o,t] n(o)=i} = o

P(t) -I
A lim Pt) 2 . To compute (2.3.20) when o < Wii < 1 write:

0 0 0 P(h) a

=1 + 3- h + o(h)
For stochastically continuous processes theii .i 

elements of the matrix A satisfy a.. > 0 for iij 
and they can be interpreted as traniition rates in
the sense that:

which gives,
Pi..(At) = a.. At + o(At) ifj

1j 1j~~~~~~~~~~~~~~ a..
log ?P (h) = log iT + 1 h + o(h)

If we consider a separable version of the process ii ii . ()
i(t) then, as we will see:

and therefore:

Prti(T) = i, T e [o0,t]ln(o) = i} = eii

Pr{n(T) = i, Te [o,t] n(o) = i} =
which means that the time of first exit out of
'state i is exponentially distributed with parameter n-l a..
- aii > 0. The evolution of n(t) can be thought exp{lim [n log r + Z -i Et -t ]
of as a succesion of stays in different states in n+ xii k=o .. [k+l,n k,n
X, each being or random duration and exponentially
distributed with parameter that depends on the + (t t )]]} =

state. The sequence of states forms a Markov chain kln ,n
with one-step transition probabilities given by
pi = - a../a.. and the sample functions of n (t) if i.. <1
ark easily visualized as piecewise continuous func-
tions taking values in X. (2.3.21)

The sample functions of stochastically dis- p{a..t} if 7r.. = 1
continuous processes are much more irregular. As
we will now see, these processes have instantaneous
states, i.e., states in which the process spends no A staregl wilf be called instantaneous if ate i
time with probability one but in spite of that the andwill be called eif 1.necen instantaneous sojourn
process, in general, spends a non-zero amount of 1

process, in. general, spes tim e in instantaneous states is zero with probability
time switching among instantaneous states. The one, as indicated by (2.3.21), while for regular
sample functions have therefore pieces where they states it is exponentially distributed with rate
are nowhere continuous. To classify the states of

- ai i > o. In stochastically continuous processesa process n(t) with ergodic projection ff at zero -a
all states are regular. In example 2.3.3 states

and infinitesimal generator A, consider a separ- (1,2 are instantaneous while 3 is regular. Noticeable version of the processand let Abeasepara- {1,2} are instantaneous while 3 is regular. Notice
able version of the process and let A be a separa-

tigse.Fr adn= ,,..tk 0=tthat even though the duration of stays in instantan-
ting set. For t > o and n = 0,1,... take 0 = ton ous states is zero w.p.l, there is, in general, a

< n < nn in such a way that the sets non-zero probability of finding the process in an
An {ton In ... t.inn crease monotonically and instantaneous state at any given time as seen in

UAn = A n [o,t I. Then we have: example 2.3.3 for states 1 and 2. The structure of
the sample functions for this example is shown in
Fig, 2.3.2,

Pr{(T)=i,T e [0,t3]n(o)=i = Notice that if the process n(t) of example
2.3.3 is aggregated by merging states {1,21 into a
single state, then the aggregated process n(t) de-

Pr{n(T))=i,¶ e [o,t] nlIn(o)=i} fined as:

lim Pr {n(n)=i, Te [0O,t] n An f[(0)=i = n(t) = 1 if r(t) e =1,2}

2 if n (t) = 3
n-l

nlim ko ii(tk+l,n -tk,n) = is a Markov process with transition probabilityn+~o- k=o h
matrix P(t) given by:

n-l -

exp (lim Z log (t - t )} (2.3.20) -At -eXt
n+ k=o k+l, n k,n ,n e l-e

P(t) =
where P..(t) are the diagonal elements of P(t) = 1



The aggregated process Mi(t) is therefore stochasti- constructed in section 2.3.2. Then:
cally continuous. In the next section we show that

every stochastically discontinuous process uniquely t
determines a stochastically continuous process t) U P(t)v exp {UAVt) (2.3.25)

obtained by collapsing groups of instantaneous

states of the original process into a single state
of the aggregated process and conversely that every is the transition probability matrix of FSMP

stochastically discontinuous process is completely n(t) taking values in X = {1,2,... ,m} and
determined by its aggregated, stochastically con-

:tinuous version. P(t) = VP(t)U Vt > o (2.3.26)

2.3.4. Ergodic projections, state space partitions
and aggregation of stochastically discon- The above theorem states that every stochasti-
tinuous FSMP. cally discontinuous FSMP uniquely determines a stoch-

astically continuous FSMP in a smaller state space
We prove here that all the probabilistic pro- and shows how their transition probability matrices

perties of a stochastically discontinuous process are related. We now show that f(t) is in fact ob-
can be derived from an aggregated version-of the tained by neglecting evanescent states and merging
process that is stochastically continuous. states of n (t)' belonging to a ergodic class at zero

Let P(t) = R exp{At} be the transition pro- into a single state of fi(t). Let j e X be an arbit-
bability matrix of a FSMP n(t) taking values in X. rary state of (t) belonging to X°, i.e., to the

It follows from (2.3.17) that the ergodic projec- ergodic class at zero, and let Xbe any ergodic
tion at zero, I, is also the ergodic projection of class at zero, Denote uT = o 1011 T1 1 bI]T.class at zero, Denote u = [ 101
some Markov chain and therefore it has the form: Also let 1. be the vector with the jth component

equal to land the rest equal to zero. Then we have:

I *0 . .. ... O
0Prf{n(t) e x° l(o)=j} = 1 P(t) u =

rrk 

= ° ' .Mm ° (12.3.22) 1 VP (t) U uk (2.3.27)

~1, ml mml 0
and by construction of V and U (remember j e X'),

m
Let X = (k 1l X'°) U X' denote the partition of X 1T V T

into ergodic classes and the set of transient states 3
determined by (2.3.22). The first group of states (2.3.28)

in (2.3.22), corresponding to the identity block
(i.e., absorbing states of I), are the regular U k = 1k
state of n(t). States in X' , i.e., transient

states of the chain H, are the evanescent states
of n(t) which, as we will now see, can be pruned thus giving:

without affecting the finite dimensional distri-
butions of the process. In effect, P = = Pr t =

Prfn(t) r x;lq(o)=j} = ^Zk(t) = Pr{~(t) =

P(t) = I exp fAt} = I exp {At) T3 (2.3.23) k(o) Vt > o (2.3.29)

and given the structure of II, it follows thats The process (t) is therefore an aggregated

version of n(t), i.e.,

Pr ni(.t) e XT I n(o)=i} = o Vt > o, Vi e X

(2.3.24) At) = k if n(t) 6 X k=l,2,...,m (2.3.30)

Evanescent states can thus be neglected in the sense Notice that, in principle, there is an uncertainty

that there exists a version of the process n(t) in defining T(t) as in (2.3.30) because no value is
that has the same finite dimensional distributions assigned to n(t) whenever n(t) e X;. As we have
but does not take values in XT . said, however, there is a version of n(t) which does

The blocks niii i=r, . ,m determine groups of not take values in XV. Using this version (2.3.30)
non-evanescent instantaneous states. Such instan- completely determines n(t).
taneous states cannot be neglected but each ergodic In addition to the aggregated probabilities
class can be consolidated into a single state of a (2.3.29), the aggregated process f(t) also determines
stochastically continuous process as stated in the P .(t), i,j e X as follows:
following theorem.

Theorem 2.3.4
Let P(t) = T exp{At} be the transition pro- Pr t) = j(o)i = P (t) 
bability matrix of a FSMP n(t) taking values

in X = {1,2,...,n} and let m be the number of 1T. V (t) Ul. (2.3.31)
ergodic classes at zero. Let TI = V.U be the 
canonical product decomposition of -



By construction of V and u:
: '- ,1 0 0 0 0 0

if k e Xe some k=l,,.,m 0 1/2 1/2 0 0 0

0if i e X1/2 1/2 

0' 0 0 1/2 1/2 0: T

j TT~~~~~~~~~~~ =0 0/ 0/ 172 1/2 0Ij V = Ijif i; e! X~

(k) th and infinitesimal generator:
where I!k) is the i- entry of any row of kk and infinitesimal generator:
(see (.2.3.22), that is the ergodic probability at
zero of state i belonging to'class X. We thus 0 0 0 0 0 
have: /8 -1/8 1/8 1/8 0

r = In (o~)- =i Ik) ~ t0 .41/8 v-/8 1/8 1/8 0

i m ~~ A = ~ 0 1/8 1/8 -1/8 -1/8 0Pr~n (t) = j In (o)=i} = ~ (k) · t
i PkR( ')

11~(k). Prhfl~t) 2.J~~i~ kI (2.3.32)0 1/8 1/8 -1/8 -1/8 0
kI rCct =allo,=k (2.3.32) 0 .l/16 .1/16 1/16 1/16 0

Vt > O i e XI
k There is a regular state, (11, an evanescent

j e Xe state, {61, and two ergodic classes of instan-
k R ~~taneous states, (2,3) and (4,5}.

We will refer to (2.3.25) as the aggregation Notice that A is not a matrix of transi-

operation and to (2.3.26) as the disaggregation tion rates of a stochastically continuous FSMP
operation. These operations can also be inter- because it has negative elements in off-diagonal

preted from a geometrical point of view. Notice positions. However, A + T ~ 0 and the pair of

that the stochastically discontinuous transition matrices A and IT define a FSMP. For this ex-

probability matrix P(t) = 1 exp{At} satisfies: ample the matrices.V and U are given by:

0 0O
P(t)f = exp{Atlf for t e RC(),D R(AY (2.3.33) 0 

0 10 0

0 1 0 U= 1/2 1/2 0 0 0
and therefore it defines a transition matrix on =V =
R(T) that is continuous at zero. Let m be the 0 0 1 0 1/2 1/2 0
number of ergodic classes at zero then rank T = m.

The matrix V: Rm - n m a s mn into R(U) in a0 1
one-to-one basis and U: JR -+ m maps R(TI) back 0 1/2 1/2
into IR m also one to one. We thus have the follow-

ing diagram: Notice that the matrix V includes all the in-

formation about which states belong to what
- _ V R) ergodic class at zero while the matrix U gives

the ergodic probabilities for each class.
The matrix of transitions rates = U A V is

~~~expf~At)~ ~is thus given by:

P(t) R (TO) 0 0

A UAV 0 -1/4 1/4

Jm R P~~~~~~~~~~~0 1/4 -1/4[L 0
From this point of view the state space aggre-
gation is interpreted as a restriction in the do- The aggregation operation corresponds to con-

main of definition of the transition probability solidation of states (2,31 and {4,51 into two
matrix. states of (t). The regular state {11 remain

We next give an example of a stochastically unaffected and the evanescent state (61 is
discontinuous process and its aggregated version. pruned. The consolidated rates are obtained by

Example 2.3,5 averaging the coefficients in A corresponding to

Let fl(t) be a FSMP taking values in X = (1,2, transitions between states in different ergodic

...,61 with ergodic projection at zero given classes against the ergodic probabilities at

by: at zero for each ergodic class.
From the above discussion it is clear that all

relevant information about a stochastically discon-
tinuous process is contained in its aggregated ver-
sion and its initial projection, and therefore the



study of such processes can be reduced, using Proposition 2.3.7

theorem 2.3.4 to the well known stochastically con- - A FSMP n( Ct), Ce [o0, 1, is singularly perturbed

tinuous case. if and only if the number of ergodic classes at
We analize now the behavior of P(t) = IT exp(At} is discontinuous at C = o.

as t + a. We will say that a FSMP n(t) is ergodic The process in Fig. 2.5.1 is singularly per-
at - if lim P(t) exists. The following theorem turbed because for C > o it has one ergodic class

-t-MO . .while for s = o there are three ergodic classes.
extends to the stochastically discontinuous case a For singularly perturbed FSMP a complete multi-

- result that for stochastically continuous processes
is well knon.N , that al FMPar ple-time·scale analysis of (2.3.34) is always possi-
is well known. Namely, that all FSMP are ergodic ble. In effect, it follows from (2.3.13) and

ble.- In effect, it follows from (2.3.13) andat 00.
(2.3.14) that

Theorem 2,3.6
If P(t) is the transition probability matrix
of a FSMP with ergodic projection Hl,at zero lIexp {A (E)t} II=1
and infinitesimal generator A, then:

; and therefore Proposition 2.2.19 guarantees that

P() =P satisfies the MSSNS-condition. Let A00, A,
i thm Pt) ... A be the sequence of matrices constructe

from AemN) as in section 2.2.1. It is readily seen,
0

by induction, that these matrices are all semistable.
always exists and satisfies:

always exists and satisfies: st because A = A (o) is the infinitesimal gene-

rator of the stochastically continuous process n (t),
P = P - it is semistable. Suppose now that A , A1 0 ... ,

A _i are all semistable then by Corollary 2.2.11

P > 0, P . a = n we hive
A t

PP(t) = P(t)P = P lim P5 (t/s£) = In e P (t) t > o (2.3.38)

PI[ = 1IP = P

PA = AP = 0 where nI is a projection such that 1, A , = A2, 1 =
Ao. Notice that P (t) satisfies the semigroup

The projection P = lim P(t) will be referred property P (t) P (TC = P (t+T), and that Pc(t) > o,
tTepoe ' Po(t) n = n imply P (tt > o and P (t) = ) .

to as the ergodic Projection at 9 .
Thus, P, (t) is the transition probability matrix of

2.3.5 The MSST Property of Singularly Perturbed some FSMP. It then follows from Theorem 2.3.6 that

Finite State Markov Processes. AzA is also semistable. This proves the following
Proposition 2.3.8

Consider now a stochastically continuous FSMP If A (C) is the infinitesimal generator of a

nl(t) taking values in X = {1,2,...,n} with transi- FSMP then it satisfies the MSST condition.
tion probability matrix This result implies that a complete multiple

time scale analysis is always possible for signularly

P Ct) = expn{A ()t} t > o (2.3.34) 'perturbed FSMP in the sense that the limit

lim P (t/s )

and infinitesimal generator of the form: s4+0

co exists for any integer k. In fact it-is not diffi-

A (£) = 5 'P A S [O, ]1 (2.3.35) cult to prove that the same result holds for any
uniformly stable positive LTI system.

It follows from Thm. 2.3.6. that Ao(s), elO, O, 'S '2.3.6. Aggregated Models of Singularly Perturbed

is a semistable matrix and, as we have seen in 0 Finite State Markov Processes.

section 2.2.2, if rank A (E) is discontinuous at
= o then In this section we give a probabilistic in-

terpretation of the multiple time scale and reduced-

lim sup JlP£(t) - P°(tl| # O (2.3.36) order modelling results presented in section 2.2.2
when the matrix A (C) is the infinitesimal generator

s%0 t>o
of a singularly perturbed FSMP n (t) taking values

o in X = {l,2,...,n}.
which means that in thi~ case fl Ct) can not be a From Corollary 2.2.11 and our discussion in
good approximation of n (t) no matter how small 

section 2.3,5 it follows thatis. Accordingly, if

lim P5 (t/sk) = lim exp{A (E)t/sk } =
n rank A (C) ' rank A (o) (2.3.37) 5+0 5+0

Ak t
we will say that n (t) is a singularly perturbed ie p(t) t > o, k=O,l,..,m

FSMP. Because null Ao () equals the number of
ergodic classes of ~n(t) at a, Prop. 2.2.5 has the
following probabilistic interpretation: 1 k+l t > o, k > m (2.3.39)



where I = I k P P1 k= m The process n (t) takes values in Xk = {1,2,...,nk}
and m is some integer smaller than or equal to the and it changes only when n (t) jumps from one ergo-
number of ergodic classes of nTI(t). The limiting dic class Ek to another E. remaining constant while
matrices Pk(t), k=0,l,...,m, are the transition nECt) evolves inside one if the ergodic classes
probability matrices of a collection of FSMP n(t) Ek . In general, in(t) will not be a Markov process
which, except for no(t) = n (t), are stochastically but as the following theorem states, it can be

discontinuous. The stochastically discontinuous approximated by a FSMP in the limit as s+O.
nature of the limiting transition probability 'Theorem 2.3.9
matrices Pk Ct) has a simple interpretation in this . Let A, kl;,... ,m be the aggregation mappings
context. The time scaling in P (t/sk) indicates defined in (2.3.42). Then
that we focus on rare events, those that are likely
to occur only for times of order t/sk. In the
limit as C+0, all transitions that occur at faster hitm 'n k(t/k) A (n(t/sk) an (t) (2.3.44)
time scales become instantaneous and their net e+0
effect on the events that occur at time scale
t/ECk is condensated in the ergodic projection at

zero k'

As we have seen in Theorem 2.3.4, each of the convergence being in the sense of finite

limiting matrices P kt) can be written as dimensional distributions,
This theorem has the following implications:

Pk(t) = V k k(t) Uk k=1,2,..,m (2.3.40)

Pr{nZ (tm Ekinp(o) = be E =

where Vk and Uk are matrices obtained from the (2.3.45)

canonical product decomposition of k Ri.e. T k =

Vk.Uk) and k t) jki

h (; ; :1iP

Pk(t) = exp{Uk Ak V } k=l,2,,..,m That is, the transition probabilities among

classes E. for the process n (t) are asymptotically
markovian in the limit as E0O and they converge to

is the transition probability matrix of a stoghasti- the transition probabilities among states of the

cally continuous FSMP that we denote by 1k(t), process (E-t).
According to our discussion in section 2.3.4, In terms of the transition probability matrices

the process nk(t), with transition probability Lhis can be written as:

matrix Ak =Uk A. V., is an aggregated version of

the stocnastical y discontinuous process n (t). xpfA ektl + 0(E) (2.3.46)

We will now see that k(t) is also an approximate, k k) 

aggregated model of n£ (t) that describes events k

in ns(t) which have non-vanishing probability uniformly on [0, T/C 1.
(as S+0) only in intervals of size [0, T/Ik]. Each i+) The collection of partitions (2.3.41) de-

of the projections Ikrk=l, ... ,........m, determines a termine a classification of events in ns(t) into a
partition of X as follows: EX

rarity hierarchy. Transitions among classes ~.,

i=t,,,.. ,, may occur on time intervals of the type

t k ,10 T/Ck] but not on shorter time intervals, i.e.,
X = (Ul E1-)UE-k k=l,.. ,m (2,3.41)

p=l p T

lim Pr{nfl(t) 0 E'k some t e [0,T/S ]
k 1

where E , k=l .. . ,n, are the ergodic classes at E+0
zero ofpnk(t) and Ek is the set of transient

states. We have m different partitions of X n (o) e .} = 0 Vk > k (2.3.47)

determined by the process nc(t) through the con-
struction indicated above. For each of these

partitions define an aggregation mapping as follows: In view of Theorem 2.3.9 and the above interpre-
tations we will say that nk (t) is an aggregated

A : X + X = {1,2,...,n . (2.3.42) model of l (t) valid at time scale t /R.
·k k k We have thus seen that for a singularly per-

turbed FSMP it is always possible to construct a

A (i) = j if i e Ek sequence of aggregated models each valid at a diff-
k 3 erent time scale. These models form a hierarchy in

the sense that the number of states of the aggre-

A (i) arbitrary if i e Ek gated processes X (t) decreases as k goes from 1
T to m and consequently the partitions used in the

and an aggregated version of aggregation mappings Ak are increasingly coarse.
In effect, k(t) takes values in X = {1,2,...., }
and the number of states i is given by:

n (t) A A (i (t)) (2.3.43)
k. = k



approximation techniques based on using aggregated
nk = dim R (Hk ) = dim R (PoPi k )P (2.3.48) models of a complex system. The use of hierarchical

aggregation methods in the simplification of filter-

R*1, .. ,m ing and control problems for singularly perturbed
FSMP with a large number of states is presently

it then follows that;' under study and the findings will be reported in
[COD 82].

_ k-l -.... .- 2.3-7-.--Example ..............................p
nk = n -rank Ak (2.3.49)

"k - po ko
In this section we present an example that

illustrates the use of the techniques developed in
Also, because this chapter for the construction of aggregated

models of singularly perturbed FSMP.
Example 2.3.11

; Hk = Q k -k=l,.,.,m Consider the process n (t) depicted in fig.
2,3.1. It has a matrix of transition rates of the
form A (s) = A + EB with

o o
if i and j are two states in X that are aggregated

together at stage k then they remain in the same -1 1 0 0 0 0

aggregated state at all stages 2 > k, i.e.,
1 -1 0 0 0 0

0 1 -2 1 0 0

Ak(i) = Ak(j) => At(i) = At(j) > k o -1 1 0k k VZ~k 0 0 0 0 -1 1 0

0 0 1 -1 0
(strictly speaking this is true only if i and j
belong to some ergodic class at both stages k and . 0 0 0 0 0 0

States which belong to some ergodic class at one

stage k may become transient states at a posterior

stage Z in which case the aggregation A, is not 0 0 0 0 0 0

defined for these states. Nevertheless, the hier-,: 0 -1 1 0 0 0

archical relation among the mappings Ak, k=l,...,m 0 0 0 0 1
remains true). The number of states of 7tC(tY B =

aggregated into a single state of n ,(t) cannot 0 0 1 -1 0 0

decrease as k goes from 1 to m. In the next section
we present two examples that illustrate the con- 0 0 0 0 0 0

struction of the aggregation mappings and of the 0 0 0 0 0 0

aggregated models.

Each of the aggregated models k(t), k=l,.. ,m, -
'is a simplified model of the process blE(t) which The unperturbed process D (t) with matrix of transi-

accurately describes events that occur at a cer- tion rates Ao is shown in figure 2.3.3. It follows

tain time scale t/Ik. It is clear, however, from from (2.3.39) that

our discussion in section 2.2, that no single aggre- Alt

gated model can accurately describe the evolution lim exp{A (e) t/ = I e10

of fl (t) at all times t. For this it is necessary e+o 1
to combine all them as showed in the following.

Theorem 2.3.10

where IT is given by:
m

(t) = Vk exp{AE ~k C
.o k k k 1/2 1/2 0 0 0 0

m 1/2 1/2 0 0 0 0

- Ik + 0() (2.3,50) A =t 1/4 1/4 0 1/4 1/4 0
k= 1 k H1 = lime 

t-Xo 0 0 0 1/2 1/2 0

uniformly for t e 0,O). o o o 1/2 1/2 0

The transition probability matrix of the singu-

larly perturbed process nc(t) is in (2.3.50) uni- 0 0 0 0 0 1

formly approximated by combining the transition
probability matrices of the aggregated models f k(t), and

R=0,l,...,m (here n (t) 2 no(t), and in (2.3.50)
A = A (o), V = U = I). Theorem 2.3,10 can also -1/8 -1/8 0 1/8 1/8 0

be interpreteR as an approximation of n (t) by a -1/8 -1/8 0 1/8 1/8 0

set of smaller dimensional, independent processes

suggesting that events that take place at different 10 T1 l 0 0 0 0 0

time scales can be considered asymptotically in- 1/8 1/8 0 -1/8 -1/8 0

dependent.
This asymptotic independence of events occuring 1/8 1/8 0 -1/8 -1/8 0

at different time scales provides the foundation for 0 0 0 -0 0



' To determine the aggregated model of nrl t) valid at ..
time scale t/e, l Ct), notice that T1 determines the Alt Alt1 1 TI =lim V e U V (lim e .-U
following partition of X = {1,2...,6 li V-e = (l

X = {1,2}U {4,5} U {6}U 3} At
The limit 2 A lim e is the ergodic projection of

1 1 1 1t
E 1 UE 2 U E3 UET - - the aggregated model nl(t) which· is readily seen to

'be:

into three ergodic classes and a class with one _
transient state and that thecanonical product 1/2 1/2 -0
decomposition of T1 (see section 2,2,3) is: = 1/2 1/2 0

II A v1.U1 = I1
.1= 1 1 0 0 1

1 0 o0 1/2 1/2 0 0 0

1 0 0 0 00 .01/2 1/2 0 and combined with (2,3.51) gives

/ = 1/2 010 0 0 .0 01

0 1 0 '1/4. 1/4 0 1/4 1/4 0

0 1 0
1/4 1/4 0 1/4 1/4 0

0 0 1
2 0 1V1 IT1 U1 1/4 1/4 0 1/4 1/4 0

:(2.3,51) 1/4 1/4 0 1/4 1/4 0

The aggregated process f (t) thus takes values in 1/4 1/4 0 1/4 1/4 0
X1 = {1,2,3} and it has a matrix of transition 0 0
rates given by:

The aggregation partition determined by T2 is
-1/4 1/4 0

Al = 1 10 V1 1/4 -1/4 x = {1,2,3,4,5 U {6}

.O 0 O0
2 2

= E1 U E2

The state 1 of nl(.t)_ corresponds to the set of states andhtherefore the aggregated model n2 (t) takes values
E1 = {1,2} of fl(t) and similarly the state 2 corres- in X = {1,21. The canonical product decomposition
ponds to the set El = {4;5} while the state 3 of of 2 is given by:
f1l(tl corresponds to state 6 of BnE(tl. Only for
time intervals of order 1/c, are transition be-

tween the classes {1,2} and {4,5} likely and in 1 0 /4 1/4 0 1/4 1/4 0

the limit as C40 they follow a markovian law with 1 1/4 0 1/4 1/4
rate C/2. Transitions to state 6 are of negligible 

probability on this time scale. = V 2
The next level of aggregation corresponds to 2 2

the behavior of n (t) at time scale t/C2 which is 1 0 (2.3.52)
given by: 1 0

0 1

A20t
lim exp{A o ( )t/e 2 } = 12 e
C+0 and to compute the matrix of transition rates of

n2 (t), i.e.,

where

A2 = U2 A20 V2 = U2 2 B Ao B 2 2
A0t

T2 lim T1 e
t 1 = -U B A# B V2

and A '= - T B A# B T. The determine the aggre- we still need A# which is computed as follows:
20 2 o 2 ogation partition for time scale t/C2 and the corres-

ponding aggregated models it is first necessary to
compute T2. This computation can be simplified
by noticing that:



-A# = (A + i-l - u ~ ^ > structure described above.
A (A 1 1+ - In this paper, we study the long-term behavior

of a subclass of models with multiple equilibrium
points and additive white-noise disturbances. These
models are characterized by the presence of a para-

1/4 -1/4 0 0 0 0 meter e in the description of the process, related
to the frequency of transitions between equilibrium

- 1/4 0 -1/2 0 1/4 0 (2.3.53) points.
.... _-- .. 0 --- 0--- -1/4- 1/4- 0 - -. ---- The objective of the paper is to obtain a simp-

lified aggregate model of the process. Consistency
0 0 0 1/4 -1/4 0

of the model is established by showing that, in a
o 0 0 0 0 0 0 limiting sense as the parameter e approaches zero,

the detailed model converges to the aggregate model.

Finally by combining (2.3.52) and (2,3.53) we get: The parameter value e is thus a measure of the accu-

rary of the approximation.

[1/4 1/4 2.4.2 A Diffusion with Small Noise Intensity

A2 0 Let x(t) be a diffusion process described by the
differential equation.

f(x(t))
dx(t) = dt + bdw (2.4.1)

a

The state 1 of ii (t) correspond to the set of states
E2 = {1,2,3,4,5}1of tn(t) corresponds to the state where61of r)5 (t) where
6 of no(t). For time intervals of order 1/C2 the
probability of E(t) getting absorbed in state 6 is

f(x) = sign x - x (2.4.2)
of order one as £+0.

It is clear from the structure of l C t) that
t, t/E and t/E2 are the only fundamental time and a, b > 0, and w is a standard one-dimensional

scales. This fact can be readily verified checking Wiener process.

that - For any values of a, b, the process given by
equation (2.4.1 - 2.4.2) defines a unique probabi-
lity measure on the space of continuous functions

rank Ao 1 rank AL0 + rank A20 o 5 = rank A[oE) (STR 79]. In addition, the solution to equation

(2.4.1) is pathwise unique in the sense of Yamada-

Once the time scale decomposition and aggre- Watanabe [YAM 71]. Thus, it can be interpreted as

gation of n (t) has been carried out, we can con- a measurable relation between paths of the Wiener

struct a uniform asymptotic approximation to its process and the trajectories of x.

transition probability matrix Ps(t) = exp{A (C)t} For any fixed a and b, there are two domains of

using Theorem 2.3.10 which only requires the ex- attraction, corresponding to the equilibrium points

ponentiation of three (2x2) matrices instead of +1, Transitions occur between these domains, as a

the exponentiation of the (6x6) matrix A o(). gets small, the rate of transitions decreases, and
the process spends most of its time in small neigh-

2.4 Aggregation of Diffusion Processes with borhoods of ±1. As b gets large, the rate of transi-

Multiple Equilibrium Points tions increases. We seek a balance between a and b
so-that the process, in the limit, has a steady state

2.4.1 Introduction distribution concentrated on ±1, yet it has a con-
stant rate of transitions between these two points.

When a dynamical system with multiple equili- The steady state distribution of the process

brium points is perturbed by continuous acting wide- is obtained from the Fokker-Planck equation [WON 71]

band additive noise, it is known that transitions by solving, for x > 0,

between different equilibrium points occur with

probability one. An important problem associated x- 1 b2 2..3
(-l) dp + P + ab =0(2.4.3)

with the analysis of these systems is the statisti- d 2 dx 2

cal characterization of the jump process which
represents the transitions between different domains with the boundary conditions

of attraction, in limiting situations. A physical
example of a system where multiple equilibrium

p(x) 0 0 as x '~ m (2.4.4)
points are common are interconnected power systems,

where the swing equations [EVA
x-1

78], Anderson, Fouad [AND 77] represent a dynamical Using the substitution y = - equation (2.4.3)

system driven by the power flow equation towards becomes baa

equilibrium. A detailed study of the power flow
equation [ARA 80] establishes that there are many 1
possible equilibrium angles in an interconnected + + 2 = 0

dy 2 2
network; these angles are defined by a power balance dy -.

between electrical supply and demand. When the de-
p(y) - 0 as y ~ j

mand fluctuations and unmodeled effects are re-
presented as random, the resulting system has the

This implies that _ .



p -x) x-l- l - a -- .... where

so that if b V/+ 0, the density p(x) is concentra-. X X1 2 
ted on ± 1.

To analyze the transition between regions, let's
Notice that the statement of Theorem 2 is not a

compute the mean exit time u(x) from (0,-), starting
at an initial point x> 0. Fstatement about the convergence of the x(t) process

at an initial point x >0. From Friedman [FRI 751, to a finite jump process. Rather, it looks at the
this can be obtained from the boundary value pro-,
blem: finite state transition process associated with x(t)

and establishes convergence to a jump process. It
is also possible to study the x(t) process itself.

2 2 This is the object of Corollary 2.4.3.

a dx + 2 2L = - 1 Corollary 2.4.3.: Let y(t) be the Markov pro-
dx cess in R, defined as follows:

If y(o) = o, y(o+) = 1 with prob. 1/2, y(0%) =

u(0) = 0 (2.4.5) -1 with prob. 1/2.

If y(0) > 0, then y(O+) = 1

du If y(O) < 0, then y(0+) = -1.-4.Q asx + dx
For times t > 0, the transitions of the y(t)
process agree with the jump process defined in
Theorem 2.4.2.

It is easy to verify that
As (ab2)n - 0 satisfying (2.4.7), the fin-

(z-l)2 ite dimensional distributions of the Xn(t) pro-
2V-- X ab2 2cess converge to the finite dimensional distri-

u(x) = a ab e ddz (246) butions of y(t).

= b y f Corollary 2.4.3 provides an aggregation result.
z-1 The original multiple equilibrium process can be

studied in terms of a finite state jump process.
Note that the results of Theorem 2.4.2 and

As ab + 0, the expression for u(x) is nearly Corollary 2.4.3 are as strong as can be stated. If
constant, except for a small boundary layer near one attempts to establish weak convergence of the
zero. Hence for some 6 > 0, x (t) processes to the y(t) processes, the fact that

xn(t), as a process, has excursions of at least size

) < x from ±1 preclude weak convergence in the standard
u (x) ~ u(1), d < x < a

spaces one considers.
2 As a application of this result, consider the

We now proceed to evaluate u(l) for small ab . process
Lemma 2.4.1: As ab2 + 0,

u(l) r Xi~ a3/2 b el/ab2 dx(t) = f(x(t))dt + e dw(t) (2.4.8)

The mean exit time in Lemma 1 suggests the
The mean exit time in Lemma 1 suggests the with f(x) = sign x-x. The excursions of this process

atural scaling choices for a and b. Thesebetween domains of attration are a rare event, for
choices are

e small. By compressing the time scale with a.
a3/2b e / a b = 1 transformation

(2.4.7)

T = g(e)t
With this scalinig between a and b, the fre-
quency of transition between domains of attrac- we can study the properties of the excursions of the
tion remains constant. Furthermore, by letting process. Equation (2.4.8) becomes

ab2 approach zero, the distribution of x(t)
concentrates about the points ±1. Our objec- f(x(T)) +

dx f_ + dw (T) (2.4.9)
tive is to derive an aggregate model for the g(e)
transitions between domains of attraction as a

jump process between two finite states. This Comparing (2.4.9) and (2.4.1), we see that (2.4.7)

result is formalized in Theorem 2.4.2. is satisfied when the time scale is given by:
Theorem 2.4.2: As ab2 + 0, with a,b satisfying

(2.4.7), the finite dimensional distributions g(e) 1 -1/e(2.410)
of the process sign x(t) converge to the finite e
dimensional distributions of a jump process
y(t) with two states, ±1, and transition rates On this time scale, the results of Theorem 2.4.2 and

Corollary 2.4.3 apply, so that the finite dimensional
Pr ~ y(t+A) = Iy(t) e - 11 = +o()distributions of the x(T) process converge to thosePr {y(t+A) = 1 y(t) = - 1 } = X A + o(A)

0 of a jump process as described in Corollary 2.4.3.

2.4.3. The General Scalar Case
Pr {y(t+A) = -11 y(t) = 11 = XlA + o(A)

Consider the diffusion equation in a one



dimension Solutions to these problems are easy to write
- / v in closed form. The solutions are closely related

to the scale and speed measures of the diffusion
dx = f(x )dt + e dw (2.4.11) process. In terms of these solutions, we define

the transition rates

where f(xt) is piecewise continuous with a finite u(x2)1
t - (2.4.15)

number of discontinuities. Define the potential 2Z,2k+1 v(X29)

F(x) = - f(x) dx (2.4.12) -u(x 2 k)
2Z,2t-1 - v(x2 z)

Assume that, as x 4-+ ± a, Consider now the local graph of F(x) near a
local maximum x 1 =1,..,n. Figure 2.4.2 illu-

2 -1'
strates a typical sAape of that graph. We are in-

F(x) > Ik x terested in computing the probability of exit from
a neighborhood of the point x2 1, starting at

and that F(x) > o for all x. The first assumption X P-1, as indicated in Figure 2.4.2. The probability
or exiting through b satisfies equation (2.4.15)

guarantees the existence of an ergodic density for exiting through b satisfies equation (2.4.15)
subject to

(2.4.11), whereas the second assumption represents

no loss of generality due to the arbitrariness of
the zero reference point. u(a) = o

Equation (2.4.11) can be viewed as the evolu-
tion of a Brownian particle in a very steep poten-2 u(b) = 1
tial well F(x)/e2, when a time transformation T -=e t
is applied. The purpose of this section is to con- Denote this probabilityas pDefine

Denote this probability as P2n-1, Define
struct a finite state approximation to the evolu- 2-1,2
tion of the process at longer time scales, which
captures the transitions of the Brownian particle P2Q-1, 2Q-2 P2- 12 (2.4.16)
between equilibrium states.

Assume that the function F(x) has a finite
number of local maxima and minima. Denote by We are now ready to state the main Theorem.
x , x ...,x the local maxima of the function Denote by a the index which minimizes
Ftx), and x 2nl ....x the local minima. We will

provide an approximation to the evolution of
(2.4.11) as a finite-state process whose states are z2 = min (F(x2 _ 1

) - F(x2 ,) 2F(x2.+l 22

x., i=o,,.,,2n. Before we are capable fo doing so,
we must perform certain preliminary calculations. Denote by Ta the mean exit time from (x21,x2+l

For Z = 1,...n-l, consider the graph of F(x)
be n x2 = and . x2. . + 1 Figure 2.4h 1 represents hstarting at x2 . Define a time scale transformation

between X2 -1 and x 2+l. Figure 2.4.1 represents t 2a
a typical graph. We want to compute the transi- T =
tion rates from x22 to x2 4 , and x2 . 1 We pro- a

ceed as in the previous section, by defining a Theorem 2.4.4 In the time scale T, the finite
related boundary value problems. dimensional distributions of the process x

The mean exit time from x e in E[X2Z 1, X2+1 I converge as e - o to the finite dimensional dis-

is given as the solution of tributions of a stochastically discontinuous
finite state Markov process, with states x ,.x1

e 2 d2v dv X2 2. The odd states x I..,xX2 are instantan-
dv X~n probabilities

+ f(x) - = - 1 (2.4.13) eous states with transition probabilities given
dx2 X by

Pr{xt+ = 2,x t = 24+1} = P24+1 2Q
V(X = V( ) = Vx 2 = 2+, 2

Pr{xt+= 24 + 21 xt = 2+1 = 1 P24+1,2
The probability of exiting through X24+1 is

given as a solution of

Prfxt+ = klx t = 2a+1} = o, k g 22, 22+2
2 2

e d u du
2 2 + f(x) d= (2.4.14) The even states are regular states, with transi-

dx tion probabilities given by

U(X = 0 Pr{xt+= 2.+llx = 22} = A12,2+ ' TA+o(A)

u(x ) = 1
22.-+1 iPr{xt+A = 2-l lxt = 2}1 = T22,21-TA+ o(A)

ir~~~ ---------- ~~~~~~~-- rs~~~~ s ~ ~ t? 2Z2k-



Pr{xt+ = klXt = 21, x = k or x = k or x = 22. A similar approximation yields
S S x

s e [t,t+A]} = o if k # 2Q+1 or 2Z-1. 2F(x22-l)/C2

u (X ) 

The quantities in the description of the fin- B eF(X2 +1)/ + Ce 2 (2 1
ite-state Markov process of Theorem 2.4.4 can be
comptted exactly. For instance, the exact solu-

where
tion of equation (2.4.13) assuming that F(x2 )
< F(x2 +1), is given by 2F-2

2 2o
A2 = eF"(x2 -1)Z/2 dz= 2F (y)/e2 d (zy )B- F"Ct·~~(x )z 

-)23 2F+le-2 e)/e2 ds -dy 

ps n wc e d t ln2Qz-1ature of F(x)
(2.4.17) around the critical points x We do so

.2x e2Ff xy dxhere for the case where F(x) s 1twice continuouslyu e~~~~~~x)~~~~ ~ = Fr te Fx 2 4).d

of

.axF(X)/e2.-i 2y 2- /e22.- 

2--1 - and

The expressions (2.4.17) and (2.4.18) can be
approximated asymptotically as e t o, yielding (x) 2 a2F(x2 -y)/6 DE
expressions which depend on the local nature of F(x)
F(x) around the critical points x,x - x2. We do so
do so here for the case where F(x) is twice con-tinuously
tinuously differentable and F"(xa) d o for D = e-2 F(x2.e .-F".(X22) z / dz2
2 = 0,1,.. ,2n. IJx

From the assumptions about F, in a neighbor-

hood of X2.l-, SimilarlyequatinE= i eF (X21)is solved by/e dz 2 2o3

F(x) .2 F(x2 1) + 2 F (x2 01) (x Q-x 

+ (x-x )e2F(2.4.19) 22-1 22+l)
22.-i Using the formula

From (2.4.16) and (2.4.18), and figure 2.4.2, 2

2F(x)/ dx 1/2 we get

p22 -1,2 x2 b e 2F(x)/e2 dx
a e2/e (F(x2 ld) - F(x2 )) 

due to the even approximation (2.4.19). -F"(x 2ca 1) F"b(x2 ).= 0,1, ....2n. -



Notice that the expected exit time is a function of constructing a hierarchical Markov chain based on
the depth of the potential well F(x). likelihood of transitions. The approximation de-

In terms of the scale function T , we have veloped here contains more information because it
that includes the effects of the exit times also. In

effect, we are developing an approximation which
b accurately describes the action of the differential

v(x2Z) = c T operator (2.4.11) when it is restricted to act on
the eigenspace corresponding to eigenvalues of magni-

for some constant b > 1, and c > o. tude between o and a. Due to the discrete nature of
Furthermore the spectrum of (2.4.11), there are at most a finite

u(x number of these; the essence of our aggregation re-
V22() 1 2 sult is to identify the eigenprojection which carries

v(x) 2(F(xr F(x 2' +l))/sQ' a general process into this space, and to establish
2 * the right time scale under which the original pro-

' F".x ) VTFTcess, due to its inherent stability approaches this
F(x2+l) 2F(xk2) eigenspace.

There are a variety of problems which suggest
If the differences in potential levels were

themselves, based on the results of this paper. In
normalized to occur in integer steps (that is, particular, it will be interesting to investigate
F(x-2 1) - F(s2 ,) = nK for some integer n, all Q. the consequences of having suchapproximations avail-
and some constant k), the resulting transition

able for problems of designing suboptimal controllersrates for the approximate finite state Markov pro- pcess will be of the form and estimations in systems with small dynamical
cess will be of the form fluctuations.

X = A(s) = A + A s-+ .+ sn + .... 2.5 Diffusion Approximations of Transfer Lines with
Unreliable Links and Finite Storage Elements

2
-2/e 6 k 2.5.1 Introductionwhere s =-(e )

Finite state Markov processes with this re-
An important class of systems which arises in

gular dependence on a small parameter s were studied
manufacturing, chemical processes, computer networksin section 2.2 and 2.3. The resulting Markov pro- and power systems, is where material moves through a
and power systems, is where material moves through a

cess can be further approximated by a hierarchical
cess can be further approximated by a hierarchical network of unreliable links between storage stations.sequence of simpler models, as described in sections Transfer lines are networks where all of the storage

2,3 and 2.4. Transfer lines are networks where all of the storage2.3 and 2.4.
stations are arranged sequentially; Figure 2.5.1

2.4.4 Discussion describes a typical line network. The presence of
storage stations serves to compensate for link fail-

geeralized . ures by maintaining the flow upstream and downstream
The results of section 2.4.3 can be of a failure, thereby descreasing the effect of ato diffusions with multiple equilibrium points in

several ds T. failure on the rest of the network. When the oper-several dimensions. The major difference in the
several dimens s ation of a-link is modeled as a random process, exact

many dimensional case is that closed form solutions
many d.l c. i. analysis of the flow of material is a difficult task.to the partial differential equations of exit times

h prarialdiferenialttio ofit tes In this research we develop an aggregate model of theand probabilities are difficult to obtain. However,
flow through the network based on the physicalit ispossible to obtain asymptotic estimates for
assumption that the storage capacities are large but
finite, This aggregate model is developed as the

Schuss [MAT 77] and Schuss and Matkowsky·[SCH 79].Schuss [MAT 771 and Schuss afnd Mtatkowsky[SCH 79. limit of a sequence of probabilistic models for the
Using these estimates, a finite state model of the flowof material thrugh the linenetwork Based on

flow of material through the line network. Based on
multiple equilibrium process is obtainedthis aggregate model, we can approximate propertiesThe reason for using instantaneous states in-term behavior of the line network. Al-

of the long-term behavior of the line network. A1-
the description of the finite-state Markov process

though storage capacities are assumed large, satur-in Theorem 2.4.4 is that setting e = o in equatione a r s
ation of individual storage stations occurs and is(2.4.11) does not accurately capture the evolution

of the process (2.4.11) as e + o for times of order considered in the method here.
Analytical studies of line networks using a1. This is due to the singular nature of the per- tic e f 

probabilistic approach were first studied byturbation of the spectrum of the differential oper- Vadzivsii [VL 52]. numbr of authors hav
ator associated with (2.4.11) [KAT 66]. However,

studied the flow rates of lines with storages ofthe deterministic flow, together with the instantan-
infinite capacity; some of these are Hunt [HUN 56],eous transition out of the unstable equilibrium i o 
Suzuki [SUZ 64], Barlow and Proschan [BAR 75]. Un-states, does capture accurately the limit of the o
reliable line networks with one storage station have

'process in (2.4.11) as e - o, for times of order 1. been studied by a number of authors (Buzacott and
The aggregation operation associated with the Hausifin [BUZ 78], Gershwin and Schick [GER 80a],

approximation of Theorem 2.4.4 collapses each do-
Gershwin and Berman [GER 81]). These papers havemain of attraction onto each equilibrium point x; bibliographies of wok n this area.bibliographies of work in this area.

hence, unstable equilibrium points have only their
Systems with more storage stations are diffi-

relative domains of attration (in one dimension,
cult to analyze because of the complexity of inter-only the points) as their aggregate sets.
faces when storage are either full or empty. ForAnother finite state approximation has been. in ~ some special systems, Soyster, Schmidt and Rohrer

proposed by Ventcel and Friedlin [EN 19701 in( [SOY 79] have obtained exact probabilistic analysisorder to compute the ergodic distribution of
of networks with more than one storage. Gershwin(2.4.11). Their approximation was based on

*~----- e - s n 



and Schick's results [GER 80b] are more general, but dx.
still limited. Nevertheless, exact analysis of net- d. a 0 < x. < N. (2.5.3)

dt i - i+l i+l;
works with more than one storage is a difficult
computational task. i

The aggregate model described in this paper is
established as a consistent long-term approximation T T
by verifying that an exact model based on the formu- ne the vectors x = k a = (a

as the state of the system. Let s = (x,c). Equations
lation of Gershwin and Schick [GER 80b] converges as the state of the system. et s = ,).Equations

(2.5.2) and (2.5.3) provide a system of stochastic
weakly to the aggregate model in a probabilistic

edifferential equations which describes the evolution
sense. For a discussion of weak convergence of 

of the probabilistic state s(t) whenever all of theprobabilistic measures, the reader should consult
-storage elements are away from their limits. How-

Billingsley [BIL 68]. The arguments of convergence
ever :wqhen a storage element is either empty or full,

depend heavily on the averaging results of Khasmin- e n e
equation (2.5.3) must be modified so that conser-

skii [KHA 66a,b].
vation of flow through the line network applies.

The aggregate model obtained in this paper is Consider the situationlhe network applies.
a diffusion process. Diffusion approximations in

full. Then, equation (2.5,3) must become
queueing networks have been studied by a number of
authors, notably Borovkov [BOR 65], Iglehart and dx.
Whitt [IGL 70], Kobayaski [KOB 74], Reiman [REI 77], < 0 (2.5.4)
Burman [BOR 79] and Harrison [HAR 78]. Although
queueing networks feature storages of infinite Since the storage element-filled up, the incoming
capacity, many of the techniques used in the analy- flow must be reduced to match the outgoing flow.
sis of these networks are used here. In particular, That is, the rate i. is modified so that
the construction of reflected Brownian motion in
Harrison and Reimann [HAR 79] provides a valuable a(2.5.5)

introduction to these results. i i - i+l i+l

2.5.2 Mathematical Model of Material Flow This implies

In this paper, we will assume that individual if a =
objects are of infinitesimal size, so that when i i+l i+l i+l
flow of objects through a network is a continuous
variable. Using the diagram of figure 2.5.1 as Consequently
reference, objects flow from an infinite source to
an infinite sink across storage stations and un-
reliable links. The failure and repair processes i; = min(pi,Pilai+l) (2.5.6)
of the links are assumed to be independent jump
processes with constant failure and repair rates and x.N.

if .=1 and x.=N.
It is also assumed that there is no creation or I 1i 

destruction of objects in the line. Notice that a. (t) cannot equal 0 if storage i just
1

Let xi, i=l,...k-1 denote the amount of fills up,
material in storage element i. Let a., j=l,...,k When storage i empties, the outgoing flow bi+l
denote the state of the link preceding storage must be reduced to match the incoming flow. That is,

element j. The variable aj can take two values,
1 or 0, indicating respectively that link j is

I = min Via (2.5.7)
operating or not. By assumption, aj is a random i+l i i
process, with transition probabilities

when a. = 1 and x. = 0. Note that a is not

Pr{a.(t+A) = 1 | aW(t) = 01 = r.A + o(A) (2.5.1) zero wnen storage ilempties, When more complex
combinations of full and empty storages occur, new

(t+)= 0 a.(t) = i p. + (A) produciton rates are defined to enforce conservation
]Pr{ct.t+A) = O ajt) = } = jA +(A)of flow, The full stochastic differential equations

for the x process is given by
From the theory of representation of jump processes
(Davis [DAV 76], we can describe aj by a stochastic dx.
differential equation driven by Poisson processes. p(sla p (s)(2.5.8)
Thus, one obtains

where V (s) satisfies thf boundary conditions des-
daj(t) = - aj(t)dF(t) + (1 - aj(t))dRj(t) cribed by equations (2.5.6), (2.5.7) and their ex-

(2.5.2) tensions to higher order cases.

where Fj, Rj, F. are independent Poisson processes 2.5.3 caling
with transition rates pj, rj, Pi for any j,i.

-Let Nj denote the capacity of storage j. De- In order to develop an aggregate model of the
note by Nj the flow capacity on link j. The flow system, we will assume that all of the storage
rate is assumed to be of maximum capacity whenever capacities are large. Mathematically, we assume
possible. Since no objects are created or des-
troyed, we can describe the storage process by i

'Ndifferential equation i =l k-l
differential equation i ''



for small E, and constants B*. Without loss of mation can be used in computing expectations of the
generality, we will assume tnat all B. are equal to process z(T).
1. Otherwise we can introduce constant to keep
track:of the relative scaling. Define a scaled' 2.5.4. AGGREGATION
variable yi(t) as the fraction of storage used:

x. (t) The a(T) process described in equation (2.5.2)
y.(t) = is a jump process with a finite number of states.

N. Each of the components has independent transitions,
--...-...-.-....----..- --.- -and is strongly ergodic. The ergodic measure of the

thus, equation (2.5.,8) becomes- jth component is-

Ni dt i i +l i +l (S) (2.5.9) (a ) (2.5.11)
pj rj

Equation (2.5.9) represents a random evolution for
the Y(t) process, with a discontinuity in drift k-1 The overall ergodic measure is given by
when the process exits the open domain D = (0,1) .
Aggregation or random evolutions has been studied
by a number of authors; Hersh [HER 74] has compliled k
a comprehensive survey of the work in that area. P(=) j=l Pj (aj)
However, none of that work can incorporate the local
discontinuity of the drift as the process reaches
the boundary. As the parameter E approaches zero, the separa-

The process y(t) has coordinates with values tion between the time scales T and t increases.
between 0 and 1, representing the fraction of capa- Hence, more transitions of the a process occur be-
city used in storage. The boundary effects des- tween significant changes in the y(T) process. One
cribed in section 2.5.2 will occur whenever one of would expect that a good approximation for the evolu-
the coordinates of y(t) is either 0 or 1. Let tion of the z(T) process would be provided by the
denote he time of first exit of the y(t) process expected drift, in terms of the ergodic measure of
from its interior. That is, the a(t) process. This result is established in

this section.

Y() = inf{t > 0 I y(t,c) 0 D} Define the average drift Fi as

We will develop an approximation to the X(t) pro- F. = z (a ii - a i+i+l)P(a) (2.5.12)
cess until its time of first exit from the domain a

D.D. k-l
Denote by z(t) the process in mR whose evol- Combining equations (2.5,11) and (2.5.12) yields

ution described by

dz. r r 11

N. (2,5,10) F. =
N. dt3. = a.. - c.i+li.l 2,10) ri + Pi ri+l + Pi+l

z (0) = Y(0) 0
1i() Yi( ) Define z0 (T) as

where p- are the constant flow rates when y is in D, 0
Note that the sample paths of the z(Ct) process z.i( ) = Zi(0) + F.T

agree with the sample paths of the y(t) process un- 
til time y(w). The process z(V) represents the The processes0
evolution of the normalized storage process if no

of the z(T) process, The next results specify theboundary adjustments were made,
Define T as et. Inthistmeaccuracy of this approximation.Define t as Et. In this time scale equation Theorem 2.5.1

Theorem 2.5.1
(2.5.10) becomes

Let T be an arbitrary finite positive number.
Consider the processes z(T) and z0 (T), 0 < T< T.

dz. As C 4 0, the process z(-) converges uniformly
I. (T) = a a'dt 1i aili+l in the mean to z . That is,

tim sup EIz(t) - z° T) l} = 0
Notice that the Markov process (z(), a(T)) p E

E+O O<T<T
has components varying in two different time scales,
The z(T) process has variations on the slow scale Proof
T, and the a(T) process has transitions in the t The proof is a straightforward application of
scale. This separation of scales is a consequence Theorem 1.1 of Khasminskii (KHA 66).
of the assumption that N. is large, and will be The fact that the rates It. are constant enables

1 .
exploited to obtain aggregate models. In the next us to establish a stronger result than uniform con-
section, we will establish that the process z(T) vergence in the mean. We can establish that z(.)
can be approximated by a Markov process which does converges to z0 (') almost surely, and examine the
not depend on the jump process a(T); this approxi- distribution of its deviations.



Theorem 2.5.2 ... a...

Under the conditions of Theorem 4.1, the pro- 1 i+li+l
cess z(.) converges to the process z (.) al- ri + r i+l i+l
most surely as +- 0. Furthermore, let

By its definition, the matrix Q can be expressed as

V.(T) (z (T) - z.(T))
Qh(a) -= r (h(ac) - h(a))

The process v(T) converges weakly to a zero-
mean Wiener process w with covariance i

Ew(T)w(s)} = Z min (T,s) ;+ Pi(h(aci) - h(a))

1. . 1
~2 2

i2 IiPiri i+lPi 1r i+l 
-i2~i i 3 i i =r I Etrj~la3 (1-al ) + pa i3{h(cat) - h(c) 

= ° ji-j > 2 -

Qh.() =(r(1-c) p+P a (Pi + i 3 + P

Theorems 2.51 and 2.52 define aggregate models - r. + P. ri + Pi
for the evolution of the z(T) process. These aggre-
gate models are established as consistent by the a

_____i___+_i+li+(_1'l'_i'k
convergence of the true process as E -t* 0, The (ri+l (1 i+l 'i++c i+t( +
models are developed in the slow time scale T = et )r+l+ P +
they are most useful when the line network is un- a+ i+
balanced in the mena. That is, when the average i+l i+l (
drift in the system, F, is of order 1. r 1 + P ) 

When all of the drifts in the system, F., are
of order :, the approximation given by thesetheorems
is not of much use, because no significant trends iri P.+lri+l
occur in times of order 1/e. Such cases are re- r. -- h + 1i+ r p
ferred to as balanced line networks. However, in 1+i + 1 i+l
a still slower time scale, an aggregate model can
be obtained. 2 = -g. (a)

Let T = t be a slow time scale. In the T 

scale, equation (2.5.10) becomes Consider now an arbitrary bounded function h(z)
in C (JR k1), the space of real valued, twice con-

d -z (T i+l 1 i+l =i 1 i ( tinuously differentiable functions of IRk-l Denote
idTi i (2.5.14)i1£ by L the infinitesimal generator of the Markov pro-

cess (z,a) in the Tj time scale. Then

Assume additionally that
k-l k-l

When a=l o Cf the dr~if ~ts in th syt, : (ae , -l. +l fi + E i+lf
2

Then, we can write (2.3.14)

Let L denote the diffusion operator

d ii i+l i+l i
dr i e f o k-l

1I i Z i k-l a 1k-l k-l 2
L-+ f iL = i=l fi + 2 i=2 ji l ij aziaz.

Let Q denote the infinitesimal generator of the 
Markov process ca(T). The operator Q can be viewed - (2.5.15)
as a singular matrix mapping R2k + R2k Denote

vectors in R2k by the functions g(a). Suppose thate 
;-where E is defined in Theorem 2.5.2.

i (ac) = - ct.a1}i. 1+l ctaiy. - f Notice that L is the generator of a pathwise
.0 afi+li+l 'i i = 1 ~~~~i.l(i.'i.._-Ci ~~ ~ i -~



k-i
unique strong Markov process in -R (Stroock- The process y(t) has a similar property, except for
Varadhan [STR 79]). the effects of the boundary conditions. We would

Theorem 2.5.3 like to incorporate the effects of these boundary
When the link network is nearly balanced, the conditions as compensating processes, in the manner
process z(Tl), 0 < T < T, for arbitrary fin- of equations (2.5.16) and (2.5.17). This is the
ite T, converges weakly as e - 0 to the unique purpose of the next result.
diffusion Markov process v whose infinitesimal Consider an arbitrary sample path z(t), t e
generator is L. Moreover, all the moments of [0,T]. Define the sequence of times t. as

:...... z converge to the moments of v as E - 0. -

The proof of these results is a direct
application of Theorem 1 in Papanicolaou- to0 = inf{tlc(t,z1) # 0, or C (t,z.) f 0
Kohler, [PAP 74] because the a process is er- for some j
godic, hence it is strongly mixing.

2.5.5. Diffusion Approximations with Boundary ti = infttlC0(tz.) # O, or Cl(t,z.) 0 O
Conditions 3 3

for some j} (2.5.18)
The results of section 2.5.4 provide an approx-

imation to the normalized storage process y(t) un-
til its time of first exit from the interior of the The times t. represent times when the compensated
region D. In this section, those approximations processes zi would require additional compensation
will be extended to cover arbitrary intervals of to stay n Now define an interger valued func-
time. In this case, the boundary conditions des- tion on the time sequence t
cribed in section 2.5.2 have to be explicitly con-
sidered. n(t.) = max tjz.(t) = 1 and

Consider the process z(T) defined in section l<j<k-l
2.5.4. Define the compensating processes C (t,z),

C1 (t,z) for any continuous real valued function z > > (2.5,19)
as '

c,(tz) = min {Oz(s)m If the set of such indices j is empty, let n(tj) beC (t,z) min f0,z(s)}.
O<s<t

n[t.) = min {k-l+jlz (ti ) = 0 and
Cl(t,z) = max {0,z(s)-l} l<j<k l 

O<s<
Co(t,zt) < o, t > ti} (2.5.20)

The functions C (t,z) and Cl(t,z) represent the
excesses of the function z(t) outside the interval Notice that, if only one storage level reaches
[0,11. Hence, for any function z(t), we can define the boundary at time t., then n(t.} identifies that
the compensated function zl(t) as storage, and indicates whether it is empty or full.

Whenever two or more storage levels reach the boun-

z (t) = z(t) - C (t,z) - C (t,z) (2.5.16) dary simultaneously at time ti, the function n(ti)0- 1 selects a storage by the following rule:
Select the storage which saturated farthest

The function z (t) does not take its values in the downstream. If there is no storage which is satu-
unit interval, because the effect of two compensat- rated, the select the storage which emptied farthest
ing processes drive the new function outside. How- upstream.
ever, one can define a sequence of functions zJ(t) This selection rule serves to ensure that the
inductively as compensation process at any one time requires no

more than 2k iterations. This is because the effects
Zj+ilt) = t) - C (tZj (t)) - of saturation propagate upstream, whereas the effects
z = z (j t) - C0 (tz (t)) - Cl(t,zj (t)) of starvation propogate downstream.

(2.5.17) We can.now define a sequence of compensated
functions zI recursively, as

For any bounded interval [0,T], and any continuous
function z(t) on [0,T], zj(t) is a continuous func-
tion. z (t) = z(t)

Consider the process z(t) defined in section
2.5.2. The failure-repair process a(t) is a Markov
jump process which describes the volution of z(t). i+l i
Since the rates of evolution of z(t) are constant zj (t) = zj(t) - C0(t,z )I{n(ti) = k-l+j}
except for the effects of a, the probabilistic dis-
tribution of increments of z(t) is independent of i iCi(t,zl)i{n(ti )= j} + C0(tzl)I{n(t.)the value of z(t); that is, . j 

P{fz(t+A) - z(t) e B z(t), a(t)} = k+j-z, j 1

P {z(t+A) - z(t) e B| a _(t)} + Cl(t'z j+l)I{n(ti) = j+l, j p K-l1 (2.5.21)
................ r -



Equation (2.5.21) expresses the conservation. -- 1,t.. {, =

of flow relations. When storage i is full, the flow1 C(tzj )n(l) = 
rate through storage i must be constrained to match
its output rate. This effect is modeled by the -
compensating process C (t,zJ). However, conser- Z (tz 1 )I{n(t ) k + j 2, j 
vation of flow dictates that the material which =n + 2, j 1
does not flow through storage i will accumulate in
storage i-l. This is modeled by the coupling term m

1 (t,zj + b. is ta th zlI....
Tie-basic claim is that we can express the '=l Cl(t,.j+l)n( j+, j .

normalized storage process y(t) in terms of the
sequence of compensated processes zi(t). Specifi-
cally, the result is:

Theorem 2.5.4 It is easy to establish inductively that the
For any finite t, first sum is constant except when y. (t;e) = 0. Simi-

larly, the second, third and fourth terms are con-
y(t) = lim z (t) stant except when y.(t;s) = 1, Yj.l(t;e) = 0, and

i - yj+l(t;e) = 1 respectively. Hence, we can represent

where zi(t) is defined by equations (2.5.17- Yj(t;E) implicitly as
2.5.21).
The proof of this result entails establishing y(t;E) .(t;e) o(t) 1

Y. =+U(t) -U.(t) U- (t) +U (t)
some simple properties of the recursion (2.5.17) - j j j j-l j+l
(2.5.21). These properties are summarized in the

following lemmas: .o 1
fo Lemma 2.5.5 where U.(t), U.(t) are increasing processes which
* Lemma 2.5.5 - Rk-l increase only then yj(t) = 0 or yj(t) = 1.
For any continuous trajectory z(t) , J 

F-or an r tinustajct nter When the process y(t;c) is nearly balanced, thetc[O,T], there is a finite integer j(t) such
that ], there is a finite integer j~t) such limit process becomes a diffusion process with in-

stantaneous oblique reflection at the boundary aD.
(This follows because of the construction of the

z ITt) = z (t) for all te[0,T]. compensating processes and their relation to the
local time of diffusion processes, as defined in

Lemma 2.5.6 Watanabe [WAT 71].
The mapping G:z 4 lim z (') is a continuous The directions of reflection can be obtained
map from Cf[O,T]; R N} for any finite T. directly from equation (5.9). For instance, on the
Notice that Theorem 2.5.4 and Lemma 2.5.6 face

establish that the trajectories of the normalized
storage process with boundary conditions are a = O
continuous map of the trajectories of the process Yj
without boundary. Furthermore, Theorems 2.5.2 and
2.5.3 establish weak convergence, as s - 0, of the the equations for the evolution of yj (.t,) are
process without boundary to a diffusion process.
Denote this diffusion process as v(t), 0 < t < T. dy Z dBZ
Then, Theorem 5.1 of [BIL 68] establishes that, (dt-) (t,,) 2 j~ j+l
for an arbitrary interval, the process y(t) con-'
verges weakly as -+ 0 to the process with support
in C{TO,T],D}, whose distributions are given from dy odz .dU.

the map G of Lemma 2.5.6. This discussion can be - (tE -+ dt (t)dt at =tdt +- 2 (t+
formalized as

Theorem 2.5.7
jdy dz

Assume that the process z(-;E) converges weak- dyj ' d o
(t;E) U(tre) -(t)

ly in C{[0,T]; m k-l} as e O to v(.), a dt ) dt (t dt 

diffusion process. Then, the process y(.;E)
converges weakly in C{[O,T]; iRk-l} to the Hence, the direction of oblique reflection on the
process G(v). face y = 0 is given by the effect of the compensat-
The compensating processes CO and C are re- ing prdcesses UJ, corresponding to reflection in the

lated to the time that the process y(t;c spends direction

on the boundary D. Specifically, for a fixed tra-
jectory of z(t;E), we can write the process y(t;c) d = (0,...,0, + 1, -1, 0,..,0)
as

jrl

y(t;s) = z (t;C) , t < ti

When the transfer line is nearly balanced, the
In coordinates, we can write this relationship as limiting process spends no scaled time on the boun-

dary, on the time scale T = E2t. However, the lim-

t C Z-1 I t iting process has a local time function at the boun-
yj(t;£) = zj(t;) - Q=1 Co (t'zj ) I0n(t-1) dary, which can be used to obtain an expression for

the real t spent on the boundary. The characteri-

- k -1 + j} zation will be useful in later sections, when we
evaluate expressions for the throughput of the

. . . . . .. . . . . . . . .-- -



transfer line. From equation (2.5.8), the equation boundary, and a boundary description which illu-
for throughput rate (in normalized units and scaled strates what happens to the process near a boundary.
time) is given by Our purpose in this section is to show that the modi-

fied (y,a) process given by (2.5.22) and (2.5.23)

T(/T) =-{ a d - U '(} ' converges weakly to the same diffusion process given
t 0 Mkk k-l' in Theorem 2.5.7.

Throughout this section, we assume that the

' U0 '(I) ' - transfer line is nearly balanced, so that the approp-
~~~~k-i~~~ nriate time scale T is s2 t. Let YlC(T;E) denote the

The quantity represents the average lost' ie
production rate y ue to starvation of the last mach- scaled process defined in section 5, and p the

ine o induced probability measure on C{0O,T]; R k-l}. Simi-
ine.*~~~~~~~~ ~larly, denote by y2S(TE) the resulting scaled pro-

The result expressed in Theorem 2.5.7 defines
cess ehn starvation and blockage affect the probabi-

a reflected diffusion process as the limit process cessehn arvation and blockage affect the probbi-
lity rates, and p2E it corresponding measure. The

This process is defined uniquely in the weak sense, main result of this section is stated in the follow
main result of this section is stated in the follow-

in terms of a continuous mapping on the sample paths
of a standard diffusion process. This construction Theorem 25.8
depends strongly on three assumptions: constant
flow rates on links, constnat failure and repair In the topology of weak convergence on k

'rates, and the geometry of line networks. When any
of these three conditions are violated, the limit le 2e

lim P l l·im P
process must be constructed using a different ar-
gument. This is a nontrivial problem because of the
lack of smoothness of the domain D, a closed unitBasically, Theorem 2.5.8 

Basically, Theorem 2.5.8 is a consequence that,
cube.

as C + 0, the process spends less percent of the time
at the boundary. The evolution of lS and y2E are

2.5.6 Approximation with Level Dependent Failure the boundary,
identical outside the boundary and they leave theRates
boundary in the same direction. Hence, as the time

spent on the boundary decays, the two processes
In this formulation of the previous sections, 

approach each other. The differences in the behavior
the failure and repair processes of the machines in
the transfer line are independent of the levels of -

appear in-the slow time scale T= 2t. If t~e trans-
storage. However, a common practice in manufactur- 

storage.- Hoeeaomnpacifer line was not nearly balanced, the appropriate
ing networks is to turn off machines which are

time scale would be T = ct, and these differenceseither starved or blocked, thereby eliminating the
would be noticeable in the approximate model,

possibility of a machine failure during intervals Theorem 2,5.8 has served additionally to es-
of time when tat machine is not processing any mat- Theorem 2a5.8 has served additionally to es-

tablish that the limiting process is instantaneously
erial. A mathematical model with these properties
is described in Gershwin and Schick [GER 80b].

isdesribed main Gdifers n and schik [deR i n. Lebesgue measure of the occupation time has expec-
The main difference in such a model is to in-

The m d e e station zero. This is consistent with the represen-
troduce a feedback path from the continuous storage

tation of the limiting process as instantaneously
level x to the discrete state process a, occuring
when x reaches its boundary. In terms of the nor-

malized storage process y, there are two situations
where a machine is on, but not processing any mat- Lines using Discussion Approximations
erial. The first situation, called blockage, occurs
when machine i+l is off, and storage i full. Then, The simplest network one can construct consists
the adjustment process described by (2.6) yields

0. Hence, machine i is assumed not to fail of two unreliable links with a storage center in the
Ti =0 .Hence, machine i is middle, connecting an infinite source to an infiniteThe second situation occurs when machine i is

sink, as depicted in figure 2.5.2, In the context
off, and storage i is empty. The adjustment pro-

off,.and storage i isempty. Theadjustmentpof manufacturing networks, many authors have studied
cess for machine i+l yields *

the long term behavior of this simple network.
Gershwin and Schick [GER 80b] provide the basic equ-

i+l 0. ations for the description of the Markov processes

We call such a machine starved, and assume it cannot (x(t),Cl(t),C (t)).
fail. Assume that the flow rates on each link is

equal to 1; that is
The equations for the a process can be modified

to describe starvation and blocking as follows.

V1 =2 = 1,

da. = (l-a i)dR + a (l-I{P=i= 0})dFi (2.5.23)
dz.= lcc)R i c I Then, the basic flow equation for the storage

process is
where the last term has been modified to prevent
failures during non-production intervals. The func- dx 
tion pI(y,a) depends on the complete state of the dt 1 2
system in memoryless, fashion, given by the adjust-

when the storage buffer is neither empty nor full,
ment rules for conservation of flow.

Eent rulesodcn escva ption offl the pAssuming that the capacity of the storage process
Essentially, the description of the y process

N is large, the normalized storage equation isis decomposed into an internal description, des-
cribing the evolution of the process away from the



a)1 N ~L - Let N = 1/C. As S-O, X is of order S, hence weN !L ~1'~2 ...dt. a 1 2 -- have

x
N 2

lira 1 i(eX 1) 1l+r2
lim C =lim (e +

The processes a are jump processes with failure and +0 g+0 Pl+P 2
· t ·

repair rates pi r. respectively, i = 1,2.
In Gershwln and Schick [GER 80a]. this model is

studied in detail, obtaining an exact expression for Thus,

the ergodic probability distribution of the (xl,
a ) process. We will assume that starvation and 1 
blockage prevent machines from failing as in sec- i - g(y/) = 
tion 2.5.6. 2 0

2 e -
Let N = 1/C ,and t = st, Then, -

dy Wq Otl Furthermore,_dy = 1 2

~~~Assume that urnlim P{y = 01 = lim P{y = 1} = 0 (2.5.25)'Assume that
C-0 £+0

- . . . . Sm ( 5 2 because X is of order c, by assuming that the trans-cm (2:5 24)r + P r fer line is nearly balanced.
1l +P1 r2 + P2 The ergodic distribution indicated by equation

Equation (2.5.24) indicates that the network is (2.5.25) reflects the long-term behavior of the z(t)
nearly balanced, validating the use of the p2t rocess. The diffusion approximation v( ) generated
time scale in section 2.5.5 for the balanced line case has as itstime scale,

.. ~~~ infinitesimal generatorFrom Gershwin and Schick [GER 80a], the marigenerator
nal ergodic distribution of the x(t) process is 1 a2

given by: = m + 2Cr
Dv 2 2v

p(x < d) dg(x)dx + Pfx=0} + p{x=c}.Ifc < d} 2p1 rr 2p2r
0 = 2 +

3 3
(P + )(p (P2

+ r2 )
rl+r2 1 1

p(x = 0)= C 2
2 rl P1+P2 with domain

(x N N ( rl+r 2 ) 1 1 D(L) = {f f is bounded, twice differentiable
p (X-- N) C e (P +p+

P - e p1 r2 p1+P 2 on (0,1)

and
r +rXx 12 2

g(x) = C eX x (1 + 12) 12 )f f
P1+P 2 9- (0) = Dv (1) = 0}.(l+ 2 av av

= (Pr P r 1 1+ Hence, the ergodic distribution p(v) is given by
2 = (rl- Plr2) (p2+p1 r+ 1

r~2+ rI ) '~D2
-m r+ a = 0

Define /C. Then, a simple integral es- v 2 2
tablishes

-m p(0) + Cy ~v(0 
r + r 2 9r

-1 r 1 l+r2 ) 1 ( 21 1 N (2 1N
C -+ r+ _-

2. r1 P1+P2 P1 r2 P1+P2

-m p(l) + - a (1) - 0 (2.5.26)
2 Dv

1 XN r +r \
(e 1 N 1) (1+ (1 2 The solution of (2.5.26) is

(Pl1+P2)

The ergodic distribution of y(t) is given in the (v) K +Ky (2.5.27)
following equations: p(v) (2.5.27

-+ e

P{y= 0 = P{X =0} 2m
where K = 2m . To show that the two densities are~~~~~~~
alike, we heave to establish that

Pfy =1} P{x =N)

lim K- l =0
P(y e [y,y+dy)} = g(y/e) dy C+O

S.



From equation (2.5.24), dy
2 1

dT- = 2-2 33

-Xi=I (P2rl-plr2 when (y1,Y 2 ) e (0,1) x (0,1)

(Pll)(22)(p1+r1)
2 (p22 +r22)

2 On the boundary, the adjustment rules for conser-
vation of flow must apply. In terms of the compen-

13 3
pir1(P2+r 2 + p2r2(P1+-r1 sating processes, this means

(Pl+p2+r1+r2) r (P2+r2 dy 1 d 

1 ~2 (r2 r1 ) 2( 2 2dTp1 +r9
2 ldt = 1 - 2 2) + - (t E)

(P2+Pl) (r2+r 1) ) (P+r__)

d ( 1 d 1 dte- (Td Es ) + U (T;e)
2 2

+ P 22 (P+r (2.5,28)

2 1 1 d2P P+r)(2+2) dY 2 1 (de _ 3z) 
_~ d~2012 - ~i~~a U2 (T e)

Since the transfer line is nearly balanced, we have d ( 2 2 3 3 ) +

d i ) d 0
r1 r2-* d- 2 dT 1

= ~~+ 0 (e)
rl + Pl r2 + Pi

+ p~~ 1 - 2~~~~ r2 +pwhere we have explicitly depicted the dependence of

the compensators on . The results of Theorem
2.5.7 and 2.5.8 let us represent the approximating

r 1 P2 - r2P 1 = O( ) (2.529) diffusion process as the

1 1
r_ p_ __ _ v1 (T) = CCr) + (T) + U 1()

+ p1 -r p1+ 0(E) (2.3.50)

rl + Pl1 2 + 2 P2
V (T) ~OJ T o(T ) -IU(T ) O(T )V2 (r) = W2 (r) + U ) - U2 - U12 2 ~~2 2 U0

Hence, the first two terms in the right hand side where (c1fco) is a diffusion process with parameters
of equation 2.5.28 are bounded as -+ 0. The last (m,Z), given by

term can be expanded using equation (2.5.29) to
give

m~~~~~~ =
11 12 (2.5-31(P +p r + r p + r rI + P 1 r 2 IT

1- ~~~~~~~~~~~~~+

(pl+rl) = o(e) r2 + P r3 + P3

21 22

Hence, the ergodic distribution of the diffusion 2 2
approximation is consistent with the ergodic dis- 2 1 1p 1r 2 2 2r 2F. 2 ~lll+
tribution of the original model. Theorem 2.5.7 11 +r 3 (p+r3
indicates that continuous functionals of the pro- 122
cess, such as expected exit times, will converge
in the same fashion. 2

-2~2P2r2C =~~2 
2.5.8. Three Machine Transfer Lines 12 = 3

(P2+r2)
The three machine transfer line is the first

nontrivial example of coupling between the storage 2
buffers. Figure 2.5.3 describes a typical three -2112P2r2
machine transfer line with two storages present. 21 (p2+r2)3
We will assume that blockage and starvation affect
machine failure rates, as indicated in section 6.

Assuming that N = N = 1/£, and that the 2 2
1 2 21- P r 2.i p r

transfer line is nearly balanced, the normalized 2 2 + 3P3r3
equations of flow in the time scale t = 62t are -22 (P2+r 2 )

3 P3 + r3

dy22
dT 011 12) Equation (2.5.30) corresponds to a diffuP2o2dYl 1(I 1 _ 22dT e Equation (2.5.30) corresponds to a diffusion



process on the unit square with oblique reflection The infinitesimal generator of the (v 1 v ) pro-
at the boundaries; the directions of reflection are cess is thus seen to be i, with its domainVp Includ-

illustrated in figure 2.5.4. ing the class of functions V0.
The processes U0 U, U are continuous, increasing The process (v ),v )) is a diffusion pro-

processes, which are bounded almost surely at each cess in a compact doman, with a positive probabi-cess in a compact domain, with a positive probabi-
time t. This implies that the processes v (T), lity of visiting all states except possible the
v2(T) are semimartingales, and thus we have a gen- corners of D. Hence, there exists a unique ergodic
eralization of Ito's formula (Kunita-Watanabe probability density function p*(v ,v ) such that
[KUN 67], Harrison-Reiman [HAR 79]). Let f be a 2.. 2
twice continuously differentiable function on D. 1 2 a2

Denote by L the infinitesimal generator of (Wl,c2), L*p* = 2 x P*
that is 1 

j=l
2 a

1 f(l,2) i-l m.i a f(il'l2
)

2
m ap = 0 (2.5.34)

il 1 ax.
2 2 i

2 i=l ij aze. aw

j=l 1 1 ap* +1 a,*p E

2 1 ax 2 11 ay 12 ay
Then we have

f(vl(T),v2(T)) - f(vl(0),v2(0)) = mp* O on S

1 P* 1+0 T f(V- ) V2 (s))ds 2U + _ M CP 01 on 5 (2.5.35)
-0TL f(vl(s)'v2(s))ds2 22 ay 12 2ax 2 l2 ax

+ f(T taaf aV(S),)V (S)d (S) 
+ ~1 f ~s) ' v2( ) d l s 1 ~P* + *- mlP* == on S32.11 ax 712 ay

0 v2 f(V(S )v (s))d (s) 1 p* 1 p* 2p*

2 22 ay 2 22 x 12 ax
T f af p = unless = 

+ ) (V- (S) v 2) (s ))dU (S)

+ f f - ) (vl( s ),v 2 (s ))d U2
(s )

Dv 1 3V21 2 2
af af p*(l,O) = 0 unless 12 = 

- (V- (S),V2 (s))dU (s) 12 2

+ T af (v (s),v (s))du 0 (S) (2.5.32) p*(1,1) = 0 unless + Er 0
1 22

where the last four terms represent the contribu-
tions of the four parts of DD. Notice that, if f p*(0,1) = 0 unless 711 + 2'12 + = 0

were such that f g DO, the set'of all twice con-
tinuously differentiable functions such that

af af p*(1,0) = 0 unless 1 = 0
1. av12 0 on v1 = 12

From equation (2.5.31), we can verify that
af af p*(1,0) = p*(0,1) = 0. However, when machines 1

2 av av on v =1 and 2, or machines 2 and 3 have identical failure
1 2 and repair rates, the values of p*(O,O) and p*(l,l)

can be nonzero. In these cases, the intensity of

3. - = O on v1 = 1 the coupling term Z12 matches and cancels the oblique
v1 flow along the boundary, resulting in decoupled re-

flecting conditions. This can be seen from equation
-Oaf on P = 0(2.5.35), which, when Z = 2 = -21 , reduce to

4. 0 onv =0, 11 22 12
2

1 ap* - p* = 0 on S
the equation (2.5.32) implies 2 11 ax 1

E{f(vl(T) ,v2 (T ))1vl(0),v2( )} - f(vl(0),v 2 (-0)) = 1 on 

frOv(CO1)'v2 )7.'2 ).( -m P* = 0 on S 
E{f Lf~v1(Vs),v2 Cs))dsJvCo) ,v2CO)} (2.5.33)



Exact solutions of equations (2.5.34) with The expected stationary throughput rate is just
boundary conditions (2.5.35) is a difficult problem,
'which can seldom be solved in closed form. However,

the markov process (vl (T), v2 (T)) can be approxi- TSS *(T))
mated in the weak sense by a Markov Chain, as in
Kushner [KUS 76], and the ergodic distribution of 3 E* o

= ds -a E({U (T)}
this chain can be computed as an approximate solu- -E 2
tion to these equations.

.- --- Assume that the stationary probability distri- - - 3r3 U (T) -T -- 

bution p*(x,y) has been determined. Let E* denote - E*
the measure on the path space induced by p*. Let 3 t
f be any bounded, twice continuously differentiable
function on D. Then, equation (8.9) implies, from P3r3
Fubini's theorem, ;- 2(S2)

f Lf p* dv dv + fT E ({V a- )dU0(s)) 2r3+P 32 (S2
1 2 l 2 1 Let f = ce . f is bounded, and smooth,

hence (2.5.37) implies

+ f E* ( - )dU2 (s) + fE E* {( av) ad (s av 3v 2 0 av 1
1 2 1 1 22 v2/,2)dl

2~~~~~~~~~~2 - ~~-x2/C
+ S Ve(dvDefine measures on S1, S2, S3, S4 as S1 (dv 2)

'O 1l(B) - ¥ ~ ~E*{I (v2(s)B) IdU0 (s)} for B SV1(B) = f. E~fI 2 * l for B S1 2 - V2(dv )

-1/2
v2 (B)= 1 f0 E*{I(vl(s)eB)IdU (s)}, B S + e V4(dvl) = 0 (2.5.38)

2S4 1(2.5.38)

V3(B) T E*{I(v2 (s)eB)dU1̀(s), B S3 Letting a approach zero in (8;35) yields

v4(B) = X0I E*{I(vl(s)eB)dU (s)), B S 2( 22 ) 140 1 2T4 2

The measures v. are the occupation time, or local
time, measures on the boundary, defined in Donsker- n this paper, we have presented methodology
Varadhan [DON 75]. It is easy to show that, for
Vrdany [DO 75.ITses ohwtafrfor approximating the flow of material through a

~~~~~~~any t~~~ ~transfer line of unreliable machines with finite
storage buffers.. Under the assumption of large but

O < E*{U(T) < d .< finite storages, the flow of material is approximated

by a diffusion process with reflecting boundary con-
ditions, independent of the process which describes

Hence, we can use Fubini's theorem to reduce equ- This
ation (2.5.36) to * the failures and repairs of the machines, This

approximation reduces the number of states which
f must be considered by a factor of 2k, where k is

D f . p* dvldv2 + --- ) V1(dy) the number of machines in the transfer line.1 1 2 The structure of the approximation was exploited
in the case of 2 and 3 machine transfer lines to

af- v2 (dx) + af obtain equations for the stationary distribution ofad DN 7] tsasy to s t a, for (dy)
S2 avy2 2 S3 ) 1 3fthe approximate diffusion process, In the two ma-

chine case, these equations were solved explicitly,

(f f) (dx) (2537) and found to be consistent with the results of
4a 1 av2 4 dx = (253) Gershwin and Schick [GER 80al, The equations for

the stationary distribution of the three machine
trnasfer line were too complicated to solve in closed
form, although numerical algorithms for their solu-functions f, to obtain the properties of the pro- form, although numerical algorithms for their solu

cess when it reaches the stationary limit. For in-
The methodology derived in this paper can bestance, recall that the throughput rate in section

e applied to transfer lines of arbitrary length with-
5 was given by out ignoring the coupling effects of starvation and

Us (T) blockage. As such it represents a significant gene-
T(T) [ = f ' p

3 ds - Ad ralization of the previous works mentioned in the
introduction. Work is currently in progress to



generalize these results to arbitrary network t6po- A linear operator T: V + V is called niloptent
logies with nonconstant flow rates and storage de- if Tr = 0 for some positive integer r. A nilpotent
pendent failure rates. For these problems, the operator is necessarily singular.
techniques used in this paper will not apply, be- The set of all linear operators on V to W is a
cause of the dependence of the failure-repair pro- normed vector space with norm induced by the vector
cesses on the levels of storage. Key theoretical norms in V and W as follows:
questions concerning the existence and uniqueness
of the limit process must be answered. These pro- IITu I
blems are currently under investigation, and will --..I T j = sup - sup -- Tu -

be reported in later publications. ueV l p l uuV
ugOu?'0 llU I ltI'=l

Appendix 2.A Linear Operators on Finite-Dimensional

Spaces Operator-valued functions T(t) defined for a

Thi's appendix contains background material on real or complex variable t can be defined and treated
as vector-valued or scalar functions. The following

linear operators on finite-dimensional spaces. as vector-valued or scalar functions. The following
lemma dealing with projection-valued functions will

Most of the results are available in [KAT 66]. The be useful in latterchapters.
purpose of this Appendix is to introduce the nota-
tion and preliminary results for section 2.2. Lemma 2.A. (KAT 66 p. 34)

tnLet V and W be two vectsfor spaces and T:V Let P(t) be a projection depending continuously
on a parameter t varying in a (connected) region

a linear operator. The image of V under T is called on a parameter t varying in a (connected) regionof real or complex numbers. Then the range
the range of T and is denoted by R(T). The dimen- R t) for different t are isomorphic to one
sion of R(T) is called the rank of T; we donote it another. In particular, dim R(P(t)) is con-
by rank T. The inverse image of the zero element
of W is called the null space of T and is denoted stant.
by T) The dimension of N(Tof W is called the null space of T and is denoted - Let T be a linear operator on V to itself. A
by N(T). The dimension of N(T) is called the null- complex number A is called an eigenvalue of T is
ity of T which we denote by nul T. A basic result ex

~in linear algebra is: ~there exists a non-zero vector u such thatin'linear algebra is:

'i; = Xu
rank T + nul T = dim V

If T maps V on W one to one, the inverse operator u is called an eigenvector of T with eigenvalue X.
T-1: W + V is well defined and T is said to be The subspace of eigenvectors of T with eigenvalue X
non-singlar, otherwise is said to be singular. is called the geometric eigenspace for X and its

Let X and Y be two subspaces of V such that dimension the geometric multiplicity of A. The set
each u e V can be uniquely decomposed in the form of all eignevalues of T. is called the spectrum of T;
u = u' + u" with u' e X and ul' e Y, i.e., V = X 0 Y. we denote it by C(T).
The linear operator P: V -+ V, Pu = u' is called the The operator-valued function

projection on X along Y and we have R(P) = d, N(P)=
Y. P is idempotent, i.e., P2 = p and conversely R(S,T}- (T - (I)- 1 (2.A.4)
any idempotent operator is a projection. More
generally

is well defined for any complex number e 6 p(T) A
V = X 1 ... X (2.A.1) C - a(T) and it is called the resolvent of T. The

set, p(T) is referred to as the resolvent set of T.

X. and the operator .defined R,T) satisfied the so called resolvent equation:
u = u1 + ·+ u , u. e X. and the operator P. -defined
by P.u = u. is the projection on X1 0... X-1

Xj+l X . Furthermore, we have R( T 2,T) = (51 R( 1 ) R( T)

~~~~~~~~~~~~~~~~~~~~s ~~~~~~(2.A.5)
Z P = I o (2.A.2)

j-1 which, in particular, implies that R(1i,T) and

R( 2,T) conmute, The resolvent is an analytic func-

PPk P +kj P. (2.A.3) tion with isolated singularities at precisely the
eigenvalues Xk, k = 0,1,...,s, of T.

The Laurent series of R(S,T) at Xk has the
Conversely, any set of operators {P.} satisfying fom:k
(A.2) and (A.3) is a family of projections that
determine the direct sum decomposition (2.A.1) with m
Xi= R(P.). A basis tv.} of V is said to be adapted R(S,T) = - (- ) P (- X)k)-n D +J kjk n-1 k k
to the decomposition (23A.1) if the first nl = dim
X1 elements of fv.} belong to X1, the following n
n2 = dim X2 ones belong to X and so on. + (CS- )n Sn

A subspace X of V is said to be invariant n=0 
under a linear operator T: V + V if TX X. In (2.A.6)
this case T induces a linear operator T : X + X
defined by T u = T for u e X which is called the where
part of T inX. TUis said to be decomposed by a

set of subspaces {Xi} if 2.A.1 is satisfied and all
the Xi are invariant under T. P = R(ET) dC (2.A.7)

k 2Ti r...
__kR(_,T) d_



(with r appositively oriented contour enclosed X . - It follows that if T has SSNS then P , the
but no other eigenvalue of T) is a projection caeled e
the eigenprojection for the eigenvalue XA of T; also the projection on N(T ) along R(TO ). Let Qo -
mk = dim R(Pk) is the algebraic multiplicity of oky I-POE

Therem 2.A.4.
If T has SSNS then To + P is non-singular.

1 = (_-X )k(E,T)d~ (2.A.8) Define the operator To# byTo# = (T + Po)-1
k = 2i r ki P . The following lemma gives several properties of

k... .. tRis operator.,- - -- -. .- -

''Lemma '2.'A.5.
is the eigennilpotent (Dmk = 0) for the eigenvalue Lemm) 2.A5. P O

ofT; and k i) P T T P 0Ak of T; and o0 o o .

ii) Qo T # T Q To #

iii) T # T = T T# = Q
S=-1 (a-) R(C,T)d5 (2.A.9) iv) T # it -

Žii -r k k iv) j Io II
It follows from lemma 2.7 that T To To = T

= To and T o o f
It is not difficult to see that the following To T T # and T T =T T To# is thusthe generalized Group inverse of T (see [Cam 79a];
relations hold: owe will refer to it simply as the generalized inverse

of To . The following lemma shows that if To has
PkG P= 5k ,= 0 I SSNS then Po and To# fully determine the Laurent ex-

. Pk Sk = Sk Pk = 0 pansion of the resolvent R(C,T o ) at zero.
' Lemma '2.A.6, f -l

P Dk D P = ~~~~D If T has SSNS, then for 0 < IAI < -1Pk Dk = Dk Pk = Dk I To has SSNS
we have

P T = TP

R(X,T) = _ k T #)+

(T-kI) Sk -I - k= 

(T - kfI) Pk Dk + T # (I-T #) l
O o

Pk p = k Pk k 3d k
Assume that an operator-valued function T(e) is

s given which is continuous in a neighborhood of e = 0,
-P = I say for c e [o0,c ]. We will distinguish two cases:

Xx1 k a) T(S) has an absolutely convergent power series
expansion for e e (0,C1], i.e.,

v = MlO ... O M

T(C) = T + 7 Cn T( n ) for £ e [0,E ] (2.A.11)
With Mk = R(P ). M- is called the algebraic h=l
eigenspace for the eigenvalue Ak of T. It follows
that 11 z |n II T (n) ( | Y () < o

n=l =

TPk = PkT = PkTPk = XkPk + Dk (2.A.10)

for e e [0,£ ] (2.A.12)
which gives the canonical form or spectral repre-
sentation of T: b) T(E) has an asymptotic expansion in powers of £

for E+0, i.e.,

T = k0 (XPk + Dk) (2.A.1l) N

lim |IT(C) - T n (n) - T - e = O - VN > On=l
An eigenvalue Ak is said to be semisimple if +0 n

the associated eigenniloptent Dk is zero and sim- (2.A.13)
ple if in additoin m = 1. T is said to be dia-
g6nabiable if all its eigenvalues are semisimple. The eigenvlaues of T(S) satisfy the characteris-

Definition 2.A.2 tic equation:
A linear operator T on V to itself is said to
have semisimple nul? structure (SSNS) if zero det (T(C) - (I) = 0 (2.A.14)
is a semisimple eigenvalue of To .
Lemma 2.A.3 If T(C) is analytic this is an algebraic equation in
The following are equivalent statements h of degree n = dim V, with coefficients which are

i) To has SSNS analytic in C. It follows that the roots of (2.A.14)
ii) V = R(T ) 0 N(T ) are branches of analytic functions of e with only

iii) R(T ) =0 R(T 2) 0 algebraic singularities and therefore the number of
iv) ranR T = rank T 2 (distinct) eigenvalues of T(C) is a constant s

v) N(To) o- N(To2) 0



independent of e, except at some special values of the sum being taken for all combinations of
e. There are only a finite number of such excep- positive integers p and v , ..,V such that
tional points in a compact interval Ce[0,e']. We 1 < p < n, v.+...+V = n. The series is uni-
will assume that C' is small enough so that [0,E'] formly convergent oR compact subsets of p(T)
contains only one exceptional point which, without in case (a) and it-is a uniform asymptotic seri-
loss of generality, we take as C=0. es for R(E,T(E)) in compact subsets of p(T(E))

In a neighborhood of the exceptional point, the in case (b).
eigenvalues of T(C) can be expressed by s analytic Let A be an eigenvalue of T = T(O), with alge-
functions A1 (E),.., (e) with A (E) Z A (E) for braic multiplicity m. Let r be a closed positive
n d k which can be grouped in tRe manner: contour in p(T) enclosing A but no other eigenvalues

of T. It follows from lemma 4.1 that for c small
enough R(~,T(E)) exists for E e r and therefore there

(E),... · p(E)9, }{A, (E),..., p+q(E) . are no eigenvalues of T(s) on r.
The operator

in such a way that we have the Puiseux series:
P(E) = I- f R(E,T(E)d~ (2.A16)

27r, r

(n () = + al X El/P + a2 2n c
2/p (2.A.15)

is a projection that commutes with T(C) and is equal
to the sum of the eigenprojections for all the eigen-

n = 0,1,... p-1
values of T(C) lying inside r. From Lemma A.2.7, in-

tegrating term by term yields

where X is an eigenvalue of the unperturbed operator n
T(o) and C = exp{27i/p}. Each group is called a P(C) + Cn P(n) Ee[, £ (2.4.17)
cycle and the number of elements its period. It n= -

should be noticed that the A (£) are continuous at
:=0; A = X (0) will be calleR the center of the where
cycle under consideration.

In general there are several cycles with the 1
same center A. All eigenvalues belonging to cycles P - f R(ET) de
with center X are said to depart from the unperturb-
ed eigenvalue X by splitting at C=0. The set of
these eigenvalues will be called the A-group since is the eigenprojection for the eigenvalue X of T,
they cluster around X for s small. Eauation and
(2.A.15) shows that X (:) - X = 0 (el/P).

In the asymptotic case (b), the number'of
eigenvalues may change with £ quite irregularly; pn) R (n) ()a .
the splitting and coalescence of eigenvalues taking r
place in a very complicated nammer. It may even
happen that in no interval of the form (0,E'] is P(e) is continuous in a neighborhood of zero and it
the number of eigenvalues constant. In dealing with follows from lemma 2.A.1 that the range of P(S) is
non-analytic perturbations we will restrict our- isonorphic to the range of P; in particular,
selves to the case of constant numbers of eigen-

values for £ e (0,s'].~values for Es~ e (0,E ~. *~dim R(P(E)) = dim R(P) = m
The resolvent of T(S) is

MR(, T(E)) = (T(E) = I)L that all eigenvalues of T(S) lying inside r form

Lemma 2.A.7 exactly the A-group. For this reason P(S) will be

Let called the total projection, and R(P(S)) the total
eigenspace for the A-group.

00 -Lemma 2.A.8

T(C) = T + E 5n T(n) Let
n=l

If 5 ep(T) then for, e small enough, ep(T(S)) T(C) = T + Z C T(n)f -n=l
and

00 - (Let X be an eigenvalue of T with multiplicity m
R(S,T(C)) = R(C,T) + E SnR(n) () and let P(S) denote the total projection for

n7-
the A-group. Then

where

(T(E) -A)P(e) 1 - (~-A)R(~,T(s))d~ =

R(n) ()= 1 +.+=n (-1)P R(ST)T(Vl) 27iiE -

vi. = D + ZD E+ n ((n)O
whererisa(1/2)closed positive contour nsD Se(0, i

R(Z,T)w Tiac Ti R(t,T)

where r is a closed positive contour enclosing



X but no other eigenvalues of T, D is the
eigennilpotent for X and T(n) is given by: MSST

( = (-1)P (kl)() 
p= V1 +...+V =n

k +.+kp+,=P-l / not MSST

V. > 1, k. > -m+l1

S(k2) .. s(kp)T(Vp)S(kp+l) not US

with S - - P(O) = - P. S( - Dk k > 1 Ao(
and S(k = Sk, k > 1 for

S - 2- f (-X) R(E,T)dE

not MSSNS

Rn=R (Qm(£)) .... * (Q1(.))(E/~(Qo(.))(@y ( Ao(.))

'(Ao(L)) N ,/AO(6)) MSSNS = Multiple Semisimple Nullstructure
US =Uniform Stability

MSST = Multiple Semistability

,~A~) _' , _______ . _ 'Figure 2.2.3 Different cases studied in section 2.
X(A2()) /'(A 2(f)

X(Am(f)) N/(Am(W)) FAILURE

Fiaure 2.2.1. Structure of the matrices A (E)_ j

_SYSTEM

0A 20000..-1 . . . . O
1 I Im · M o 

A2(£) Am° ....... A... t /oO

A ([) Amo A , . ....2-o I 0 .I - I
., -1-o o 

Ficure 2.2.2. Tahle of matrices Ai... O -t

Figure 2.3.1 A FSMP wSth rare events.
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3.1. Stochastic Bifurcation and Singular Pertur- scale of the state of the process giver noisy, non-
bation linear observations reduces to a finite-stateWonhamn

filter. The layout of Section 3.3 is as follows;
3.1. Introduction In 3.3.1 we set out the preliminary definitions and

discuss variable structure systems and give the
Bifurcation is the study of branching in the flavor of the results to be expected. Sections

equilibrium behavior of dynamical systems in res- 3.3.2, 3.3.3 develop the probabilistic and deter-
ponse to small changes in the parameters of the ministic mathematical machinery needed for the
system. In our past work on stability of large !study. Section 3.3.4 contains the main results on
scale interconnected power systems at the Univer- tthe asymptotic behavior of the hybrid process.
sity of California, Berkeley we have shown the im- t Asymptotic filtering is discussed in Section 3.3.5.
portance of the study of static bifurcations of the The link between the two sections is in that
load-flow equations and dynamic bifurcations of they both study the asymptotic qualitative behavior;:
the swing equations (see [SAS-80], [SAS-81], of two-time scale systems and hybrid systems in
[ARA-81a], [ARA-81b]). different contexts that arise in the study of the

Nevertheless the methods of deterministic bi- dynamics of power systems.
furcation are extremely sensitive to the-addition
of small amounts of noise, as has been noticed 3.2. Bifurcation in the Presence of Small Noise
before by some researchers. Thus, in systems whosel
macroscopic description arises from an aggregation - 3.2.1 Introduction
of microscopically fluctuating dynamics; for ex-
ample, the power demanded at a load node (PV or i Bifurcation is the study of branching in the
PQ) of a power systems, the predictions of deter- fequilibrium behavior of a dynamical system in res-
ministic bifurcation are incorrect. In Section {ponse to small changes in the parameters of the
3.2., our aim is to remedy this deficiency and system. Deterministic bifurcation, using as foun-
set down a theory of bifurcation in the presence idations singularity theory, has been fairly success-
of noise - referred to as stochastic bifurcation. Iful at explaining a wide variety of such phenomena
Section 3.2 is organized asifollows: lin fluid mechanics, optics, elastic structures,

Section 3.2.1 is the introduction to this laser physics and ecology [11]. Nevertheless, the
section and states a problem from thermodynamics i methods of deterministic bifurcation are extremely
that led to this development-phase transitions in sensitive to the addition of small amounts of noise.
Van der Waals gases by the Maxwell equal area rule. :Thus, in systems whose macroscopic description
Section 3.2.2 discusses the Maxwell's equal area }arises from an aggregation of microscopically fluc-!
rule. In Section 3.2.3 we compare and highlight Ituating dynamics, thermodynamic systems for example,
the differences in the predictions of determinis- ' the predictions of deterministic bifurcation may be:
tic and stochastic bifurcation for a class of i incorrect. We seek in this paper to set down, a
gradient systems. Finally, we apply this theory mathematically rigorous theory of stochastic bi-
to the study of noisy constrained systems: The , Tfurcation - i.e. bifurcation in the presence of
dynamics of several engineering systems are not small additive noise. We show repeatedly that, in
described explicitly by differential equations; the limit as the intensity of the additive noise
but rather implicitly with a combination of alge- etends to zero, the conclusions of this theory are
braic and differential equations. An example is )rather different from those of deterministic (or
the dynamics of a power system: the swing equations "no-noise) bifurcation.
coupled with algebraic equations at each load node. j In section 3.2.2 we discuss as motivation an
These equations (deterministically) admit of jump example of a thermodynamical phenomenon, isothermici
at points of bifurcation of the algebraic equation. !phase transition in Van der Waals gases in which
The nature of the jump can be altered quite dra- ! ithe predictions of deterministic bifurcation theory!
.matically by the presence of noise -as we discuss lare incorrect. We then indicate how the addition
!in Section 3.2.4. lof small noise predicts the experimentally observed'

Section 3.3 is titled Singular Perturbation, !phase transition first studied by Maxwell [May 18751.
State Aggregation and Non-linear Filtering. In i In passing we should mention that since the advent

:¥:situations where the structure of a dynamical sys- of quantum mechanics physicists have been concerned
tem varies with time it is often the qase that the jwith the derivation of the Van der Waals equation
(random) structural changes occur on a time scale ifrom first principles (i.e. quantum statistical
Ithat is much slower than the dynamics in any given l mechanics). The derivation was first done in 1963
mode of operation. For example in the study of I[KAC 63], showing that the Van der Waals equation
power system dyanamics, the swing equations are Itogether with Maxwell's rule are consequences of
sometimes thought of as occuring on a fast time ithe quantum theory. The notion that "fluctuations
scale compared to the relatively slow time scale play an especially important role near bifurcation
of random faults or breakdowns. The purpose of points" has been noticed and elaborated by the
this section is to study the asymptotic behavior Brussels school, Prigogine, Nicolis, and others
of the resulting hybrid system in the limit that i(see [NIC 77] and references contained therein).
the two time scales mentioned above are singularly i In section 3.2.3 we compare deterministic and
perturbed to the slow time scale. Thus, returning !stochastic bifurcation. We use Laplaces method 
to the example of the power system dynamics, we of steepest descent to compare the two theories in
are interested in the asymptotic behavior of the the limit that the noise intensity goes to zero.
transitions between different faulted-states in In section 3.2.4 we apply the theory of noisy
the limit that the swing dynamics become infini- bifurcation to the study of noisy constrained or
tely fast compared to the incidence of (say) implicitly defined dynamical systems resulting fromj
lightning strikes. ithe singular perturbation of fast (or 'parasitic')

In addition to studying the asymptotic dynamics on some coordinates of the system. The
behavior of the hybrid process in the slow time ' deterministic solution of these systems admit jump
scale we show asymptotically that the problem i discontinuities, including possibly relaxation
of estimating _the projection onto the slow time- _ loscillations, as studied in [SAS 81]. The addition



of noise however changes the nature of the jump and 'the observed phase transitions are non-hysteretic
can in some instances result in the destruction of | as shown by the solid line. This line is drawn
relaxation oscillations. This is shown explicitly | according to Maxwell's equal area rule [MAS 1875]. -
in the case of the degenerate Van der Pol oscillator equality of the shaded areas in figure 3.
equation (see for example [2EE 72]).

3.2.2.2. Noisy Isothermic Phase Transitions
3.2.2. Phase Transitions for Van der Waals Gases

To explain the observed phase transition we

One of the models used in the study of phase propose to account for noise in equations (3.2.2),
transition from liquid to gas in thermodynamics is (3.2.5) stemming from the fact that P, V are aggre-
the Van der Waals equation [CAL 60] relating the Igations of microscopically stochastic behavior. In
pressure P, the volume V, and the absolute tempera- 'section 3.2.4.2 we present rigorous results justify-
ture T: ing the manipulations outlined here. We replace

(3.2.2), (3.2.5) by
rT - (P + -) (V-b) = 0 (3.2.1)

V2 P = f(t) + v i (t) P(O) = Po (3.2,6)0
where a,b,r are positive constants depending on
the gas. Loosely speaking, the surface satisfy- eV = g(PV,T2) + YET (t) V(O) = V (3.2.7)
ing (3.2.1) in (P,V,T) space (see figure 1) is a
smooth two-dimensional manifold with two fold lines where E(.) and n (.) are standard independent white
meeting in a cusp at (Pc,Vc,Tc). Isotherms in the noises and X > 0, p > 0 scale their variance. For
(P,V) plane are drawn in Figure 2. For temperatures each C, p, A the above equations generate a diffu-

' less than Tc the upper left hand corner of figure 21 sion t - (P(t),V(t)) in the plane. The evolution
represents the liquid phase. We study here phase of the corresponding probability density pA (P,V,t
transitions from liquid to gas phase at constant is then given by the Fokker-Planck equatioW' 
temperature:

3.2.2.1 Isothermic Phase Transitions at S 2 2 2 ,e

For temperatures above Tc (supercritical) in i 1 VT) (3 2 8)
figure 2 there is no phase transition (only gas - £ av P1,c ' ''2
phase). At the critical temperature Tc, the por- ITo studyoTo study (3.2.8) in the limit s + 0, multiply (2.8) I

tion of the isotherm to the right (left) of (P, by and let O. Then the limit pX of pXtby S and let 4 + 0. Then the limit p_ of pX
Vc) represents the gas (liquid) phase. At sub- provided it exists satisfied 

!provided it exists, satisfied
critical temperatures phase transition is more
subtle. If the liquid were allowed to expand a 2
'quasistatically' and isothermally at T2 by de-T2) = O . (3.2.9)
creasing the pressure, the variation of pressure av
and volume is described by olving (3.2.9) yields

P = f(t) P(0) = P (3.2.2) p X
h^~~ oa~~ , ~PF~P = kX exp[-S(P,V,T2)/ (3.2.10)

g(P,V,T2) = rT2 -(P+ -) (V-b) = 0 V(O) = V > b
vo (3.2.3) X 

Vwhere k = k (P,t) and
p1 11

iwhere f(t) is a negative function of time. Note
'that equations (3.2.2) and (3.2,3) describe the S(P,V,T) = -2fg(P,V,T)dV
,variation in time of P and V so long as

2 2ab
= PV +2a log V-2PbV+ -v- -2rVT

i av g(P,V,Tz) 0 (3.2.4)
~-~ g(PVT 2) jSubstituting back in (2.8) and then integrating

lover V yields
,since we may then obtain V(t) as a function of P(t) 
from the implicit function theorem applied to a 2

(3.2.3). At points (Pl,V 1), (P2,V2) shown in ( c) = .- 2 (kc) - (k c )f(t)(3.2.11)
figure 2, (3.2.4) is not satisfied and equation i 
(3.2.3) is singular. A regularization we suggest x where
accounts for the fact that 'quasistatic' expansion
of the liquid neglects some 'fast' dynamics (see A
ISAS 81] for details): c (P) = exp(-S(PV,T2 )/X)dV < X 

P = f(t) P(0) = Poof(t P(O) P We see therefore that in the limit E % 0 the P pro-

V = VT V(O) = V (3.2.5) fcess converges to a diffusion whose probability
Ei2 o g(PV,2=v 3 5 density k c satisfies (3.2.11). Further in the

The limit of the trajectories of (2.2) (2.5) as limit 0, the conditional density p(VIP) i
C 4 0 yields a discontinuous change (jump) in vol- give by
ume from (Pi,Vl) to (P3 1V3) as shown by the dotted 1
line in figure 2. This is the predicted liquid to exp(-S(P,V,T )/X)
gas transition. For the converse phase transition c (P)
choose f(t) to be positive and the jump transition
predicted is from (P2,V2) to (P4,V4). This is plotted in figure 4 for different values of

Thus the predicted deterministic phase trans- 1P. Note that the critical points of pX(VIP) are
'itions are hysteretic (figure 3). Unfortunately, iexactly the solutions of (3.2.1) with T = T2. For

1~~~- -- -D~ 6 =4 t2



P > P2 there is only one critical point. For Pi P (the method of Lyapunov-Schmidt [HAL 77]P that the
two additional critical points - a local minimum anl study of the n equations in n unknows (3.2.14) re-
a local maximum - appear from a fold bifurcation. I duces to the study of n-r equations in n-r unknowns
The new maximum grows in height so that for P 4 P
it is the global maximum. The old local maximum 4 N(q,u) = 0 (3.2.16)
shrinks and annihilates the minimum again in a fold I
at P6. Now Laplace's method of steepest descent f here q = Px where P is the projection onto the ker-
(next section) shows that as A + 0 the conditional nel of D2S(x*,u ) and the first derivative of the
density pX(VIP) coverges to delta functions sup- bifurcation Function N vanishes at (q~,u o) where
ported at the global maxima of pA(VIP); these q = Pxo. The nature of the solution set of
'densities' are plotted in figure 5. The pressure (3.2.14) is thus dependent on the function N. For
at which the limiting conditional densities jump is example suppose r = n-l (the codimension one case) ;
the pressure P4 at which the two local maxima of the function N is then a scalar function of a scalar

p'(VP) are equal i.e. Maxwell's equal-area rule. variable that is at least quadratic near q*. If
Thus the limiting behavior of (3.2.6), (3.2.7) as 82
C + 0, A + 0, and V + 0, in that order, is the
deterministic system N2 u ) 

= f(t) then in a sufficiently small neighborhood of (q*,u
(3.2.12) there is a unique q*(u) such that

V = ~i(P)

N N(q* (u) u)= 0where * is given by figure 5 for V < v and V V q*(u),u) 
and ~(P4) = V4 or V with probability 1 each.

2 i.e. N has a local maximum or minimum at (q*(u),u)
3.2.3.1 Deterministic Bifurcation for definiteness assume that it is a maximum. It

can then be shown [HAL 77] that if
Roughly speaking, bifurcation is the study of

branching in the equilibrium behavior of a dynami- (u) = N(q*(u),u)
cal system in response to small changes in the para|-
:meters of the system. Consider, for example, the then the equations (3.2.14)
(class of gradient systems*i class of gradient systems* (i) have no solution if i(u) > 0

x= grad S(x,u) (3.2.13) (ii) have one solution if 5(u) = 0

!with S(x,u) a smooth (C ) proper function growing (iii) have two solutions if E(u) < 0,
!sufficiently rapidly as |xlx i c in IRn, for each
ifixed uO e IRm, It is well-known [HIR 75] that , in a neighborhood of uo, This is the fold bi-
jevery trajectory of (3,2.13) converges to an equili- furcation and is visualized in figure 6. If
ibrium point of (3.2.13) and that every critical I
ipoint of S(x,uo) is an equilibrium point of (3.2.13)'. j2 3
;Further, if for some uo, S(x,u ) is a Morse function 3 o o
[IABR 78] then every stable equilibrium of (3.1) is aq 8q 
'a strict local minimum of S(x,uo) and conversely, then N(q,u ) is at least cubic in q-q* and the
;In several practical problems [POS 78] it is of bifurcation is a cusp (figure 7)..
interest to study the variation of the critical Equations (3.2.14) then have one, two, or three
ipoints of S(x,u) with the parameter u or, in other solutions in a neighborhood of u
!words, to study solutions of** We do not discuss other bifurcations here.

Suffice it to say that the normal form theorems of'
D1S(x,u) = 0 (3.2,14) singularity theory (see Thom [THO 75] Hale [HAL 77]i)

yield universal unfoldings of singularities; the i
'as u varies, If x* is a nondegenerate critical bifurcations of N(q,u) are in general sections of
point of S(x,uo) then there exists a smooth function one of these unfoldings.
ix*(u) defined in a neighborhood of uo such that
x*(u o) = xo and x*(u) is the only critical point of 3.2.3.2 Bifurcation in the Presence of Small Noise
S(x,u) in some fixed neighborhood of xo. Th is
the implicit function theorem. Thus smooth con- Consider, for example, equation (3.2.13) with
tinuation of critical points is locally possible added white noise
from a nondegenerate critical point. 1

Now suppose x* is a degenerate critical point = grad S(xu) + YX E(t) (3.2.17)
i.e. 2

k D2 * where (.) is an u-dimensional standard white noise
rank D1S(,) r < n . (3,2.15) process and X is a positive constant scaling its

variance. For each u in : m, equation (3.2.17)
By using the implicit function theorem on the r- generates a diffusion whose probability density
dimensional range space of D2S(x*,uo ) one can show p(t,x,u) satisfies the Fokker-Planck equation

(x°.can 2

Here grad stands for gradient with respect to x, [x 3 + (grad S)3p (3.2.18)
using the standard inner product on Rn. i=l 
**D1S(x,u) (D

2 (x,u)) stands for the first (second)
derivative of S with respect to x, while D2g(x,y)' where (grad S). is the ith component of the vector
stands for the first derivative of g with res- grad S. We now assume that the derivatives of S
pect to y. grow rapidly enough at ~ such that as t + x, the

_c _. . -
..-. 
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density p (t,x,u.) converges exponentially [PAP 77] dynamical system of the form:
to a unique invariant density p (x,u); the density

is then given by x = f(x,y) (3.2.20)

-X X -0 = g(x,y) (3.2.21)
p (x,u) = exp[-S(x,u)/I]/c (u) (3.2.19) m

Here x £ nR , y e AR , f and g are smooth maps
R n x iRm into R n and iRm respectively. Assume

where c (u) is chosen such that p integrates to 1. that 0 is a regular value of g. We interpret
Note that for all X > 0 and u in m the criti.N otetha oforx all 0and in J the crit- (3.2.20), (3.2.21) as describing implicitly a dy-

cal points of TA(x,u) are precisely the equilibriumn i na
namical system on the n-dimensional manifold

points of the deterministic system (3.2.13). Fur-
ther, if for some uo, S(x,uo) is a Morse function
then for all X > 0 every local maximum of 5X(x,u) M = {(x,y) g(x,y) = 0 }C n+m (3.2.22)
is a stable equilibrium of (3.2.13). Thus the
study of the bifurcations of the critical points Alternatively, one can think of (3.2.20) as des-
of S(x,u) also yields the bifurcations of the criti cribing a control system with control variable y
cal points of (x.u). Here we study the bifur- and (3.2.21) describing implicitly a feedback con-|
cations of 1p(x,u) in the limit as X + 0 using trol law, a situation that arises frequently in
Laplace's method of steepest descent (for more in- optimal control for example; (3.2.21) would then
formation see chapter 4 of [HIJ 80]. We will need correspond to the Euler-Lagrange equations. The
the following version of the method. venctor field X(x,y) on M is defined by specifying
Theorem. Let, for each u s JRm, S(xu) have global its projection along the x-axis, namely
minima at xl(u),..., x (u), where N may depend on u
Let them all be nondegenerate. Let S(xru) have at 7rX(x,y) = f(x,y) (3.2.23)
least quadratic growth as x + a. Then in the limit
as X + 0a, pC(x,u) converges to where r is the projection map (x,'y) + x. At points

N N where the mxm matrix D2 g(x,y) is full rank, it is !
Z a.6(x-x*)/ Z a. clear that (3.2.23) uniquely specifies X(x,y).

i=l i=1 1 Difficulties occur at points (x,y) where D2g(x,y)
2 1 is not of full rank and f(x y) is transverse to

where ai(u) - det(DS(x*,u)) . More precisely rTM(x,y). It would seem then that the trajectory
if f(x,u) is a smooth function having polynomial should instantaneously jump off the manifold from
!growth as x + a, then (x,y) to some other point (x,y') on M (x is con-

strained to vary continuously by (3.2.20). (see
3im_ _ figure 8). This intuition is made precise in
lim (u) - lim f(x,u)pk(x,u)dx [SAS 80] by interpreting solution trajectories of

0 -0 JIRn (3.2.20), (3.2.21) to be the 'degenerate' limit as

N N _ + 0 of the trajectories of
a i.(xi,u)/ ilai - Co(U) .

ili 1 i=l 0 xf(x,y)

Moreover if the above growth conditions on S and Sy = g(x,y) , (3.2.24)
!~ are uniform in u, for lul < R, then ] is bounded 

areon | R uniformly in X > 0 and provided the limits exist. Under certain condi-
tions this regularization has been shown to make
physical sense in the context of electrical cir-

lu 1R¢IX(U)-TO (u) pdu 0 , cuits in [SAS 80]. We illustrate the theory with
UI(<uR an example.

Consider the system of equations in the planei

for all R > 0 and p 1. givenby
jProof. The proof that c (u) + ~ (u) pointwise in

X A y (3.2.25),u is a slight modification of that appearing iny (3
;[HIJ 80]. For the LP convergence, use the domi- 3
hnated convergence and Egoroff's theor2ems. 0 -x-y +y , (3.2.26)

We therefore see that bifurcations in the pre- the degenerate Van der Po
sence of small noise are obtained from the study of:
changes in (non-degenerate) global minima of S(x,u) , The phase portrait for the degenerate system in-
{as a function of u. In contrast to section 3.3.1 cluding jumps from two fold singularities of the
appearance and disappearance of global minima will projection map r : (xy) - x is shown in figure 9.
be points of bifurcation in this context. We close| Note the relaxation oscillation formed by includin
this section with the remark that if the drift in the two jumps.
equation (3.2.17) were not a gradient, then al-
though the invariant density TA(x,u) will not 3.2.4.2 Noisy Constrained Systems
necessarily be of the form (3.2.19), it will be
so asymptotically as X + 0, which is enough for We add noise to the system (3.2.20), (3.2.24)
the above theorem. This will be developed else- in such a way as to obtain
where.

x = f(x,y) + Vi E(t) x(0) = x (3.2.27)

3.2.4. Noisy Constrained Dynamical Systems 3.2.28
Cy = g(x,y) + /ES n(t) (3.2.28)

3.2.4.1 Deterministic Constrained Dynamical Systems
Here i(-) and n(C. are, as before, independent
;"n-valued and /R -valued white noise processesConsider a constained or implicitly denfined

!:'!.!. !!.r:!I
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and A, p scale their variance, For each 1, X > 0 1 diffusion t W x' (t) converges weakly in C([O,T] 
systems of this kind have been studied in the limit| 3l0) to the unique diffusion t - x (t) satisfying
C + 0 extensively by Papanicolaou, Strook and in law
Varadhan [PAP 77]. Our contribution here is to
study the behavior of (3.2.27), (3.2.28) in the . x = f (x) + ' S(t) x(0) = x (3.2.29)
further limit X + 0 followed by U + 0, and to pre- f 
sent it in contrast to the results of section 3.4.11 where
We note in passing that the results remain un- N N
changed if the order in which ),p+0 is interchangedl f (x) = a .x)f(xy(x)), a.(x)
However, if A+0 before E+O then we are reduced to
the case in section 3.2.4.1. In order to apply (as in section 3.2.3.2, and y*(x), .,y*(x) are the
Laplace's method, restrict attention to the case nondegenerate global minima of S(x, ).

1 Proof. The proof of this and the next theorem

g(x,y) = 2 2 grad S(x,y) 1mimic that of the previous theorem and so we only
loutline the proof. The reader may perfer to master

the gradient taken with respect to y, for some S Ithe proof of the preceding theorem appearing in
smooth proper and growing sufficiently rapidly as I[PAP773 first. We first show that the measures on
y + x, uniformly for lxl C R, for all R > 0. Note C([O,T];ZR nj corresponding to t -- x, (t) are
that here x and y play the roles of u and x in relatively weakly compact in C([O,TI; m h). The
section 3.2.3.2. For each C, X, 1 > 0, the evolu- !second step is to identify any limiting measure of|
tion of the corresponding probability density pX the family xX,1 , X > 0, as the unique solution of
is governed by the martingale problem associated to (4.10). It

is essential in both steps 1 and 2 that p remain
a1 Xk * fixed and positive.

p (L* + 1)p To prove compactness in C([O,T];- Rn it suf-
1UC o .~ .',S fices to show that

where L*, L* are formal adjoints of the operators Ii
o. 1 lim sup P( su x (t)-x (s)I E) =0

Lo, L1 given by 6+0 X>O [t-sl 

0S<t,s<T

LoP = £ ax.,a-

ax il 2 2 laXl for all C > 0 ([13] page 351). This follows from
a.i 1 the fact that

iand

m k 2 xh f( , ) + ~ i(t) x(0) = xO
LP [ixl 2 r + 9i -P

Yi in law (which is all we need here), and the
assumption on f (x) [KRY 80] page 120).

The conditional density of y given x is, in
For step 2, take a Cm function 4 whose sup-

'the limit E + 0, given by ,port is in Ixl < R and consider

exp[ S( (x,y) ,-j /c (x) t 

whereX c ~ ~ ~ ~ ~ ~ % . )(X , 4(t)) (Xo) - f( ) (xX),~s))ds
where c (x) is chosen so that pk integrates to one 
Set t

_ MbA (x) (s))ds ,

f(X) f(xy) kx y)dy 
fx(x) = > Im where f(O) is the directional derivative of 4 in

the direction of the vector field f and A is the
Laplacian. For each X > 0 this expression is a

-for X > 0. Assume that f(x,y) has at most poly- martingale and the idea is that the limit is also
nomial growth as y - a, uniformly in Fxl 4 R, for martingale:a martingale. Note that to get the correct ex-
all R > 0. It then follows that f-(x) is bounded { pression in the limit, one has to show that
on lxi XR uniformly in 0 < X , for some 1pression in the limit, one has to show thaton Ixl4 R uniformly in 0 < X < X , for some O l
sufficiently small, We assume in what follows that 
i(x) has linear growth uniformly in 0 < X . f ) (x(s) f ((x (s))ds) (3.230)

Set · IT

goes to zero as X + 0. This follows from the fact
-- n 2 _[ a that for all p sufficiently large there is a K > 0
o i-l 2 2 +(f)i ax-3P depending only on p, a uniform bound for f(x),

ax. i oaXi x1 R, 0 < X 4 Xo , and T, such that (3.2.30) is

The operator Lo is the operator Lo averaged over |bounded by
the invariant density p of y given x.
Theorem [10] As e + 0 the first component t K x(t)I l K| IX(4)-f(4)) I (3.2.31)
of the solutions of equations 9.2.27), (3.2.28) P
converges weakly in C([0,T]; " ) to the unique 

where the L
P

norm is over Jxl C R ([KRY 801 page 52
diffusion, denoted by t - x, ,j(t), governed by L. i Idiffusion, denoted bfy t n xXt), governed by Lo.* But from section 3.2.3.2, we know that (3.2.31)

We now have the following goes to zero as X + 0. This completes the proof.
Theorem. As . % 0 the diffusion t + xi, (t) con- Finally we can let 0 to obtain

verges weakly in C([0,Tb; :irm' to the unique_ Theorem. The family t x, (t), > 0 is relatively(
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weakly compact in C([O,T];R43). Any limiting dif- Ian intensity matrix for each x in R . If there

fusion of the diffusions t + xV(t), p > 0, as 'p + 0 lare N possible modes of operation of the system and

then satisfies the ordinary differential equation if ajk(x) represents the infinitesimal transition

_probability that a structural change from mode j to

x = fo(x) , x(O) = x . (3.2.32) mode k happens when the system is in state x; then
0 0 oa natural formulation of the above situation is to

Proof. As before one checks that t - x (t), p > 0, iconsider the trajectories of

is relatively weakly compact, as before'lany limit-

ing diffusion is then governed by fo, i.e. x = (1/c) gi (x) (3.3.1)

- -t~~~~ ~~where x = x(t) is the state at time t and i = i(t),
¢(x(t)) - xf (f)(x(x(s))ds + martingale . a jump process on {fl ... N} governed by (a.n (x(t)),

represents the mode in operation at time t
K

More

Since the variance of the martingale is accurately and more concisely, a natural formulation

of the above situation is to say that t + (x(t),

EI %F(2_%(]xs)d i(t) ) is a Markov process on X = R
n

x {1l,...,N}
I0 o -02) ¢- ¢fo(~)l~x~ d governed by A + (l/E)g.

2 l One can generalize (3.3.1) in various direc-
and f(~ )-20f(4) is zero for any vector field f, tions. For the purposes of system identification

it follows that the martingale part is identically one may replace {1, .,N} by an arbitrary parameter

zero and (3.2.32) holds. o space A (for related work see [HIJ 81b]). Alter-

Let us consider, as an example, the noisy ver-t natively, the state space need not be Rn and may beg

sion of the degenerate Van der Pol oscillator. replaced by any smooth manifold' In fact all- of

Consider these situations are subsumed by the following

set-up:

x = y + 5 i(t) Let X be a smooth manifold and let g be a
smooth vector field on X. Let A be an integral

= -x y +y + / n(t) .operator on X given by

iFor A,p > 0 as C + 0 the x-process converges to - I (x) = I (0(x") (x)) p(x,dx ), (3.3.2)

one satisfying X
for some measures B - p(x,B) depending on x in X.

x = y (x) + Vi(t) For each s > 0 let t - x(t) be a Markov process
on X governed by A + (1/C)g.

!where i The purpose of this paper is to study the
limiting behavior of these processes as C + 0.

_+C 2 4 2 !Our main result is that while the original motion

t y ~(x) = Y exp X (-xy - Y -)dy !t + x (t) clearly blows up as £ + 0, in certain

cases there is a reduced-order state space X and a
co4xl 4 2 -1 1projection u: X - X such that t + fE(t) E r(xE(t))

I'21 exp X (_xy - v + y )dy ^ 'converges to a well-defined limit as £ + 0. Thus

[ 4X 2J
-1

4 2 X may be regarded as the full-order state space
*{n fig~ne 10,yX -while A and g are the generators of the slow and
In figure 10, y' (x) is plotted for Al > 2 > 0. fast dynamics respectively.

In the further limit that X + 0 followed by In general X should be chosen to be the limit

, 4- 0, x satisfies set of the vector field g. In this paper we deal

with the simplest kind of limiting behavior, when
x = 1J(X) x ~ 0 the limit set of a is given by a finite number of

states X = {x ,...,x in X. Even in this case
} = O x = 0 there are a nimber oY novel features. Viewed as

a singular perturbation problem, here there is no i
,wnhere yx) is shown heavy in figure 10."- Note that , "fast variable" and thus the state space X is not
it is discontinuous at x = 0, since the support of a product of a fast variable and the slow variable
the conditional density jumps from one leg of the rx = (x). Viewed as a state aggregation problem,

!curve x = y-y to the other leg as shown in figure i here we have aggregation from a continuum of states:

10. Consequently the relaxation oscillation is X to a finite state space X, a fact that radically

broken up by the presence of small noise. changes the level of computational difficulty of

nonlinear filtering and (partially or fully ob-
3.3 Singular Perturbation, State Aggregation and servable) stochastic control problems associated

Nonlinear Filtering to the processes t +- x (t).
As an application of our main result we shall

3.3.1. Variable Structure Systems see that while the nonlinear filteEs corresponding

to the problem of estimating t +- x (t) in the pre-
In situations where the structure of a dynami- sence of additive white noise do not converge as

cal system varies in time, it is often the case C - O, it turns out that the projected filters do 
that the structural changes occur on a time scale in fact converge to well-defined object, the

that is much slower than the dynamics in any given -(finite-dimensionally computable) finite-state
mode of operation. For example, in the study of Wonham filter.

power systems, the swing equations are sometimes I Our treatment here is based on the martinaale

thought of as occuring on a fast time scale when tformulation an analogous theorem due to Papanicolaou,
compared to the relatively slow time scale of Stroock and Varadhan [PAP 77]. We therefore begin,j
random faults or breakdowns. nJ for the sake of completeness, with a review of the

Suppose that g g are vector fields on R ISuppose that gare vector fields on R martingale problem for A + (l/S)g. For a general
jsuppose that A(x) = (a, j N, is 1 treatment of the martingale problem for Levy

_ __ . ..~~~~~~~~~~~~~~~t~·
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processes, see [STR 75]. initial distribution. Moreover (3) above holds

with Lt = A + (1/S)g for any P in the domain 9 of

3.3.2. The Martingale Problem for A + (l/C)g g, and

Let X denote a smooth manifold and leg g be a P (t + x(t) is a finite disjoint union of

smooth complete vector field on X. Let B(X) be the compact trajectories of g) = 1.

space of all bounded Borel functions on X, and let

at' -m < t < x, denote the flow of g. The domainat, =.< t < -, denote the flow of g. The - domain :Proof. The sample paths of P 'are as stated becaus
of g is the set P of all functions & in B(X) suchhe th under the map
that there is a I in B(X) satisfying Pais the image of the measure PE under the map

. and the sample paths of PE are piecewise con-

i~a -t rsteant. To see that (3.3.3) holds with Lt = A +
(at( x)) (as (x)) = is(a r(x))dr (l//E)g for all 0 in 9 first note that P. can be con

structed so that (3.3.3) holds for all D in B(X),

for all x in X and O < s < t < T. Any such i is when Lt = At/CE and then note that the integration
fo al _ _Xan < < <T.c * iby parts trick referred to above still holds when t

then denoted by g(Q) and we emphasize that there 
may be more than one g(Q) assocatied to a given n 
If ¢ is sufficiently smooth, however, then there is Thus the martingale problem for A + (l/C)g is

af natural choice of a( given bywell-posed. In particular if X = {Xl,-- ,XN} is
a natural choice of q(~) given by a finite set then X can be considered to be a zero

d -dimensional manifold. Thus suppose (Pij) 1 < i,
g( )(x) = dtl m (at(x)). j < N is given and set:

t=0

We note for future reference that P is a vector j i ij
space. of -

where the sum is over j, for all t in B(X) = C (X).
Let n denote the space of all right-continuous. o

paths co [0,T] 4- X having only a finite number of If in the above proposition we make the replace-
ments x +4 X, A - A, g + 0 then we conclude that the

discontinuities of the first kind in any compact
time interval. For each O < t < T let x(t) .: Q + xl 'martingale problem for A is also well-posed. In

closing this section., we note that the only pro-
be the evaluation map at time t:. x(t,w) = W(t). The
Borel a-algebra of ' is then given by F, where ; perty of g that we have used is the existence andBorel 4-algebra of Q is then given by T where F. I

e a ebra tT' t { uniqueness of an associated flow satisfying Co(X)
is the a-algebra generated by the maps x(s), 0 < s Cti oD

If B -t 1(x,B) is a finite positive Borel mea- 

sure on X for each x in X such that x4-(x,B) is in 3'3.3. Gradient-like Vector Fields
B(X) for each Borel set B C X, let A~D be given by i tRecall that g is a complete smooth vector
(2), for any ~ in B(X). A is then a bounded linear a 

operator on B(X) whose norm is less than or equal field on X with flow We assume that there are
to twice the sup norm of Xk where A(x) -jx,X). Let! a finite number of points xl, , x N in X such that

Ifor all x in X, at(x) converges to one of xl,t'''Nx
¢C-(X) denote the space of all smooth functions of ft(x) converges to one of xi . XN
compact support on X. Let Lt : C-o(X) + B(X) be a as t+t. The set X = {xI,...,x,} represents th

!duced order state space. Let BiC X be the ith
linear operator depending on t. We use the standard I otL
martingale definition of a Markov process [5]: ; basin of attraction: Bi is the Borel set of all x

iin X such that at(x) converges to xi as t+4
.

For
Definition. A Markov process on X governed by Lt x in B set (x) = x. The map : X X is then

ix in Bi set 7(x) = xi. The map 7 : X +Xis then
is a probability measure P on Q satisfying

pin 9 and one choise of g(T) is given by the zero
function. For ¢ in B(X) let ~ denote the restric-

E( (x(t)) - (x(s)) - Lr() (x(r))dr F') = tionof to
Definition. The Fredholm alternative holds for .

(3.3.3)
iin B(X) iff there is a 4 in V satisfying

for all - in Co(X) and all 0 < s < t < T. Recall
that this equivalent to the statement that for any g(~) = Sor - ~ . (3.3.5)
jbounded Fs - measurable > : Q + R,

E(f§(x(tf))-= S(x(s)) - fst L (9) (x(r))dr)} i ) 0 O Consider the following assumption.
r (A) There is an integrable function R(t), 0 < t < x

such thatIfor 0 < s < t < T. By abuse of notation, the
measure P is referred to as the distribution of the

Markov process t 4 x(t). I|(at(x),B.) - P(l(x),B.) < R(t)
Let G ~(x) - ~(a (x)) and set At = GtA G t.

cC~~~onsider t~~~~e map aC given by. a .t )for 1 < j < N, x in X, and t > 0, and /'0R(t)dt is
a-t/C(W(t)) and let P. be the image of a given f 0
Imeasure PC. under the map a. infinite.~~~~measure P.E~~~ El_ tProposition. Under assumption (A), the Fredholm
Lemma. PE is governed by A + (1/E)g if and only ifr a functions of the form
P is governed by Atc .alternative holds for all functions of the form

.t/E' I(A(Qo7), for any given ~ in B(X).
This lemma is proven using integration by iProof. Set an g in X and

parts in (3) exactly as in the proof of theorem roof Set 
(2.1) of [STR 71]. Since At/C is an integral opera
tor the methods of chapter 3,[2] yield the fact l (x) - t AO(t (x)) - AO(1T(x)) ds.
that there is one and only one measure P for any
given initial distribution governed by E the opera-i~~~~~~~tor A .. Thus | Since Ad is a finite linear combination of thetor At .. Thus

t/Proostion There is oneand only one Markov functions x -+ (x,Bj), assumption (A) guarantees
Proposition. There is one and only one Markov ithat 4 is in B(X). The rest of the proof follows
process on X governed by A + (l/c)g, for any given

I .I..
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miwthet above:fornmla foiT . -.; ;hrs Start ,;t;4£ ),+k ie |

If the conclusion of i this last proposition is - -

rue, then- we-:shall say simply--that--the-Fredholm.---- --- iF-hdsbIT$R 7 -iThus

ternative for a holds. i -and sing (3'3.6) we see that
In what followsQ denotes the right-continuousa ( .6 ws

th space- of ....Sincethe--trajectories of PX- are.. - - r
finite. disjoint.union..of. compact .trajectories_.ofr- _-_. . _ _

we! see that r : X + X includes awell-defined and .are a
p ni given by W w& '{where i' (t) = 7 (c(t)). AUTHO.lUs O(E ) as EC0, since ,A(9), and are al

Tha..swing. equations..arising. in..the_.studyof , ,.bounde. Thus letting.-k1-. wesee.thatan y- imt- 

wer systems can be .th'ought of as .a vector field L _ing probability measure_of the set {P } is a Markov
onX = Tn X Rn.' For a study of equilibrium process governed by A, and since there is a unique 
ints of this vector field g, see [ARA 815]. j'?'-?'^"t'",Msuch, Markov process, thisishows that P P, the

i_ -. _ . _ -. ~........... -1I~ Markov process governed_ byA, 

3,44.,-%. Singular Perturbation . i-,t. Ple;-! e iea' , 2t. i A°9in;With:a.little extra work,;.the above/result
ofxt. still holds for all bounded D that are continuous

Let A and g be as before, and define A by - ff a set of P measure zero. See [PAR 67],

,,A', A(PoS)jl *____ ' I3.3.5. Filtering 

ln m , B ( i h g n -Suppose we are given I noisy observations
r ?linear map A:-B(X) + 'B(X) is then 'given-by-- "_
tation (4) where.. -.: ' ...;'. / ' :t'

_· _,'.- y(t) !_-- h(x
t
(t).)._white_ noise .. 1 3.2,7)) 

''6'';''"' ''·F~(X ""'B '-. i,- < -Np:: ,S

.... ..... ..3 i ..... - . ..... , i-of the Markov process t +-x (t)W. The nonlinear

:t follows is the main result of the paper. 'filter corresponding to (3.2.7) is a well-defined
.orem. Assume that the Fredholm alternative for map given by the Kallianpur-Striebel formula for

.olds. Let t - x (t) be Markov processes on X example. Rather than use this formula, we shall
'erned by A + (1/c)g, all having a common initial use the robust form of the filter and simply de-
.tribution on X. Then the Markov processes t + fine it to be the expectation of a certain bounded
.t) coverage in distribution to the unique Markov functional on Q. For each y in C([O,T]) and P, h
,cess on X governed by A and having the projected in B(X) let
tial distribution, as G+0. This means that for
bounded continuous functional R : R t-

............. () = (x(t))exp(-o0 V(s,x(s) ) ds)
y

EE. (¢) + E~(¢) . .. , -

where
e4-0. 2 .Es+O.
The proof of this theorem is analogous to that V(t,x)-= J(y(t) -h(x))

a- theorem due to Papanicolaou, Stroock and
adhan' [4], and breaks naturally into two steps. It can be shown that by is a continuous map 2 ~ R

first step consists of showing that the distri- off a set of P -measure zero.
ions {P } of t - x (t) are a relatively weakly Definition. Tie filter corresponding to a Markov
pact family of measures on Q, while the second process with distribution P is given by the map
? is the identification of the limiting dis-
oution P via the Fredholm alternative and the C(fO,T]) - C([O,T])
L-posedness of the martingale problem for A.
The topology on . is the Skorokhod topology. y 4 E'( (t))/E( (1)) .

, turns 2 into a complete metric space and thus
Prohorov theory applies: A family of measures Since the distribution P of the Markov processes
'. on £ is relatively weakly compact if fI is t 4+ x (t) do not converge, we do not expect the

'ormly tight: For each a > 0 there is a compact corresponding filters to converge. However the
KC £2 such that P (K) > 1 - a for all E > 0. projected filters, obtained by replacing D by o7T,

:e X may be considered as embedded in a real h by Foir, do in fact converge as e+0:
i the standard theory applies and so we conclude Theorem. The projected filters converge to the
: {PI is relatively weakly compact, using a finite-state Wonham filter corresponding to the
:ial case of proposition (A.1) or [STR 753. problem of estimating the finite state process
Now suppose that Ck4 0 and Pk 4 some P on2. governed by A., in the presence of additive white

' be in B(X) and choose 4 in D such that inoise.
This follows immediately from our main result.

g(.. . A(')=)o7r- A(Po7r) . (3.3.6) 

e P is governed by A + (1/E)g and ' + e is
wet ave (' - --------

-Ek (((+5k4) (X (t)) - ('+Ek4 ) (X(s))

,. -' ' ' . ' : '
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4. STABILITY AND CONTROL OF HYBRID SYSTEMS of controllers when failures occur, so that control
actions do not add to the severity of the dis-

4.1 Introduction turbance, but rather serve to identify quickly a
new operating condition.

The material in this chapter deals with the Our results in this chapter provide an under-

analysis and design of decision-making policies in standing of the principles whereby good control

systems described by stochastic hybrid models. One systems for stochastic hybrid models may be designed.
of our conjectures in the proposal was that a cause Although the complexity of the optimization formu-
of instability in large-scale power systems consists lation in section 4.2 appears discouraging, we must

of the local nature of some of the discrete feed- point out that there are simpler structures which can
back control systems. Many of these control ac- be determined using suboptimal approximation proce-
tions fail to anticipate the potential effects of dures."; These are the first results which have been
disturbances elsewhere in the region, resulting obtained with regards to the control of nontrivial

in overall instability. Most of the work in this stochastic hybrid systems. There are many open
chapter is aimed at understanding how discrete problems which remain in this area, which should be
control actions may result in instabilities, and the subject of further research.

how to properly modify them to ensure stability of
the overall stochastic system. 4.2 Control of Hybrid Systems

In section 4.2, we introduce a control-theo-
retic formulation suitable for hybrid models: The One of our conjectures concerning the sources

JLQ optimal control problem. This is the simplest of instability in large-scale power systems was that
nontrivial.control problem involving stochastic the actions taken to control the instability would
hybrid systems. We derive the detailed form of the instead promote further spreading of unstable .be-
optimal control law, thereby obtaining valuable in- havior throughout the interconnected system. For
sight into the qualitative properties which con- example, prolongued operation in a vulnerable emer-
troller designs for hybrid systems must have. In gency state is likely to result in additional break-
particular, we establish that an optimal controller down of the system. In order to understand these
identifies regions of hazardous operations, and mechanisms for instability, we studied the abstract
will attempt to steer the system away from such problem of how to control a stochastic hybrid system
regions. We describe two separate mechanisms for to achieve optimal performance. Due to the inter-

such steering: passive hedging and active hedging. acting nature of the discrete transitions and the
The results presented in this section are a con- continuous evolution of hybrid models, the control
densed version of the doctoral thesis of Dr. H. strategies would have to compensate for the exis-
Chizeck, which is under preparation. tence of vulnerable regions of operation, antici-

In section 4.3, we study in detail the stoch- pating potential structural changes. By studying
astic stability of a specific control scheme for the qualitative features of some "optimal" control
a continuous system. This control scheme known policies, we were able to identify several important
as the Multiple Model Adaptive Control concept, characteristics which well-designed control strate-
results in a control law which switches between gies should possess. This work will be reported in
a finite number of possible candidates. The detail in the upcoming thesis of Mr. Howard Chizen
mechanism for the switch is a nonlinear dynamical IChi 82]. Preliminary versions of these results
relation, driven by the output of the system it- have appeared in [Chi 79], [Chi 80a], [Chi 80 b].
self. Hence, the resulting controlled system can In this section, we provide an overview of our re-
be represented as a stochastic hybrid system. We sults in this area.
provide a detailed analysis of the stability of We can divide the research into two parts, re-
such a system, isolating classes of behavior which ferring to the class of hybrid systems which each
may be typical of more general stochastic hybrid part studied. The first part of the research studied

systems. the control of hybrid systems with a hierarchical
The work presented in section 4.4 deals with structure, depicted in figure 4.2.1. The discrete

the stability analysis of controlled hybrid systems part of the system state evolves independently of

after an abrupt change in the parameters of the the continuous part, and cannot be affected by con-
system (such as a generator outage) has occurred. trol actions. Its state, however, affects the
In this setting, a critical factor in maintaining evolution of the continuous part. The basic mathe-
overall stability is to identify the change in the matical model for this class of hybrid systems,
system, as soon as possible, while trying to pre- assuming that the evolution occurs in discrete time,
serve the stability and integrity of the system. is given by,

Basically, new models of the system must be
developed quickly; this may involve applying speci- x(t+l) = A(p(t)) x(t) + B(p(t)) u(t) +
fic controls to determine the effects of the abrupt
changes. Furthermore, one must also account for G(p(t)) w(t) (4.2.1)
the possibility of further changes due to the
initiating event. where p(t) is the state of a finite-state Markov

In section 4.4, we approach this problem using chain whose transition matrix at time t is denoted
the principles of adaptive control. We study the as P(t). If p(t) denotes the distribution of p(t),
problem of how to design control inputs, based on then
noisy observations, which will provide us with an
accurate description of the abrupt chance. These p(t+l) = P(t) p(t) ........ 4.2.2)
two objectives are often contraditory in nature.
With this study, we hope to develop analysis meth- The matrices A, B, G belong to a finite set, indexed
odologies which can be used to guide the actions by the discrete state p(t). The sequence w.(t),

1i.



w (t ) is a sequence of independent identically dis- problems consists of examining the infinite horizon
tiibuted, normal random variables with zero mean control problem, thus searching for time invariant
and unit variance. control strategies which stabilize the system, and

The objective function for control design was result in a finite cost. The close relationship
chosen to be quadratic, of the form between stability and the existence of steady state

control laws is studied in detail. Necessary and
T-1 sufficient conditions for the existence of steady-

J = E { x(t)X Q(t,p(t)) x(Ct +I state control lawf which result in finite cost are
if to O- - - given in -[Chi 82], where their relationships to

mean-square stability is explicitly displayed. Weu'(t)R(t,p(t)) u(t) + x(T) ' Q(T,p(t)) x (T)} (4.2.3) meansquare stability is explicitly displayed. We
summarize these results in the next proposition.

Before stating this result, we recall the
Notice that the penalty matrices depend on the dis- following terminology pertaining to finite-state
crete state p(t); hence, operation under certain Markov chains:
undesirable structures can be penalized more.Control * A state is transient if a return to it is not
problems of this type are referred to as Jump Linear guaranteed.
Quadratic (JLQ) control problems. ' A state i is recurrent if an eventual return

The study of finite-horizon control problems to i is guaranteed. If the state set is finite,
of the form (4.2.1) - (4.2.3) was initiated by the mean time until return is finite.
Krasovskii and Lidskii [Kra 61]. Similar formu- · state i is accessible from state j if it is
lations in continuous time were studied by Wonham possible to begin in j and arrive in i in some
[WON 70], Sworder [SWO 69], Birdwell et. al,. finite number of steps.
[BIR 78], and Chizeck and Willsky [Chi 70, Chi 80a]. . states i and j are said to communicate if each
In all of these works, the assumption is made that is accessible from the other.
the full state is observed exactly; that is, x(t) . A.communicating class is closed if there are
and p(t) are known. Under this assumption, a no possible transitions from inside the class
straightforward application of dynamic programming to any state outside of it.
yields the following result: * A closed communicating class containing only

Proposition 4.2.1 [Chi 80a] The optimal one member, j, is an absorbing state. That
control law u*(t) which minimizes (4.2.3) subject is, P =1,
to (4.2.1) - (4.2.2) is * A Mar ov chain state set can be divided into

disjoint sets T, C1 ,...,C s, where all of the
-l_~~~~~ ~~states in T are transient. and each Cj is au*(t,x(t),p(t)) = - sl(t,P(t)) K(t,P(t)) x(t) and each Cj is a

closed communicating class (of recurrent
(4.2.4)

states).1

Define the cover c. of a form j C M to be the set ofwhere
al; forms accessible from j in one time step. That
is,

P.. = i - j entry of P. M = dimension P.

Cj = {1 < i < M: P.. ! 0}

T(t,p(t)) = £ Pp()j (t) k(t+l,j) (4.2.5)
Tit~t =l ~~p(t),j -t) kt~l~j) (4.25) For the purposes of notational simplicity, denote

j=l
form auguments as subscripts, such as A(i) = A.

Proposition 4.2.2 Consider the time-invariant
k(t,j) - Q(t,j) + A'(j) T(t,j) A(j) - Markovian JLQ problem (4.2.1) - (4.2.3). Suppose

that there exist feedback control laws

K(t,j) s-l(t,j) K(t''j) (4.2.6)
K(tj) S (tj) K(tgj) (4.2.6) u(t) = - F. x(t) for each 1 < i < M.

S(t,j) = R(t,j) + B'(j) T(t,j) B(j) (4.2.7) such that the following conditions hold:
(1) For, each absbrbing form i (ie: Pii=l) the

(deterministic) cost-to-go from (x, i) at
K(t,j) = B'(j) T(t,j) A(j) (4.2.8) time t remains finite (for any finite x) as

(N-t)4 c. This is true if and only if

K(Tp) = Q(T,p) (4.2.9) < 
C (Ai miFi) ,t(Qi+FiRiFi)(aiBiFi ) <c

. 1 1 111 1 1 1

Proposition 4.2.1 displays the explicit de- (4.2.10)
Ipendence of the control law on the costs associated . (each element finite).
'with operating in a given form (discrete state). (2) For each closed communicating class C.
The optimal control gains will hedge against the (having two or more members) the expected
possibility of a transition to a form of expensive cost-to-go from (x, j e C.) at time t re-
operation by over controlling when the system struc- mains finite (for any finite x and each
ture is in favorable configurations. Several i C Cj) as (N-t) + a. This will be true
examples which illustrate this conclusion are in- if an only if for each such class Cj
cluded in [Bir 78] and [Chi 82]. These examples there exists a set of finite positive-
illustrate how instabilities can occur even though definite nxn matrices {Z,,...,Z
for each individual, discrete state p, the resulting satisyfing j

system is completely controllable.
Our major contribution to the study of these



Qi (1-P ii) Pii (Ai-BiFi < c <

tiZi = (l +) Pi (Al-BiFi 3. For each transient form i that is accessible
C ig Z from a form j in its cover c.,

i 1 tiri: j lw(i-P..) l P.. I I(A.-.F.) || < c < 1.. ..-...- .. (A-BiF ) 4. For each transient form i C T that is not
accessible from any form j in its cover

for all i c Cj. (4.2,11) c

(3) For each transient form i e T M, the ex- X2

pected cost-to-go unitl the form process (1-Pii) Z P I ii-Bi i) tl 12 
<

X

leaves T (that is, until a closed communi- t1 
cating class is entered) is finite. This

iu i a onl er e finite The proofs of these propositions are contained
is true if and only if there exist finite in Chi 82 as well as some examples which illu-
posltlve-definite nxn matrices {G -,--G ) in IChi 82], as well as some examples which illu-
..s..tive- t.yx matrice f $l' T strate the possible cases when some assumptions are

relaxed, The work in [Chi 80a] and [Chi 82] also
contains several extensions of the problem described

in this section, incorporating additional terms into
Qi+F RiF i the cost function, or considering noisy observations

t- 't of tie state, The qualitative results remain theGi (lZP1i C Pii (Ai'BiFi)
G Z t Pl (A 1- i i +same: The optimal control gains hedge against the

t Z P possiblity of being transferred into a discrete state
Pi

Z~T GG (form) where the cost of control is very expensive.

Z.i ~,pii G We have labelled this effect as passive hedging, to
(A -B F )t indicate that there is no direct influence by the

1i i control action on the transitions of the form pro-
cess.

for all i c T. (4.2.12) The second part of the research studied the
control of fully interconnected hybrid systems, in

Conditions (1) to (3) are necessary and suffi contrast with the hierarchical hybrid structure of
cient for the existence of steady-state solutions Figure 4.2.2 describes the structure
to the equations of Proposition 4.2.1, yielding an

of the hybrid system under consideration. The key
optimal steady-state gain which results in a finite difference between the structures of figures 4.2.1difference between the structures of figures 4.2.1-
cost. Furthermore, suppose that, and 4.2.2 is that the current continuous state

(4) For at least one form i in each closed
affects the evolution of the discrete state of the

communicating subset of 1 < j < M, if Li is
c u a , ofe1dy-state_ iL 1 system in figure 4.2.2. This permits the possibility

of steering the continuous state of the system into
lnull{' }f nulll{L} = {0} regions where expensive form transitions are unlikely

nuiu - to occur.
In order to understand the issues associated

Then, with obtaining an optimal control strategy for hy-

brid systems with structures akin to figure 4.2.2,
hlim E {x'(t) x (t)} = 0 .we formulated and solved a simple example. The

continuous state was described by a scalar equation,
The conditions (2) - (3) take into account as
* the probability of being in forms that have

unstable closed loop dynamics
unstabl close loop.dn x(t+l) = a(p(t)) x (t) + b(p(t)) u(t) (4.2.13)

* the relative expansion and contraction effects
of unstable and stable form dynamics, and how
the eigenvectors of accessible forms are The discrete state p(t) could take values on {1,2},

"aligned." That is, it is not necessary or with transition matrix P(x), given by
sufficient for all forms to be stable, since
the interaction of different expected form 1 (x) (x)
dynamics determines the behavior of E{x'(t) x P(x) = (4.2.14)
(t) }. 1
Proposition 4.2.3 A sufficient condition for

the existence of a steady-state optimal control law The rate X(x) was assumed to be piecewise
yielding a finite cost is that, for each form i, constant} for the sake of simplicity, we will assume
there exists a feedback gain F. such that that there are only two pieces,

1. For each absorbing form i

t(x) = X x > v
I(Ai BiFi)tl < - 1 (4.2.15)

t=o
= 2x < V

2

2. For each recurrent, nonabsorbing form i
The objective of the control action was to minimize



the expected cost: In the remainder of (Chi 82], we studied several

T=1 2 2 :+ ;.. ways in which to extend these results to more general
jJ=E {t E (x (t) q(t,p(t)) + u (t) R(t,p(T)) + hybrid systems. In particular, we studied possible

2ti extensions to hybrid systems where the continuous
x (T) Q(t,p(T))} (4.2.16) state equations have driving noises, and obtained

some analytical characterizations of the structure

Notice that, although equation 4.2.13 is linear in x, of the optimal strategies. Another extension was
the true dynamics in x are non-linear due to the to consider hybrid systems with a multidimensional
x-dependence of the p evolution (4.2.15). Simi- continuous state. The complexity of the solution
larly, the cost (4.2.16) is not quadratic'in x. algorithm in the scalarcase increased manifold when

In [Chi 80b], [Chi 82], we have solved this applied to the vector case. The basic reason is
problem using a dynamic programming approach [Bel that iRm is not totally ordered; hence, it is very
571. The fact that the form state p = 2 is an difficult to evaluate the number of different pieces
absorbing state permits us to decompose the problem. which arise from the discrete comparison part of
When p(t) = 2, the remaining control problem is a the hybrid dynamic programming algorithm.

standard optimal control problem, with a solution Some approximation methods were also explored,
available from classical theory. When p(t) = 1, which yield suboptimal strategies. In particular,
the solution is more complex, because the control it was of interest to characterize the existence of
strategy can control the probability that a form a steady-state optimal strategy, and approximate it
transition occurs, In order to solve this problem, by an easily-implemented strategy. The reader is
we developed an extension of dynamic programming referred to [Chi 821 for the details of these re-
to hybrid systems, denoted as hybrid dynamic sults.

programming, which exploits the special structure Overall, our conclusions were that good control
of the hybrid system. Essentially, this algorithm strategies for stochastic hybrid systems arise from
divides the standard search procedure associated a blend of these major factors: The desire to re-
with dynamic programming into a hierarchical gulate the continuous stateprocess, the desire to
operation: at the lowest level, optimal strategies influence the transitions of the discrete state
are computed which result in specific descrete form process, and the intent of compensating for the
transitions. These are a finite number of these probability of undesirable discrete-state transitions

strategies, due to the finite number of discrete in the future. A good control policy is a compromise

states, and finite pieces in (4.2.15). At the between these three factors, partitioning the space

highest level, the costs of these strategies are into regions where one of these factors is the
compared, and the optimal one is selected. dominant consideration. The precise nature of such

The basic advantage of this algorithms is that a partition is of mathematical interest, but, in
it divides the difficult task of the optimal control terms of real applications, it remains a question

of a hybrid system into two easier tasks: conven- of sound engineering judgement.
tional minimization of the cost for a several con- These results have a lot of implications for
tinuous-variable systems, and a comparison over a the design of operator policies in the control of

finite set of options. Upon applying the algorithm power systems in an emerqencv or an in-extremis
to the problem (4.2.13) - (4.2.16), we developed state. It emphasizes that regulating the continu-

the following results: ous variables (power surges, swing angles) alone

1. The expected cost-to-go from state x and is too much of a myopic policy. One must also

p=l at time t is piecewise quadratic. recognize the possible effects of these actions on
The number of pieces increases linearly creating new structural transitions due to overloads,

with T-t. The optimal control law is and to hedge against the possibility of additional

piecewise linear, over the same regions. failures. These results provide the foundation of
2. We have characterized conditions which guar- an analytic methodology which can characterize re-

antee that the expected cost-to-go is gions where one of these factors should be the pri-

monotone for x > 0. These conditions involve mary concern, hence providing guidelines as to when

the relative magnitudes,of the costs asso- a system in an emergency state should be islanded.
ciated with each discrete form, and the However, it must be pointed out that a problem of

switching rate X. Most important, there are such scope is far beyond the reach of existing
conditions which establish that the optimal methodology; we have developed a conceptual metho-

cost-to-go is not monotone for x > 0. Typi- dology, and successfully applied it to the study of

cal cost-to-go functions are depicted in some simple examples. There is a lot of additional
figure 4.2.3. research which must be completed to establish these

3. Recursive Riccati-type equations which des- theoretical developments as useful analytical design

cribe the pieces of the control law and the tools.
cost-to-go function are given in [Chi 80b],
[Chi 82]. Upper and lower bounds for the 4.3. Qualitative Analysis of a Switch-Like
cost-to-go functions are derived there. Adaptive System

4. The optimal control law exhibits active
hedging: There is a preferred side of v to As discussed in the Introduction, one of the
be in, and the optimal control strategy has principal directions for research in this project
regions where the state is "over-controlled" has been the qualitative analysis of stochastic
to ensure that the next state is on the pre- hybrid systems, where a significant portion of the
ferred side. This results in discontinuous discrete dynamics represents discrete feedback

control laws, although the number of dis- mechanisms (e.g. protective devices). It is an
continuities is equal to the number of pieces important fact that many adaptive control systems
in (x). .



which do not explicitly include such discrete feed- and the probabilites are obtained from the recur-
back mechanisms behave essentially as if they do. sive equation
For example, the work of Greene in [GRE 78], some
initial deterministic analysis of the multiple model (k) f r (k+l)]
adaptive control (MMAC) explored and exposed this Pi(k+l) = i [i (4.3.12)
possibility for MMAC algorithms. Motivated by Pi N
this work and by the general hybrid system bharter E p (k) fj rj (k+l)
df this DOE project, we undertook an extension of

· the work of Greene. A thorough treatment of the 
where f. (.~ is the probability density function for

results of this extension can be found in the S.M. 1
r assuming that the ith model is correct:

thesis of Mr. H.R. Shomber [SHO 80]. In this sec- i
tion we will provide an overview of the results of
this work. L 

f (r) = (2) det (V ) exp r' V.- r
In the basic MMAC formulation (written in i i 2 1

discrete-time) the open-loop system is assumed to (4.3.13)
be linear

Suppose we now assume that with each model we
x(kil) = Ax(k) + Bu(k) + w'(k) (4.3.1) have associated a feedback control law

y(k) = Cx(k) + v(k) (4.3.2)
u.(k) = G.x. (k) (4.3.14)

where w and v are independent white noise process-
es, with Then, the MMAC algorithm specified that the actual

control as a probabilitically weighted sum of these
E [(k)w'(j)] = Q.kj E[v(k)v'(j)] = Rkj (4;3.3)

(k (k) G.=- x (k) (4.3.15)
While the open-loop system is assumed to be linear,
it is not assumed to be known. Instead, a set of

The impetus for the work in [GRE 78] and in
possible models are postulated

[SHO 801 was the experience obtained from several
applications of MMAC. What was observed was that

x. (k+l) = Aixi(k) + Biu(k) + w.(k) (4.3.4) the probabilities p. (k) behaved in an essentially
switch-like manner -- i.e. they were approximately
piecewise constant. Consequently the system behaves

y(k) = Cixi(k) v (k) (4.3.5) very much like a stochastic hybrid system. To
begin to gain an understanding of this qualitative

Wi w Q. , VI. R' (4.3.6) property of some MMAC Systems and of its impli-
cations for overall system behavior, design choices
such as model selection, etc., Greene focused atten-

i = I....,N .
tion on the case when there are two models (N = 2),

If one designs Kalman filters for each of
neither of which may concide with the true system.

these models, one can use the filter innovations In addition, Greene focused attention entirely on
processes to compute the conditional probabilityprocesses to compute the conditional probability the deterministic analysis of the MMAC algorithm.
p.(k) for the validity of the ith model given all In his work Greene was able to isolate several
oi the data up to time k and assuming that one of To describe

modes of behavior for the MMAC system. To describe
the N models is correct. If we use steady.state it is convenient to

these (and also for later use) it is convenient to
filters, we obtain rewrite the overall closed-loop dynamics for the

special case considered by Greene. In this case
i(k+l) = Aix. (k) + Biu(k) + H.r. (k+l) (4.3.7) N = 2, B = B = B2 = C = C1 = C2 = I, R1 = R2 = R,

Q = 2 = Q. Thus, the only differences between
h(k+l) = y(k+l) - .[A (k) + t tBrue system and the models are inthe matrices

ri(k+l) = y(k+l) - Ci[Aixi(k) + Biu(k) ] Al a2. Also when N = 2, p2(k) = 1 - Pl(k).1 11 1 A, A1 , A . Also when N = 2, p2 1 p (k).

(4.3.8) Thus, if we define

where Hi is the Kalman gain for the ith model

w1 1 (k) r(k)(4.3.16)

Hi . PiCi'Ri (4.3.9)

and P. is the solution of the Riccati equation the MMAC system can be written as

P. = [C.'R. Ci + (AiP (4..10) w(k+l) = A(pl(k)) w(k) (4.3.17)
Pi [Ci'Ri (Ai 

+
1 ( 4310

Assuming that the actual system matches the ith pI(k) f lr lk+l)I
model, then r.(k) is a zero mean, white process with po(k+l) =
covariance 1 Pl1(

R) flTrl(k+l)] + [l(pl(k)] f2[r 2(k+l)]

(4.3.18)

V.= CP C.+ + R. (4.3.11)
1. 1ji1 1



where decay. For this case Greene performed some
detailed approximate analysis of stability
and also determined approximate analysis-of

: 1 1 1 2 1 1 1 1 2 2 - stability and also determined approximate

~Aip A) = A A (A-H )0 expressions for the switch times for Pl. As
one would expect for a hybrid system, the

A-A 0 A (I-H ) intervals between switchings are x-dependent,[ A2 0 A2 I-H2 as predicted by Greene's analysis and simu-
4----lations.

(3 If ACpl) is stable for some range of P1 but
i not for all P1, then one can obtain trajec-

A sepcific choice was made for the A's: for many ; tories that display either of the types of
of the numerical exaamplest behavior -- hyperbolic oscillations or ex-

ponential decay -. depending upon the size
of the initial condition. Eventually,

A = a, A = , A2 = A however, the system would settle down and
decay exponentially with P1 in the range for

(4.3.20) which ¢CP1
) is stable.

which, by syimmetry, leads to 1 ~(4) Greene also analyzed the behavior of a limit-
ed memory version of the MMAC algorithm,
where the p. (kY are based only on a window

0= h o , H = 01 of the most recent measurements. In this
1 lo hi -2 h case one observes an increase in the fre-

quency of oscillations in p1 and x and a
(4.3.21) decrease in the peaks of x. In addition,

if A(1/2) is unstable, limit cycles are
guaranteed to exist.

1=g 1 , G. = [g 01 (4.3.22) In our more recent work, as reported in [SHO
0L g ~J 2 Lo gJ 80], we have expanded upon Greene's deterministic

analysis, Specifically:
(1) Greene's approximations for the switch times

This case allows one to expose a wide variety of and for state magnitudes at these times were
behaviors by simply adjusting one or two parameters. modified to obtain significant improvements

Greene's analysis led to modes of behavior in accuracy when compared to simulations.
specified in terms of the stability properties of While the approximation is noL exact, it
the matrix A(pl). Specifically: does provide a reasonably accurate measure

(1) If A(Pl) is a stable matrix for all values of the rate of decay or divergence of x (k).
of pi, then all components of the system x(. 1
state decay exponentially. In this case ( A2) Analogous approximations for switch times
the probability pl(k) may behave in a and corresponding state sizes were derived
switch-like manner in the initial transient for limited memory MMAC and also for MMAC
period if the initial states are large with nonzero set points. Again these approx-
enough (and r and r2 are of different imations provide reasonably accurate pre-
sizes), but the probability will eventually dictions of behavior with one exception
settle to some value depending completely which is easily understood. Specifically,
on the initial condition. the switch-time approximations are based on

(2) If A(Pl) is an unstable matrix for all the assumption that pl(k) is either o or 1
values p , then the probability will behave at any time. However, in the case when the
in a swiich-like fashion for all time. Even state is stabilized and limited memory MMAC
in this case, it is possible to have an is used, p (k) tends toward 1/2. Thus,
overall response that is stable. For the intermediate values of pl(k) will appear.
example specified by ('4.3.20) - (4.3.22). The major component of the work developed in
In this case the model 1 controlles stab- [SHO 801 is aimed at analyzing the effects of noise
ilizes x2 but not x1. Thus one can imagine on MMAC behavior. The basic approach used is to
a stable overall response in which P1 perform covariance analysis of (4.3.17) - (4.3.19)
switches between 0 and 1, alternately stabi- (with noise included in (4.3.17)) using random input
lizing xl and x2. Greene defined the notion describing functions(RIDF's). As the resulting
of hyperbolic stability, which is motivated quasi-linear equations are quite involved, we will
by the fact that at any time one state is not repeat them here and refer the reader to [SHO 80]
decaying exponentially and the other is for the revelant equations, Using these equations,
exponentially diverging. Consequently we have investigated the stochastic (specifically
2Q(iC (t)x (t)) is essentially a linear mean-square) stability of MMAC systems and have
function of t: if it is increasing, then compared our results and predictions to Monte Carlo
the system is stable; if it is zero, then simulations. Again the nature of the results is
the system essentially limit cycles; if it best explained in terms of A(p ):
is decreasing, then states decay more dur- Cl) Consider the case in which A(p1) is stable
ing periods in which they are stabilized for all values of p1 In this case the
than they diverge during destabilizing RIDF analysis predicts mean square stability
intervals. In these cases the trajectories in that the second moments of the states
of components of the state are rather pe- remain bounded. This was confirmed by
culiar, as states alternately diverge and Monte Carlo simulations which also indicated



that the RIDF approximation was exception- -of a (k) and thus of p (k). Specifically,
ally accurate in predicting the transient -- we would like to prove in Case (2) that
behavior of the state variances as well as systems which are deterministically hyper-
their steady-state values. bolically stable are stochastically unstable-.

(2) Consider the case in which A(pl) is unstable To do this one must determine that noise
for all values of p. As indicated earlier, (even small amounts) disrupts the delicate
Greene's deterministic analysis indicated switching mechanism by which states are al-
three modes of behavior: hyberbolic asymp- ternately stabilized and destabilized.

- totic stability, neutral stability, and - (c)- It is conjectured that it may be possible
instability. The RIDF analysis and Monte for, both the RIDF indication of instability
Carlo simulations indicate that the state :and the apparent stability from simulations
variances grow exponentially in all of these :; of Case (4) to be correct. That is, it may
cases, suggesting the singular nature of be that the system is stable with probability
deterministic hyperbolic asymptotic stabi- one but not in mean square. Again the nature
lity. A proof of mean square stability has of switches in the probabilities in this
not been obtained, however. stochastic setting must be investigated.

(3) If A(pl) is stable for pl in an interval Intuitively, if [o, E ] is the range of P1
of the form [el E2 witi E > o, E < 1, for which A(pl)is stable, then P1 will spend
the state variances remain stable for a most of its time in this range with rare
while and then grow significantly, indi- occasions on which p1 leaves this region due
cating instability. This is again veri- to stochastic effects. For any sample path
fied by simulations, although in this case P1 will return to the stable range, but there
the RIDF is in error by a substantially may be the rare possibility of arbitrarily
greater margin. long excursions from this range, leading

(4) If A(p ) is stable for p in an interval to moment instability.

of the form [o, E1] or t[, 1] or both, In conclusion, the analysis we have performed2
the RIDF analysis indicates instability but on MMAC systems has provided us with signficant
Monte Carlo simulations did not support amount of insight into and some useful tools for
this prediction. analyzing stochastic hybrid systems. We have had

Based on these results some subsequent analy- significant success in performing approximation
sis, conjectures, and directions for further work analysis for the prediction of deterministic and
were developed. In particular: stochastic behavior and have determined or con-

(a) Write jectured the essential causes for the few signficant
discrepancies between our predictions and the results
of simulations.

1 These determiniations and conjectures suggest
rllpl(k ) =) det V1 1 several promisihig directions for further work.

1 - a exp - a (k)
p1o) det V2 (4.4 Convergence Issues in Stochastic Adaptive

(4.3.23)
Control

where 4.4.1 Introduction

The development of a systematic design methodo-
ca(k+l) = ac(h) + r (k+l)'V 1 rl(k+l) - r2(k+)' logy for the synthesis of practical self-adjusting

control systems which can maintain first stability
- V r(k+1) (4.3.24) and second performance improvement, in the pre-
V2 r2 (k+l) (4.3.24) sence of rapid and large variations in the open-loop

dynamics, represents a very important generic goal
in control system engineering, in view of its wide

In all of the RIDF analysis performed, the applicability to industrial and defense applications.
variance of a(k) remained bounded. On the The so-called "adaptive control problem" has re-

other hand, for the case specified by ceived attention by theoreticians and practitioners
(4.3.20) - (4.3.22) we have performed alike for the past twenty five years. About a dozen
auxiliary analysis which indicates that books and hundreds of articles have been devoted to
the variance of a(k) diverges. Given this, the subject, different philosophies have been de-

it is not difficult to check that the dis- veloped (model reference adaptive control, self-
tribution for Pl(k) approaches one concen- tuning regulators, dual-control methods, mulitple
trated completely at o and 1. This pro- model adaptive control etc.) and a variety of (mostly
vides an understanding of why stochastic academic) examples have been simulated.
instability results in Case (3) described In spite of the intense research activity there
earlier and why there is no instability seems to be a significant gap between the availabe
in Case (4) although the RIDF predicts in- methodologies and the potential applications. To
stability based on an erroneous calculation put it bluntly, none of the available adaptive con-
of the spread of a(k) and thus of p (k). A trol algorithms can be routinely implemented on a
modification to the RIDF which corrects the real system and guarantee even the stability of the

erroneous prediction for the variance of a closed loop process, especially if the physical
is needed. process is characterized by oscillatory or unstable

(b) This analysis is incomplete in another dynamics and/or unmodeled high frequency dynamics,

sense in that what is needed is a probabil- and/or significant stochastic disturbances and
.... - . .-istic description of the temporal behavior noisy sensor measurements.



One should not blame the theory for this state along the above lines, cons derable progress has
of affairs. Elegant and useful theoretical ad- been made in understanding the fundamental- concepts
vances have been made in the last decade, and es- underlying adaptive control theory, that unify both
pecially in the past three years, that have unified deterministic as well as stochastic algorithms, and
diverse approaches. The difficulty appears to be in formulating clearly the problems that are to be
that some of the hypotheses needed to rigorously addressed. The long range objective of this re-
prove the theoretical results are too restrictive search is to develop a methodology of design for
from a practical point of view. Hence, new ad- adaptive control systems, by attempting to unify
vances in the theory are necessary, by making diffe- promising concepts based upon hyperstability (passi-
rent assumptions which better reflect the desired vity) theory and stochastic optimal control, res-
properties of physical control systems. pectively, with some common sense engineering techni-

Results merging deterministic stability ques related to multivariable loop shaping ideas in
approaches (e.g. model reference adaptive control), the frequency domain which include issues of good
and stochastic optimization approaches (self-tuning command following, integral control, disturbance
regulators, dual control), together with structural rejection, bandwidth control, and high frequency
assumptions upon the nature of the adaptive com- roll-off characteristics. A more basic understanding
pensator which will hopefully eliminate some of the of robustness properties of multivariable systems
undesirable (from the applications point of view) that has recently been developed through the use of
characteristics of currently available adaptive singular value diagrams, serves as a useful tool
control algorithms are presently needed. here.

Moreover, despite recent rigorous theoretical The emphasis in this
developments in adaptive control, [NAR 80a], senting a finished body of rigorous theory, is in
[CRU 79], [GOO 80c], the status of stochastic developing the basic motivation for the avenues of
adaptive systems has been little advanced. Both research pursued currently. We attempt this by first
in identification and primarily in control, the presenting succinctly, and without proofs existing
presence of even only observation noise compli- theoretical results concerning the (local) stochastic
cates immensely the stability and convergence stability of adaptive systems in such a way as to
analysis of such schemes. There is still no gene- render transparent the points of tangency and inter-
ral global convergence theory available to date for sections among them, from which our current research
stochastic adaptive schemes and the results obtained direction arises as a natural extension. For more
so far are only valid locally, and/or asymptoti- details and proofs the reader is referred to the
cally-without concern for the transient behavior literature cited. Our current results and a novel
(stability) characteristics of the adaptive process. method of analysis of adaptive algorithms follow
For the most part, the presence of noise has been next along with our conclusions.
dealt with in a rather ad hoc manner with "common
sense" modifications to already existing deter- 4.4.2 A Brief Review of Existing Convergence
ministic adaptive control algorithms. Prefiltering Results for Recursive Stochastic Adaptive
(of the output error) and use of stochastic approxi- Algorithms
mation techniques have been the dominant approaches
in this direction. The former, introduces extra Two are the main methods used to prove (local)
delays in the adaptive process with obviously convergence in recursive stochastic algorithms: the
adverse effects on the speed of response and the associated Ordinary Differential Equation (ODE)
convergence characteristics of the overall system. approach developed by L. Ljung and the Martingale
The rationale behind the latter was that, when approach, first developed by [GOO 79a] and [GOO 79b]
adaptation is completed, the effect of noise should and later followed by [CAI 80].
be removed from the adaptation mechanism. However, The self-tuning regulator (STURE) of lAST 73]
it is not clear that the parameters will actually was the first recursive stochastic system whose con-
converge to the "desired" values before adaptation vergence had to be analyzed. Self-tuning regulators
is stopped. were in general designed from an optimization point

The most important issue of our current work of view, the objective being to minimize output
that must be understood and appreciated relates to variance, without any explicit stability considera-
the possibility of obtaining global stability tions at the outset. By using the (ODE method,
results. Every adaptive control algorithm involves [JU 77] showed that the stochastic convergence
a dynamic compensator whose parameters are adjusted analysis of the STURE could be reduced, under certain
in real time based upon output measurements. If associated differential equation, in a deterministic
the measurements are stochastic processes (due to framework thus bringing the stability issue also into
stochastic disturbance and/or noisy sensor measure- this class of adaptive controllers.
ments), it follows that the parameters of the adap- Later, the close relationship between the self-
tive dynamic compensator will be stochastic pro- tuning regulator and the deterministic model re-
cesses. Thus, to answer stability results in a ference schemes was understood, [NAR 79b], [EGA 79].
global sense, one should ideally be able to analyze Partly as a consequence of this, another approach to
the global stability properties of differential the convergence analysis emerged, for the MRAS with
equations involving multiplicative noise. No general observation noise, which has become known as the
mathematical theory is currently available for such martingale approach. According to this, near-super-
stochastic differential equations. A more promising martingales are constructed corresponding to stochas-
alternative is to exploit frequency separation pro- tic Lyapunov functions, in terms of the state vari-
perties and band-limited signals as well as gene- ables of the overall closed loop system (parameter
ralizing the "passivity inequality" to encompass and state errors), which are now random variables.
stochastic quantities also. Although at present Then again, under certain rather restrictive condi-
no final (or rigorous) results have been obtained tions, the martingale convergence theorem is employed



to prove convergence of the recursive scheme. Equation (4.4.2) then suggests that the sequence of
Although at first glance the above two appre- estimates more or less follows the difference equa-

aches appear to be widely different, they both make tion
use of the positive realness of a transfer function
that describes the (output) error equation corres- x (T+AT) = (T) + A f(x ())
ponding to a particular recursive scheme. This T

realization is remarkable, since it has its exact t+s
counterpart in the deterministic case, where it where AT 1 Z y(k).

t+l
u was recently shown [VAL 80], that positive real-
ness is a unifying underlying factor in all deter- and hence, for AT small enough,
ministic schemes to date, either implicitly or
explicitly. ·

Moreover, even in the deterministic case, d A A
aymptotic stability of the nonlinear time-varying = f(x ) (4.4.3)
differential or difference equations, that des-

cribe the overall adaptive system, has been proven where the fictitions time T relates to the real time
only for those schemes where the parameter adjust- t by
ment law is a vector of square integrable functions.
This condition is also present in some form, either t

explicitly or implicitly both in the ODE as well Tt
= k Y(k).

as in the martingale approaches for the conver-
gence analysis of stochastic adaptive schemes.

(i) The ODE Approach For more details of the above derivation we refer

According to this approach, an ordinary the reader to (LJU 771.
b. Assumptions on the Algorithm and Relateddifferential euqation is associated to the two sets b Assumptions on the Algorithm and Related

of equations that represent the adaptive algorithm. Theorems [IaU 771
These are typically of the following form: The approximation arrived at in a. and the sub-

sequent analysis of the convergence properties of the

x(t) = x(t-l) + y(t)Q(t;x(t-l),y(t)) (4.4.1a) recursive algorithm given by the generic form in
equations (4.4.la) and (4.4.lb) depends on certain

¢(t) = A(x(t-l)4(t-l) + B(x(t-l))e(t) (4.4.1b) regularity conditions on the functions Q, A and B
and on the driving "noise" term e. Several sets of

where the set of equations (4.4.la) represents the assumptions are possible, derived from one another
parameter adjustment laws and (4.4.1b) the obser- by differing restrictions and tradeoffs on 9, A, B
vations (auxiliary state variable generation). y(t) and e, We list here only one such sct, since it
is a decreasing adaptation gain, Q(., .) repre- will be enough to see from it the limitations under
sents the correction to the parameter estimate of which the ODE methods is valid.

the previous time instant and e(t) is the stochas- Let us first define
tic disturbance. The results obtained are "probabi-
lity one" results and link the convergence pro- D = xA(x) has all eigenvalues inside the
perties of the associated ODE with those of the re- unit circle}.

cursive algorithm. Then (4.4.lb) defines an asymptotically stable sys-
a. Associating an ODE with (4.4.la) & (4.4.lb) tem for all xeD and hence we can write
The differential equation corresponding to the s

recursive algorithm in (4.4.la) and (4.4.1b) is ob- k < k
tained as an asymptotic approximation after the IA(x) < X(x)k X(x) < 1
system has more or less reached steady state and

under the assumption that (4.4.lb) describes an Then take x6D and define the random variable ~(t,x)
aymptotically stable equation. Using standard ar- s.t. s(t,x) =sA(x)6(t-l,x) + B(x)e(t) ¢(O,x) = 0.
guments to approximate the solutions to (4.4.1a) Let DR be an open, connected subset of Ds. The
and (4.4.lb) under such assumptions, one can evalu- regularity conditions will be assumed to be valid
ate in DR. We tehn impose the following set of assump-

t+s tionst
x(t+s) = x(t) + i y (k)Q(x(k-l), (k)) 1. e()' is a sequence of independent random

k=t+l variables (not necessarily stationary or

t+s t+s with zero mean).
- -x(t) + f(x(t)) E y(k) + Y(k)w(k) 2. [e(t) I <C with probability one for all t.

k=t+l k=t+l 3. The function Q(t,x,4) is continuously
differentiable w.r.t. x and $ for x e D

t+s R
and the derivatives are bounded in t, for

\x (t) -1 f(x(t)) C y(k) (4.4.2) fixed x and 4.
t+l

4. The matrix functions A(,) and B(.) are

Lipschitz continuous in DR.
where: Q(x(k-l), (k)W Q(x(t), '(k;x(t))) = f(x(t)) 5. lim E O(t,3,E(t,tx) exists for x e DR and is
+ w(k) for t>k, tR

denoted by f(;E). The expectation is over

0(k;x) is a steady state approximation of ¢(k), e(°).
6. f y(t) =E

f(x) = EQ(x, (k;x)) 7. 7Z y(t)P < X for some p.

8. Y(') is a decreasing sequence
and hence w(k) is a random variable with zero mean. .



9n1 I ·.... inf
9. li uy(t) y(t-) j-I

Assumptions 6,7,8,9 come directly fromthe ana-
lysis of stochastic approximation convergence tech- and i, .
niques and are rather needed for technical points

P The for any p > 1 there exist constants K, £ and T
in the proof; thye are also the easiest to be satis- The for any p 1 there exist constants , and Tdepend on p, D, 6 such that forfied. Although assumption 2 includes the common o
Gaussian models of noise, it may not be unreason-

"'able for practical purposes. The regularity con- - -O a o To _ __
ditions represented in 3 and 4 are reasonable, once
one is willing to accept that 1-9 are valid only in
DR Ds , i.e. in a stability domain in parameter KDR D, P sup Ix(t) -x (T T X( 
space. This is clearly very restrictive and un- t ,(to)) > < p

teI orealistic, since it is precisely the boundedness
of the resulting closed loop system that is under o
question, even in the relatively simpler determin-
istic case. While it may be possible to assure y(j)P'
that x e D in an open-loop (identification) scheme, Jito

s
by using appropriate projections on D , this never
turns out to be possible in a closedyoop (control)
situation. Besides Ds is never known in an adap- where N = sup i; i e I which may be a.
tive control problem. Lastly, Assumption 5 is Theorems 1-3 above can be expressed in 'a somewhat
clearly the one that allows the association of an more intuitive language as follows:
ODE with the recursive stochastic algorithm, once 1. x(t)- can converge only to stable stationary
the rest of the assumptions hold. points of the ODe .

The whole ODE approach then heavily hinges on 2. If x(*) belonds to the domain of attraction
three theorems. We state them below for the sake of a stable stationary point x* of the ODe
of completeness. For proofs and more details we infinitely often, then x(t) converges w.p.l.
again refer the reader to (LJU 77). to x* as t -- .
Theorem 1: Consider the algorithm (4.4.1a) and _ 3. The trajectories of the ODE are "the asymp-
(4.4.1b) subject to the assumptions above. Let D totic paths" of the estimates x(.).
be a compact subset of DR such that the trajec- C. Examples
tories of (4.4.3) that start in D remain in a closed 0

1. Astrom and Wittenmark's Self-Tulning Regulator
subset DR of DR for T > 0. Assume that AST 73 he data generating process is

1. there 'is a random variable such that (4) 
x(t) e D and |+(t) I < C infinitely often described by an ARMA model as follows:

w.p.l. AA(q_ 1) y(t) = B(q'1) u(t) + C(qrl e(t) (4.4.4)
2. the differential equation (4.4.3) has an

invariant set D with domain of attraction
DA D- c where q is the delay operator andDA D.

Then x(t) + Dc w.p.l. as t - . .
Theorem 2: For the same algorithm and given assumpr A(ql) = 1 + alq +.. + a q
tions, suppose x*6DR has the property

B(q ) = b +b +...+b , bo =0,
P(x(t) + B(x*,p)) > 0 V p > 0 bl known.

-l_ + -1 -n
where B(x(,p) denotes a p-neighborhood (q +...+ Cnq
of x*. {e(t)} is a stationary random sequence of

independent random variables, such that
all its moments exist. Also (4.4.4) is

Q(t,x*, 4(t,x*)) has a covariance matrix minimum phase.
bounded from below by a strictly positive definite

Then, if the parameters were known, a minimum vari-matrix and that E Q(t,x,T(t,x)) is continuously ance controller would be given by
differentiable w.r.t. x in a neighborhood of x*
and the derivatives converge uniformly in this 1 T
neighborhood as t > a. u(t-1) = - b MV (t)
Then

f(x*) = 0 and where . =(al -c ,a n bm

dT
H(x*) = f(x) has all eigenvalues in (t) = (-y(t-l),..., -y(t-n), u(t-2),..,u(t-m)).

x=x* the LHP,

Since the vector of parameters is not known, it is
Theorem 3: For eqns. (4.4.1a) and (4.4.1b) assume estimated on-line according to the recursion
1-9, and also that f(x) is continuously differenti-
able and that (4) holds. Assume that the solutionsl) + 1 1
to (4.4.3) with initial conditions in D are ex- t r(t-l)) + 4.4.5)
ponentially stable and let I be a set of integers T
such that r(t) = r(t"l) + (¢(t) ¢(t) . r(t-l)) (4.4.6)

~---~--~-----` II--~t



where Est) = y(t) - b u(t-l1)- ). -~(t1 l ( 8(T) = - ( (Tr)) (8* - 8(T))

Both y(t) and u(t) are influenced by the se-

quence of estimates {8(t)} through the control law d

u(t). Define y(t,e), u(t,8), f(t,O), E(t,e) to be dT() = (T e ) - r() (4.4.11)

the stationary processes which would be obtained

with a control law corresponding to some fixed 8.
which is defined for 8(T) e D(s), r(T) > 0 and where

Then u(t-le) = T(t,')
1:i g(e) = ET (t,t) (t,8).

Z(t,O) = y(t,e) - bl u(t-l,e) - ii

Global stability of (4.4.10) follows if

eT ~(t,8) = y(t,8). T
~(e) + GT (e) is > 0.

We note here that the process is defined only for

those 8 in the stability region D , where also the Taking into account eqns. (4.4.8) and (4,4.9) it can

stationarity assumption is valid.s be shown quite easily that the above holds iff H(q
'1 )

Furthermore, we can write is strictly positive real.
Remark 1. In this approach, strict positive realness

E(tm;) = y(t,e) = 8e (t,8) + b u(t-l,8) + C(q ) of the transfer function associated with the error,

= bhowever it may be defined in any particular algori-

e(t) = thm, is a necessary condition for global stability
of the ODE, which then implies local convergence of

= (8 -8)T (t,8) + C(q l)e(t) = the recursive algorithm. In deterministic stability
o analysis, strict positive realness was a sufficient

T-= (o0 T V (te) + (tT -6) + condition for global stability of the adaptive sys-
= (8° - 8 ) f(t,8) + 4(t,8) (8 -8) +o MV MV tem.

Remark 2. We note here from eqns. (4.4.5) and

C(q- )e(t) (4.4.6) that the parameter adjustment low is a square
integrable function.

where 8 is the vector of (original) process 2. GeneraX Adaptive Algorithms
0

parameters. In general, the process is given by

Hence, since
Atq-l)y(t) = q-k B(q - ) u(t) + w(t)

(8 - 8Mv)T(t ) = [1 - C(q )] y(t,8) k
where q represents a pure time-delay (relative

-1 - degree) m > k > 1, A and B as defined before and
(1 - C(q )) E(t,8) wft) represents the disturbance.

A reference model may be specified by

it follows that
M ,--l M k BM(q1 ) uM~t)

C(q-1) E(t,e) = $(t,e)T(eMV ) + C(q -)e(t) A 1 M) = q uM)
MV A (q)

(4.4.7)
It can be shown {[EGA 79]} that the output error

and defined as

E(t,8) = $(t,8) (MV - 8) + e(t) (4.4.8) 
e(t) = y(t) yM(t)

where ~(t,8) = H(q-
1 ; $(t,8)

satisfies

H(q-l) = M
C(q 1 ) AA Me(t) = qK [0 (t)] + P w(t)

Also, define where A, A , P, BM , B are polynomials of compatible
degrees and such that the polynomial equation

(8e) = E4(t,e)$T(t,8) (4.4.9)
nAM = A p + q-KQ

8* = 8MV
where the parameter in the polynomials P and Q can

be chosen, A is any arbitrary Hurwitz polynomial and
Then, since e(t) is independent of y(s), u(s) for BM is absorbed in A. 8 represents the unknown para-
s < t, we have from eqns. (4.4.8) and (4.4.9)

meter vector that has to be adjusted and ~ is the

state vector, both defined in an analogous manner

f(8) = E$(t,8) E(t,8) = .(8) (8* - 8) as in example a.
When the relative degree (pure time delay) is

and we can now associate with the algorithm (4.4.5), greater than one, extra filtering has to be intro-

(4.4.6) the following differential equation: duced through a strictly stable and inversely stable



1 -1
rational transfer function L(q ). Then the aug- obtained using the Martingale Convergence Theorem.

mented error can be written as -- . Result: If the noise generating dynamics satisifies

Lthe following conditions

e (t) -- TL t (t-k)] +- w(t)
a M M

AA M T - Tis P.R.
'A typical recursive adaptive algorithm is then (4.4.14)

'given by 1
C(z) - is SPR

0(t) = 6(t-l) + [L- I(t-k)] ~ (4.4.12)
r(t) then the algorithms in [GOO 79a] ensure that with

probability one:

r(t) = r(t-1) + IL-l(t-k) 12 (4.4.13) 1 N 2

(1) sup 1 Z y(t) < X (4.4.15)
N t=l

where £(t) = ea(t) - e(t) N t=l

L [T -l 1 N 2
e) = (t-1) L b(t-k)] (2) sup Z u(t) < o (4.4,16)

N
Il~AA~ ~~~~~ ~N t=l

and the control law is chosen to satisfy 1 N
(3) lim 1 Z E{[y(t) - yM(t) lFt_ 1}

= y2

.T -1 No N t=l
e [L -I(t)] = 0. (4.4.17)

For more details of the above derivations, thes the minimum possible mean square control
reader is referred to [EGA 79]. Following the where y is the minimum possible mean square controlreader is referred to [EGA 79]. Following the error achievable with any causal linear feedback.

same method of analysis as in example 1,. it can be (This includes feedback designed using the true

shown again that the algorithm (4.4.12), (4.4.13) parameters).
converges locally, provided is SPRparameters).

converges locally, provided -Mis SPR. Remark 1. Strict positive realness - of the "noise

Remark: For (4.4.12), (4,4.13) we see that the transfer function" - is also a requirement using the

parameter adjustment law (12) is an L2 function martingale approach. However, this requirement on

here also. the noise dynamics is very unrealistic, since they

(ii) The Martingale Approach are even unknown.

The basic proof technique in [GOO 79a] was the Remark 2. No a po0tti boundedness of the adaptive

use of~the Lyapunov Vt = lie 1 - 2, t=l,2, ...., signals is assumed,

where 8 was the nominal (actual) parameter value Remark 3. The martingale approach is much less sys-

and 6t its estimated value. Vt can be called a tematic than the ODE method. One of the reason is

stochastic Lyapunov function since one attempts to that convergence proofs require first to find an

show Vt is a super-martingale. In fact, in [GOO appropriate super martingale which to some extent

79a], Vt + r 1 . St was shown to be a "near super- can be considered as a stochastic Lyapunov function.

t-1 i The search for the appropriate near supermartingale
.martingale", i.e., a positive super-martingale less can be lengthy, the rationale behind its derivation
a negative quantity plus a positive quantity, the not clear and the conditions on the relevant adaptive
latter being a.s. summable. The term St was in-

troduced in an apparently arbitrary manner in order more systematic approach has to be developed,

to deal with a cross-term arising in the expansion

of Vt via the equation defining the parameter ad- 1. An alternative Formulation of the Structure of

justment law. St is positive by virtue of a strict Stochastic Adaptive Algorithms

positive real condition required of the transfer It is a well established fact to date that

function corresponding to the error generating most -. if not all -- of the currently existing re-

dynamics. [SOL 79] also showed how to exploit this cursive identification and adaptive estimation and

property in parameter estimation. The whole techni- control schemes can be equivalently represented by

que is based on the Martingale Convergence Theorem, a feedback system with a linear time-invariant feed-
a feedback system with a linear time-invariant feed-

which we state below for the sake of completeness. forward path and a feedback time-varying path. The

eIts proof can be found in [NEV 75Let [S , L forward path 'presents the generalized (state)
Martingale Convergence Theorem: Let {T n, { },

be n - n n error equations of the adaptive system, while the

n
}

be sequences of non-negative random variables feedback path corresponds to the parameter adjust-
adapted to an increasing sequence of a-algebras ment mechanism. Hyperstability theory has then been

Fn such that employed to prove global asymptotic stability of

the overall feedback system, which can be guaran-

ETnlF _ < Rl 1- + n-l teed .- under additional conditions ([VAL 80]) --

' X if the forward block consists of a strictly positive

'If E < X a.s., then T converge almost surely real transfer function and the feedback part re-

to a finite random variable T and Z a < - a.s. presents a passive system. In fact, it can be read-

Then, for the general problem stateA in example b, ily seen that this equivalent feedback configuration

with k=l, and for recursive adaptive algorithms in appears implicitly in the design approach using

[GOO 79a] which are very similar in nature to the Lyapunov functions, since the Lyapunov function

ones already discussed, the following result was candidate always consists of two terms; one quadratic



form of the state errors and another one of the system described by

parameter errors. ....-
When sensor disturbances are present, the out- x(t) = A(t) x(t) + B(t) u(t)

put of the forward path is contaminated with noise, S2
w(t), while the rest of the structure of the (now) y(t) = C(t) x(t) + D(t) u(t)

stochastic adaptive system remains the same. How-
ever, deterministic stability theory no longer where the vectors x, y, u and the matrices A,B,C,D

holds, since now the parameters in the feedback are defined as the analogous quantities as in the

i-path contain random quantities and the requirements system of definition 1. .

for passivity can no longer be assumed to be satis- Definition 2. [The Class N(r)]. Let r(t) be an

fied. Global stability results for such a stochas- arbitrary sequency of symmetric matrices. The sys-

tic adaptive system have been obtained using mar- tem S2"is said to belong to the class N(r) if the

tingales by [GOO 79a] and [GOO 79b] under the very resulting system obtained by its feedback connection
restrictive and rather unrealistic assumption of with a gain matrix - r(t) satisfies the inequality

positive realness of the noise generating dynamics.
A much more realistic assumption is to assume know- 1 T- 2
ledge of the power spectrum of the noise and attempt Z y(t) u(t) > - Vi V t > t

to make use of such data to derive the adaptive t=t0 1 o
laws within the existing structure (feedforward

where r(t) is chosen to satisfy A - r(t) > 0
and feedback). This will guarantee convergence of Remark: The above inequality is often called the

Remark: The above inequality is often called the
the stochastic adaptive system under more realis-

ti lochassic r ctive asysu ons tn have Popov inequality and its interpretation is taken as
tic and less restrictive assumptions than have

~been made to date,.~ ~a passivity condition.been made to date.
The resulting system is then described as

We show below a general method of proof, using
the Martingale Convergence Theorem, for this struc-

ture. Unfortunately, so far, we have had to use a x(t+l) = A(t) x(t) + B(t) u(t)
very restrictive assumption, also, but one whose
form allows for more general extensions and moti-
vates our search for some sort of a "stochastic y(t) = C x(t) + D(t) u(t) S3
storage function" or "energy indexing function"
which lies at the center of our research efforts
at present. Besides, this helps clarify and state u(t) = u(t) - 2 r(t) y(t)
more precisely the problems we are currently
addressing.

and, consequently, the passivity inequality can be
2. Use of the MCT in the Passivity Framework for expressed as

Convergence of Adaptive Schemes
t1 t1

[LAN 79a] generalized the classes of systems T- 1 1
for which the structure described in 1. above re- yt) u(t) (t) u(t) 2

t=t t=t t=t
sults in global asymptotic stability for deter- o o 0

ministic adaptive schemes. We present below their
definitions which we shall employ later in the -T

'~~~~~~~~~~proofs. ~y (t) r(t) y(t)proofs.

Consider the following discrete time, com- Note: For the case of single-input single-output
pletely controllable (and/or observable) linear systems, the matrix A becomes a scalar denoted by X
time-invariant system and the matrix sequence r(t) becomes a scalar se-

x(t+l) = A x(t) + B u(t) quence y(t).
System S1 in the forward path with S3 in a

ySt) C x~) + Du~t)1 feedback connection with it is the most general form
y(t) = C x(t) + D u(t) of recursive adaptive algorithms of the type des-

cribed by equations (4.4.12) and (4.4.13). In fact,
where x is the state vector of dimension n, u ishe i t vector all the existing recursive adaptive algorithms, with
the input m-vector, y the output nm-vector and A, appropriate interpretations of their state, input

B, C, D are matrices of compatible dimensonsand output variables, can be cast in such an equiva-
Definition 1. [The Class L(Ai)]; Let A be an ar- lent feedback connection, that furthermore satisfy
bitrary symmetric matrix. The above system is said conditions for classes L(A) and N(r). Our purpose
to belong to the class L(A) if the resulting sys is not to show this here, since it can be found inis not to show this here, since it can be found in
tem obtianed by its parallel connection with a the existing literature. We just want to mention

gain matrix - 2 A is characterized by a strictly again at this point that the state variables of S1
positive real discrete transfer matrix. The re- are the generalized error states, while those in S

sulting system, consequently, is described by are the orrespondrng parameter errors. In theare the corresponding parameter errors. In the

present discussion, the input to system S3 is
x(t+l) = A x(t) + B u(t)

1 u(t) = y(t) + w(t) (4.4.18)
y(t) = C x(t) + (D - A) u(t)

where y is the output of S and w the measurement
and its transfer matrix is given by 1noise. The input to system S1 is

H(z) = D A + C(zI-A) u(t) = y(t)-; Considernow A + C(zI-A)near B ime-varyingwhere istheoutp f(4.4.19)

Consider now the discrete linear time-varying where y(t) is the output of S3.



We will now prove that the quantity Z(t) to be 1 T 1 1 t T
defined in the sequel in terms of the states of sys- x (t+l)P x(t) 2 -a + (k)M )
tems S1 and S3 is a near-supermartingale, which in
turn is crucial in the proofs of convergence, i.e. t T -T
obtaining results of the type of equns. (4.4.15), + - u (k) Au(k) + - (t+1)P(t+l)x(t+l)
(4.4.16), (4.4.17) following from this point on 2 k=0 2
very similar arguments as in [GOO 79b], without,
however, needing to involve positive realness of the + (k) k k T

1 1 6t~k) M~k)GE E 1 kt-noise generating dynamics. (k) M(k) - y(k)(k)y(k)
k=O 2 k

t-l t
V(t) 1 V(k) -T

Define Z(t) =V(t) + 1 V(k) (4.4.20a) y (k)w(k) (4.4.24)
=t . .k+l k k=Ok=l

T-T where
where V(t) = x (t) P x(t) + x (t) P(t) x(t) + where

t-l (4.4.20b) a = xT (o)px(o), ST(k) = [xT(k), u (k)]
T T

+ [xT (k), uT (k)] M x(k)
k=Q 0- -T -Tu(k) y = T o)x( o) T (k) u (k), u (k) ]

where P(t) > 0, Mo > 0. Using now the definition of V(t) from (4.4.20b) we

can rewrite the above as
Proof; If can be shown {[LAN 79]} from.the defini-
tions for the classes L(A) and N(r), that the t T
following two relations hold true for Sand S3(t+l) - + (k) M (k) + u (k) u(k) - y +k= O0 k=0
respectively:

t t t
t + 3 6T~k~k6k C -T Z -T

t T 1 T 1 T + Z 6 (k)M(k)6(k) - y r() k) = 2 k y
. y (k) u(k) = 2x (t+l) P x(t+l) - x (o) k=0 k=0 k-0

k=0
t (k)w(k) (4.4.25)

P x(o) + C 7 [xT (k ), uT (k ) ]M (k) + 1
2 k=0 0 u(k) 2 In a completely analogous manner as done for eqn.

2 uT k) A u(k) (4.4.21) (4.4.25) we also find
k=0

t-l t-l

where P > 0; M > 0 V(t) - a + 0 (k) M 8(k) + Z u T(k)
o k=O 0 k=O

t-l t-l
t -T --T ~u~k) r y + T -T

t 1 - T A -u(k) *y + Z 8T (k) M(k) 6(k) - k y (k)E y (k)u(k) = x (t+l)P(t+l)x(t+l) k-0 k=
k=01 t-1

1 -T '' 1 t -T -T - i(k) y(k) = 2 Z0 yT(k)w(k) (4.4.26)1 -T T -T k=O
2x~(o)P(o)x(o) + -Z [x (k),u (k)IM(k)2 2 k=0 Comparing (4,4.29) and (4.4.26) we get

x(k) t
) 1- - y (k)r(k)y(k) V(t+l) = V(t) + 2y (t)w(t) - T(t) M o(t)

u(k) k=0

-T
Also, from eqn. (4,4.18) and (4.4.19) we obtain + y (t) r(t)y(t) (4.4.27)

T -T
y (t)u(t) = -y(t)u(t) + y (t) w(t) ~> and since M > 0, M(t) > 0

0

t T t _t tT ~
_> St y,(k)u(k) y _ z T(k)u(k) ,+ y y(k)w(k) V> V(t+l) < V(t) + 2T (t)w(t) u (t) Au(t)

k=o k=0 k=0

T t t +y(t) r(t) y(t) (4.4.28)T _-T -T
Z> y (k)u(k) + Z y (k)u(k) = 7 y (k)w(k)
k=O k k=0 k= But from (4,4,19), u(t) = -y(t) and since A- r(t) > 0,

(4.4.23) the inequality above becomes

Adding the LHS and RHS respectively of equs (4.4.?1] V(t+l) V (t) + 2 (t)w(t) (4.4.29)
and [4.4.22] and using (4.4.23) we obtain



~ V(t+l) V(t) 2 V(t) An alternative way of looking at the problem is
t+l - t+l t+l t7 . to see what modifications and/or tradeoffs are

possible in the conditions required from the forward
t V(t)W 2 'Ttw-T and feedback blocks, i.e., possible redefinitions

ti- t+l t+l y (t)w(t) of the classes L(A) and 1N(r) in the original feed-
back adaptive structure, in order to take into

· V(t+l) 1 V(k) < V(t)+ 2 - account the random effects introduced by the noise.
t+l k=l k+l k - t+l t-+l For example, the class N(r) implies some weak posi-

i'-t . . --...... -. - .-.............. .... tivity condition for the system S2. This can be

k 1 V(k) expressed as the following set of conditions, in
k 1ik+l k terms of the system matrices A(t), B(t), C(t), D(t):

There exists a sequence of matrices

+2 -T' Z ~(t+l) ~(t) + y2 -T t)w (t) (44P(t) > 16 > 0, A(t),M(t) such thatZ <tzl) y ( 4~~)(,4.30),t+l

and AT(t-l) P(t) A(t-l) - P(t-l) =-A(t) A(t)T

-TAT(t-) (t) B(t-1) T(t-1) - A(t)M(t)
E{Z(t+l)I Ft } < Z(t) + 2 E ()w(t) I F A (t-) (t) B(t-l)t ~~t+l t

(4.4.31) - T T
M T(t) M(t) = D(t-l) + D t ) B (t-1 l)(t)B(t-l)

In order for Z(t) to satisfy the conditions of the
Martingale theorem in (NEV 75], we need to have The above set of conditions can be thought of as theMartingale theorem in [NEV 75], we need to have tm-ayn eso ftepstv ellma

time-varying version of the positive real lemma.
Then, by the implicit function theorem applied to

1 Ey-T(t)w(t)IF I = (til) >0the eqns. (4.4.34), the exists a non-empty open
t+l .t set D around any parameter corresponding to at+l 

positive real system such that a (possibly) random
evolution of parameters, due to the presence of

where f'E y (t)w(t)IFt I= (t+l) (4.4.32) noise, is possible within D given some reasonable
y t r

assumptions about noise characteristics. Hence
non-constant random uniformly positive real systems

and exist.

x The method of proof in (i) and (ii) above expli-
Z E(t) < ~. citly makes use of positive reality or a passivity

t=l ~~~t1~~~~~~l~ ~condition that has to be satisfied within the over-
all adaptive loop. Furthermore, in (i) the addi-

tional assumption of stationarity of the adaptiveThen,
signals is necessary for the local convergence ana-

v~) t-l~ 1Vk aslysis; unfortunately, stationarity does not hold in
V(t) t- V(k)lim Z(t) = lim--+ E k k akS a closed loop framework, where the adaptation mecha-

t40 t k=l nism is still ongoing. In (iii) following, we

(44.33) prove that the output and parameter errors of a
representative discrete-time algorithm remain bounded
in a mean-square sense, when the plant output is

From this point, the rest ot the convergence re- corrupted by a measurement noise sequence, assumed

sults are obtained by using the MCT repeatedly to be white, Gaussian, of zero mean and arbitrary
to obtain inequalities of the form (.4.1-5) - constant variance. The proof does not rely on any
(4.4.17). more restrictive assumptions other than the

requirement that the noise samples be independent and
uncorrelated at time t with the output(s) of the
preceding stages, up to time t-l. This latter part

The passivity inequality as implied by eq. 4.4.32]The passivity inequality as implied by eq. can be ensured by construction of the algorithm per
clearly is unrealistic to assume and very hard to
quarantee in the time-domain. It does, however, se, as will be seen next. The proof in (iii) is

suggest n tha freq cdomain. t deq , m ber, the first available in the existing literature that
suggest that a frequency domain equivalent may be

an adaptive control algorithm with observation
possible, given that, usually, the power spectrum of n apien r alot w o er ti

noise is mean-square stable not only in the output
the-noise can'be-assumed known. In the frequency

but in the parameter errors as well, independent of
domain, then, it can be interpreted as the "toler- the choice of a reference input. This confirms the

the choice of a reference input. This confirms the
able energy" that can be injected into the system often expressed belief that the output noise will

often expressed belief that the output noise will
due to the presence of noise without risk of in-

duetaityh foresee overal fseeat-ri lo in fact provide the "sufficient excitation" necessary
stability for the overall feedback adaptive loop.

for parameter error boundedness at least in theOne can then define "admissible frequency sectors.,, c r ere ne
case considered next.

within which (4.4.32) is satisfied, given the noise
characteristics. This, in turn, points to a way of (iii) Mean Square Boundedness of a Discrete-Time
choosing y - and hence the adaptive laws - such that Stochastic Adaptive Algorithm [ROH 81]
(4.4.32) can be satisfied taking into account the The proof in this subsection makes use of the

Th e p roof in this subsection m akes use of thenoise characteristics.
ideas of Bitmead and Anderson in (BIT 80 a & b] and



Anderson and Johnson [AND 81] and although it is
given here for a first order plant it is extendable e(t-l)
to the multivariable case as well. The algorithm
analyzed is the discrete-time version of that in 1( t+ l)

1l(t)
[NAE 80a] and is contained in [NAR 80b]. We de- +(t)
scribe it briefly below.

The plant-model representation is given by two2 (t+l)
first order difference equations (4.4.34) and .
(4.4.35). .-__ --. X 1

Actual Plant: y(t+l) = ay(t) + Su(t+l) (4.4.34)

Reference )+ ld Y 1z(t-1) n(t) (4.4.38)

y*Model:(t+l) - ay(t) + br(t+l) (4.4.35)Model:
L y2r(t) 

where lal < 1, b > O,c and B are unknown, y and u
are the plant state and control input and y and r
are the model state and reference input respectively. .
The plant output y(t) is contaminated by observ- a Sz(t-l) r(t)
ation noise n(t) and is described by 2

-Ylaz(t-l) 1+d(t)-yz (t-l) _Ylz(t-l)r(t)

z(t) = y(t) + n(t) (4.4.36)

The plant input u(t) is synthesized recursively -y2ar(t) -SY 2 z(t-l)r(t) l+ad(t)-ySr2(t)
according to equation (4.4.37) 2

u(t+l) = e!(t+l) z(t) + 2 (t+l) r(t+l) and the last two equations correspond to the
parameter adjustment and {n(t), t=O,... , }

-P{Y z2 (t) + (Y y ) z(t) rtl) is a zero-mean white noise sequence with each
- P{Y11 z Ct) + (Y1 2+ 2 1) z~t) r~t~l) sample having variance a2 .

2+ rz(t+1)} e(t+l) Note that, in this algorithm, the error at time t
+ 2r (t+l) e(t+l) is multiplied by the noise corrupted plant output at

time (t-l) for the parameter adjustment laws.
1 Since the additive noise samples at those two times
~ [(a-c+4 1 (t+l)] z(t) + [b+2 (t+l)]r(t+l) are assumed to be uncorrelated, the expected value

of the noise driving term in equation (4.4.38) is
-Pa[Y z2 (t) + (Y 2+Y21) z(t) r(t+l) + zero. Equations (4.4.38) can alternately be written

as follows:

+ y22 r (t+l) e (t+l)] x(t+l) = A(t)X(t) = B(t)n(t) (4.4.39)

where 01 0a2 are the adjustable parameters where the correspondence of A(t), B(t), and x(t)
with the elements of eqn. (4.4.38) is self-evident.

1~' ¢2 are the associated parameter errors - The weighted mean square error for a particular
time t can now be written as E[x'(t)Px(t)] where

{Yij} constitute a gain matrix r= rT > 0 p?- pT > 0

Similarly, at time 2(t+l) the corresponding

1 < 1 and choose p=l) here for error - before taking expected values - is expressed2< P < 1, and we choose P=l) here for2 * as
) simplicity as

'12 '21= 6rlct x'[2(t+l)Px[2(t+l)l .(4.4.40)

The error equation for this system is Substitution of eqn. (4.4.39) in expression (4.4.40),
in turn, yields:

e(t) =z(t) - y (t)
x'(2(t+l))Px(2(t+l)) =

ae(t-1) + Wl(t) z(t-l) + ~2(t) r(t) -ae(t-l) + 1(t) z(t-l) + 2(t) r(t (4.4.38) = x'(2)A'(2t)A'(2t+l)PA(2t+l)A(2t)x(t)t
1 + «d(t)

+ 2x'(2t)A'(2t)A' (2t+l)PA(2t+l)B(2t)n(2t) +

where d(t) = Y1 z (t-l) + Y2 r (t)

+ 2x(2t)A'(2t)A'(2t+l)PB(2t+l)n(2t+l) +
A A

,and Y1 1
=

1 22 Y
....- ---- + n(2t)B'(2t)A'(2t+l)PA(2t+l)B(2t)n(2t) +

The overall error system is now described by the + 2n(2t)B'(2t)A'(2t+l)PB(2t+l)n(2t+l) +

following set of equations: + n(2t+l)B'(2t+l)PB(2t+l)n(2t+l) . (4.4.41)



Subtracting the term x' (2t)A' (2t)PA(2t)x(2t) from
both sides of the above equation and taking
expectations we get Y z(2t-1)

0. 0 .
E[x'2(t+l))Px(t+l))] - E[x'(2t)Px'(2t)] = Also, define K(2t) d= (2t)

2 r(2t).E[x' (2t){A' (2t) (A'(2t+l)PA(2t+l)-P)A(2t) + r(2t)

+ A' (2t) PA(2t) -P}x (2t)]+ i /d(2t)

+ 2E[x' (2t)A' (2t)A' (2t+l)PA(2t+l)B(2t)n (2t)] +

+ E[n(2t)B'(2t)A' (2tl)PA)PA(2t+l)B(2t)n(2t)] T(2t) K'(2t)(2t+

+ E[n(2t+l)B'(2t+l)PB(2t+l)n(2t+l)] . (4.4.42) O I

(4.4.49)

Straightforward algebraic manipulations for the and
algorithm of eqn. (4.4.38) shows in turn, that the

following equality holds for all t. W(2t) L(2t T )T(2t)T' (2t)L(2t) (4.4.50)following equality holds for all t.

Then
A'(t)PA(t)-P = -H(t)H'(t) (4.443) (4.4.51)

W(2t) > (T(2t)T'(2t) W(2t) (4.4.51)
max

where

1/a 0 0 where X (TT') is the maximum eigenvalue of TT'.

Direct calculation shows that

pa= 0 1/y1 0 (4.4.44) I+y +y

(T(2t)T'(2t)) < 2max 3, - for all t.

(4.4.52)

and H(t) = -a Further, it can be straightforwardly shown that

/1a (l+2 d(t)) a2 d(t) Aa-2)a

l dz(t) 0-' z (t-1) d()-z(t-1) 12
1+6d~t O -d z(t-l) >d~~ z(t-l) ' 2W(2t)> Y-'2 (Sz(2t)r(2t)-_z(2t-l)r(2t+l))2

0 - 4r(t) id(t)Br(t) - 2 (l+ad(2t)) (l+gd(2t+l))

(4.4.45). (4.4.53)

Finally, substitution of eqn. (4.4.43) in the first with P given by (4.4.44) since
term on the RHS of eqn. (4.4.41) allows it to be
rewritten as

a.t- o o
-E[x'(2t){A'(t)H(2t+l)H' (2t+l)A(2t) +

+ H(2t)H'(2t)}x(2t)] = -E[x'(2t)W(2t)x(2t)] W(2t) = O bt ct

(4.4.46) 0 t- tt

where

2 2 2
W(2t) - {A'(2t)H(2t+l)H'(2t+l)A(2t) + H(2t)H'(2t)} where = l+d(2t)-a a ( d(2t+)a

,(l+Bd(2t)) (l++d(2t+l))

in what follows we prove next that W(2t) > p(2t)P

where Ii(2t)>0 for all t within two consecutive
time steps. t (2t-1) + z (2t)

l+ad(2t) l+Bd(2t+l)
-Let W(2t) = t(2t)L'(2t) (4.4.47)

where L(2t) = [H(2t) A'(2t)H(2t+l)] (4.4.48) tt _z(2t-l)r(2t) Bz(2t)r(2t+l)

l+bd(2t) l+d(2t+l)

ct = (z2t-l)r(2t) +z(2t)r(2t+l)
.l+d(2t) l+ad(2t+l)

2 2
ct -r 2 (2t) + r (2t+1)c -- +

1+ad(2t) 1+ad(2t+l)



Combining eqns.(4.4.51),(4.4.52) and (4.4.53)

yields that E(n' (2t)B' (2t)PB(2t)n(2t)] =

W(2t) > l(2t)P 24,4,54)2 22 ,
where_~ «~(2t ) = [~~d (2t)+ylz (2t-l)+y2r (2t) 2

where {i(2t) = E E[n(2t)]

1Y2 (z (2t) r (2t)-6z(2t-l) r (2t+1))2

.l. -1+Y¥+2 l+$d(2t))(l+Sd(2t+l)) 
2 max 3,_ (2t) (1+d(2t)) 2 2

~Y ~~~Y ~(4.4.55) E E (2t)t <
1+d (4.4.) 61)

We note that p > 0 unless (4.4.61)

{y(2t) +n(2t) }r(2t) y(2t-l)+n(2t-l)}r(2t+l) In an exactly analogous manner it can be shown
that

(4.4.56) 02

an event which occurs with zero probability. Also E[n'(-2t+l)B'(2t+l)PB(2t+l)n(2t+l)] < F
(4.4.62)

-E[x'2t)W(2t)x(2t)]>E [i(2t)x'(2t)Px(2t)] (4.4.57)
Combining equations (4.4.60), (4.4.61),(4.4.62)
eqn. (4.4.59) becomes:

> E((2t) ]E[x'(2t)Px(2t) ]

and clearly El[(2t)] > 0 (4.4.58) E[x'(2(t+l))Px(2(t+l))]<(l-E[1(2t)])E[x'(2t)Px(2t)]+

Substitution of eqns. (4.4.46), (4.4.57) in eqn. 2
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(4.4.41) results in the following inequality: + -a + D. (4.4.63)

E[x' (2(t+l)Px(2(t+l))]<(l-E[1(2t)]J)E[x'2t(Px(2t)] + where D<0 from eqn. (4.4.60).

Equation (4.4.63) states that indeed the system
+2Ex'(2t)A'(2t)A'(2t+l)PA(2t+l)B(2t)n(2t)] + (4.4.38) is mean square stable in both output

and parameter errors. Moreover, the steady

+ E[x'(2t)A'(2t)A'(2t+1)PA(2t+l)B(2t)n(2t)) + state mean square error is bounded above by

+ Etn'2t+l)B'(2t+l)PB(2t+l)n(2t+l)] (4.4.59) lim Ex'(2t)Px(2t)]< 2 (4.4.64)
t- (4.4.64)

lie tha the(2im)
Next, using eqn. (4.4.43) we prove below that the inf E[1(2t)]
second term on the RHS of ineq. (4.4.59) is less t n

than or equal to zero, independently of the fact where P(2t) is as defined in eqn. (4.4.55).

that A(2t+l) depends on n(2t).
Although the last proof seems to be more

Let D = E[x'(2t)A'(2t)A'(2t+l)PA(2t+l)B(2t)n(2t)] generally valid than the two preceding it, it

does not solve the problem for all existing

< E[x'(2t)A(2t)PB(2t)l(2t)] = stochastic adaptive algorithms than may have a
different structure in their information pattern.
We simply refer the reader to [ROH 81], section 6,

= E[x'(2t)A(2t)PB(2t)]E[n(2t)] = 0 for a case in point. The continuous-time

(4.4.60) stochastic adaptive control convergence problem
is considerably more complicated and the most

Similarly, for the third term on the RHS of the rigorous results were obtained by Ljung in

same inequality, (4.4.60), it can be shown that (LJU 77 a b] and surveyed in (i) of this section.

E[n(2t)B'(2t)A'(2t+l)PB(2t+l)B(2t)n(2t)] Our research in the last year, however, has
shown that performance rather than stability has

< E[n'(2t)B'(2t)PN(2t)n(2t)] (4.4,61) emerged as a more important issue, particularly
-- E n (t)B (t)PN(2) (t)1 4..6) during the transient adaptation phase, at least

and substituting the values for B and P from eqns. under the assumption of exact modeling of the
(4.4.38) and (4.4.44) we further get process. Digital simulation studies of various

adaptive control algorithms have uncovered some

very undesirable characteristics exhibited by
these algorithms, with instability occurring
only in the presence of unmodelled dynamics.
It has been our experience so far, that observation
noise has not caused the adaptive loop to become
unstable, but has contributed to degradation in
the performance of the overall system. We
discuss our findings in section 4.4.3. In the
second part of the same section, we also provide



an analytical verification of the observed
undesirable properties of adaptive algorithms. 

It is interesting to note here that the distance
between poles A and B remained constant at the

4.4.3 Performance of Adaptive Algorithms different time instants.when "snapshots" were taken.
!i) In phase II the poles move as if one were adjusting
·(i) Experimental Results the loop gain and the pattern is shown in Fig.4.4.2

An intesive study of characteristics of exist- The control input in the first 2.6-secs. contained
_ing direct adaptive control algorithms was a frequency of 12 rad/sec at the 10 db down point
conducted. The initial emphasis was to understand (of the nominal system) and 50 rad/sec at the 20 db
the transient behavior of such algorithms as well point. Its log magnitude plot exhibited a large
as their robustness to unmodeled dynamics and hump between 65-100 rad/sec. At w = 120 rad/sec
observation noise. Although the simulation results the magnitude went down to the 10 db point, while
showed that no consistent pattern could be pre- at 270 rad/sec it was reduced to the 20 db point.
dicted, they nonetheless confirmed our suspicion
that the majority of adaptive algorithms are Unmodeled Pole
characterized by In this experiment, an unmodeled pole was

"added" to the plant so that the actual transfer
(1) high-frequency control signals character- function was Wp(s) = s + .5 50

istic of a high-bandwidth system (s+1.5)(s-l) s+50

The adaptive system was found to swing between
(2) the extreme sensitivity of the algorithms two configurations: in the initial stages, and up

to unmodeled high-frequency dynamics to t=7 secs, as shown in Fig. 4.4.3.
which can result in unstable closed-
;loop behavior esult in unstable closed- Up to 7 secs the system parameters change smoothly

and e1 < 1 (unit). After t = 7 secs the controller
fails completely in its objective and the overall

(3) lack of robustness to observation noise; system becomes unstable with large unbounded
i.e.the presence of even a small amount

eof observation noise caused the closed amplitudes in the adaptive signals up to 100 rad/sec
loop system not to converge to the lod frequency range. The same results were obtained
loop system not to converge to the · when the unmodeled pole was placed at 150 rad/sec
model but to slowly drift away to an . below the 10 db down point of the nominal system.
increasingly higher bandwidth system. In the log magnitude plot of the control input

We present below some specific results obtained the peak was up by 6 db at 62 rad/sec and was 10 db
for a second order system that address the above down at 252 rad/sec.
points. The results are typical of the behavior Observation Noise
of most (if not all) adaptive algorithms whether
discrete or continuous time and have been observed The same system, without the unmodeled dynamics,
even for first order systems quite dramatically. was now controlled with observation noise n(t)
The analysis in subsection (ii) will in fact present at the output. The noise used was white
concentrate on first order systems alone. with variance equal to 1 unit, and with

In(t) /r(t) - 1/10. The evolution of the controlled

Example. system is shown successively in the diagrams shown
in Fig. 4.4.4.

In what follows, convergence patterns for a From the above, it is evident that as adaptation
plant whose transfer function contained an un- progresses, the system bandwidth is increased. It
stable pole are described. The plant transfer is interesting to observe in this experiment that
function was taken to be W (s) = s + .5 the adaptive controller in the presence of observ-

P (s+1.5)(s-l) ation noise performs much better- at least

and the reference model was chosen as maintains stability of the process - than in the
W (s) = 5(s+1.5) The adaptive algorithm case where unmodeled dynamics are present.

(s+l) (s+2)
in [NAR 78] was employed to control the plant. .(ii)Analytical Verification of the Undesirable
The reference input was square waves of amplitude Properties
5 and 8 units at frequencies w =.5 and 1.5 rad/sec, In this subsection the undesirable character-
"Snapshot" plots were taken of the closed loop istics discussed in the foregoing are demonstrated
poles of the controlled process with the following analytically and some insight as to what causes
assumptions made; (1) if "snapshot" poles move them is attained. The basic problem is that large
slowly between consecutive snapshots, these poles reference inputs force the adaptive system to try
should indicate approximate response to inputs to react too quickly. This results in a large
at that time; (2) if poles move considerably bandwidth system and consequently in the excitation
between snapshots, they are then meaningless. of unmodeled dynamics, which brings about instabi-
The frequency content of the control input was lity. The additional effect of observation noise
also analyzed by the use of Fast Fourier on the increase of bandwidth intensifies the problem
Transforms (FFT). further.

The analysis technique employs linearization of
a. C l Pthe nonlinear time-varying equations that describe

Two phases were exhibited during adaptation. In the closed-loop system; this analysis technique
is refered to as "final approach analysis" becausephase I the high frequency shape was maintained and

the root locus at different "snapshots" follows the linearization is valid when the system and



., - .. * - .... *-.

reference rodel outputs are close to each other, a e(t) = y(t) - y (t) =

fact that occurs during the final phases of
adaptation. In the final approach analysis it is
assumed that the parameters of the controlled plant aet-l) + _(t)y(t-l) + _2(t)r(t)

are very close to those parameters which would make 1 + p 8d(t)
the closed loop characteristics of the process the (4.4.67)
same as those of the reference model. Such a 2
situation could develop when the asymptotically where d(t) = Y1 y(t-l) + (Y1 2+ 2 1 )y(t-1)r(t)+

stable adaptive controller has already been 2
operating for a long period of time with sufficient- + y 2 r (t) (4.4.68)

ly rich inputs and therefore is close to final
convergence. It could also arise when the plant

We further assume that r(t) - r = a constant, so
parameters are fairly well known under reasonable the

that at the final stage, y* = y*(t-l) and
a priori knowledge of the plant parameter values

d(t) = d*, as defined by eqn. (4.4.68) with y*
and the adaptation is just employed as a fine-
tuning mechanism. Surely, if an algorithm behaves replacing y.

poorly under these mild conditions, it certainly Then, the overall system error equations
cannot be expected to be useful as a practical can be represented in state-space form as
control design. -follows: .. .

Existing adaptive algorithms, under this e(t) e(t-l
analysis, are found to suffer (more or less) from

the same basic problem: they lead to high-gain 4 (t+l) (
designs with large bandwidth. In what follows, 1 1 2 3 (4.4.69)
we examine the characteristics of the discrete-time a 

algorithm, discussed in 4.4.2(iii), under the 1 2(t+l) , 2(t)
light of the final approach analysis; no observation *- 2t

noise is assumed present. The method of analysis L . ' 
applies equivalently to continuous-time systems 1 23

also; for a more detailed study of various adaptive
algorithms using this approach, the reader is 1
referred to [ROH 81]. a

Proper Modeling a= y1 ay* - Y ar

The discrete-time system and model are exactly

as described by eqns (4.4.34) and (4.4.35). The L y ay* y ar;

control input u(t) is generated in an exactly 21 2 2 J
analogous manner as in eqn. (4.4.37), the only
difference being that the output y(t) is not'noise- *

corrupted, i.e. 2 1 2
a = *,a + -

l+pad l+p~d* + (- 11Y
* - Y12* Y )

u(t+l) - 0l(t+l)y(t) + 82(t+l)r(t+l) -2

i-y BY * - 22BY*r

p-{y y2 (t) + (Y 2+y2 1 )y(t)r(t+l) + (4.4.70b)

Br
+ Y22r (t + l ) }e ( t+ l ) (4.4.65) 3 1 

a * Y12 y*r - Y22,

with all quantities defined as before. l+pd 12 r 

The adaptive laws, similarly, are given by: 1+pd* + (-y ay*r 2
l+p~d* + (-721BY*r - 722Br

1
(t+ l)

1 -( t)
- (4.4.70c)

= a- Y71 y(t-1)e(t)

The above system has the characteristic equation:

- 1 2r(t) e(t) (4.4.66a)

(z-l)[(z-l) (z-a) +. d*p(z(z+ P 0))] = 0

1~~~4~~~ 2 ~~~~~(t+l~~~~) 4~ 2 (t)~ -(4.4.71)

B = B -Y7 2 1y(t-l)e(t) -

There is a marginally stable pole frozen at z = 1

- Y22 r(t) e(t) (4.4.66b) associated with the eigenvector

The resulting error equation for this system is e(t-l) = 0; ¢2(t) = -(t) (4.4.72)
then: 

Two other poles appear in a d* - root locus as

shown in figure 4.4.5. One pole starts at z=a



and the other at z=l and, with increasing d*, The final approach analysis yields the following
move towards the zeros at z=0 and z= 1-p characteristic ecuation:

P (z-l)[(z-l)(z2-(al+a )z + ale2 ) + Od*(z(z+p-1)) ]=0The latter.zero is, however, under the designer's + aa 2 + dz
control, by use of the parame~_er p. P

If the additional error feedback terms.were (4.4.75).
not present in eqn. (4.4.65), i.e. if P = 0,
the zero at z = 1-p would be missing. As a result, The d* - root locus in the figure 4.4.6 shows

that the error system will become unstable for
one of the poles would move along the negative real large reference inputs. .
axis towards infinity causing a chatter type In some cages it is possible to choose the
instability, characteristic of discrete-time adaptive gains in such a way, so as to artificially
systems. Incidentally, this additional term is slow down the adaptive process when the reference
customarily not present in many adaptive algorithms inputs are large, resulting in a smaller band-
[NAR 781, [FEU 78], etc. width system and improved final approach behavior.

Analysis with an Unmodeled Pole I In order to achieve this the adaptive gains
must be (nonlinear) functions of the reference

In order to investigate the effects of un- 'input (and the adaptive signals). However, global
modeled dynamics, the actual plant is augmented asymptotic stability has only been proven for the
to have two poles, located at -a and -a case of constant adaptive gains or certain
respectively. It is also assumeA that there exists restricted types of time-varying gains. Thus, the
a second order model with poles at -al, -a2 as *approach that follows is only theoretically valid
eqns. (4.4.73) show: for the case of constant reference inputs. However,

its validity is not limited to the final approach
Actual Plant: y(t+2) - (a +a 2)y(t+l) + domain but extends to the entire duration of the

1 2 adaptation process.

+t a l 2 y(t = au(t+2) To improve the final approach characteristics,
the constant gain matrix F = {Yij} is

old ij

replaced by the following matrix
Reference Model: y*(t+2) - (al+a 2)y*(t+l) +

r -

+ a a2Y*(t) = b2r(t+2) -new +r2+y*2 -old

(4,4.73)- Then, d* becomes

In addition, the following conditions are required d* = y* new Fy*;
for the analysis:

(i) The reference model is stable. L L
with the condition

(ii) al+a2 = el+Ca2

(iii)= - of eqn.(4.4.35) d*< * +r max old - max old)
1-(al+a2)+al a2 1-a y+ y*2 + r

Conditions(i) and (iii) allow the substitution where max old) is themaximum eigenvalue of
of eqn. (4.4.35) with eqn. (4.4.73b) with no r and y > O. Both a (r ) and Y are under
change in (steady-state) response for constant max old
reference inputs. Condition (ii) is necessary for designer's control.
the analysis and is somewhat restrictive in the Thus, given an upper bound on
plants and models that can be studied comparatively max old
particularly more so in the discrete-time case. can be chosen to limit how far along the d*-root
We also note that although the ensuing analysis locus the corresponding system roots can travel.
is carried out for constant reference input, it Consequently, the maximum frequency of parameter
is actually valid over the range of reference error variation in the final approach is under the
input frequencies where (4.4.73b) matches (4.4.35). direct control of the designer. Also, with an

upper bound on d*, the adaptive system is able to
The control input is chosen exactly as in(4.4sThe control input is chosen exactly as in ohandle any number of high frequency unmodeled poles

(4.4.65), as if the plant were first order, and While retaining final approach stability.
the adaptive laws are described by eqns. (4.4.66).
The output error equations then become:

Observation Noise

('a)t-)-a a e(t-2) + ¢1 (t)y(t-l) We have discussed extensively in (iii) of the(a +a )e(t-1) a ae(t-2) + 1t)y ( t-1)1 2 1 2 e1 preceding subsection as well as in (i) of this
e (t) = 1 + p 8 d(t) subsection the case of observation noise in an

otherwise properly modeled system. In (iii) of
-2(t)r(t) 4.4.2 we in fact gave a proof for the mean-square

+ l+pt) (4.4.74) boundedness of output and parameter errors of the
l+Pd( t)



particular discrete-time algorithm studied there. existence of unmodeled dynamics and stochastic

We will not, therefore, go into any further detailed effects must be an integral part of the theoretical

discussion here, since the final approach analysis problem formulation. In addition, future adaptive

corroborates what has already been stated in the algorithms must be able to deal with problems in

above mentioned subsections. The reader is referred which partial knowledge of the system dynamics

to [ROH 81] for more details, if desired. We is available so that at the very least the inten-

would only like to direct the reader's attention tional augmentation of the controlled plant

once again to the importance of the linear noise dynamics with roll-off and noise rejection transfer

forcing term in eqn. 4.4.38 of subsection 4.4.2, functions can be handled without confusing the

which effectively accounts for the increase in adaptation process. Such augmentation of the

bandwidth of the overall adaptive system. plant dynamics (loop-shaping in the frequency
domain) is necessary even in non-adaptive modern

4.4.4 Conclusions and Directions for Further control systems [DOY 81] for good performance and

Research stability; clearly, the same techniques must be

used in adaptive systems. The adaptive algorithms

We have examined in the preceding convergence j currently available cannot handle the additional

issues in stochastic adaptive control algorithm. dynamics because the existence of the latter

Special emphasis was placed on the performance of violates the theoretical assumptions necessary to

such algorithms which seems to be of crucial ~ assure (global) stability and stochastic converg-

importance, particularly in the transient phases X ence.

of adaptation and in cases where the proper modeling
assumption in not valid, as is usually the case in A
any engineering application. Instability has

quite often resulted under such circumstances,
within the framework of an algorithm which was

designed at the outset to be (globally) stable. DISCRETE pt+l)

A new method, called final approach analysis SUBSTATION
was introduced to analyze the dynamic properties

of adaptive control algorithms with special emphasis
on their robustness to

~ ONTI'NOUOUS x
(a) generation of high frequencies in the plant Control SUBSYSTEM

control signal,! ut)

(b) excessive bandwidth of the adaptive control

loop resulting in excitation of unmodeled x(t)

dynamics and, consequently, leading to

dynamic instability of the closed-lo'op
adaptive system, Figure 4.2.1 hierarchical lybrid

(c) noise corrupted measurements. Systems

An adaptive control algorithm must have reasonable
tolerance to such modeling error and stochastic . .
uncertainties before it can be used routinely in pet+)
practical applications. However, the final approach

analysis has shown that, currently, such algorithms
have unacceptable dynamic characteristics.

The final approach analysis is useful because it

can be used in a constructive way to adjust the

adaptivegains so as to limit the closed-loop DISCRETE
system bandwidth and to ameliorate some of the ] STATE SYSTEM
undesirable characteristics of existing adaptive

algorithms. However, though necessary, the

final approach analysis is by no means sufficient
in the analysis and design of adaptive systems.

The technique is limited to the cases in which the

output error is small and does not change rapidly, Control

so that dynamic linearization of the complex non- u(t) - CONTINUOUS x
linear (differential or) difference equations i t _ STATE SYSTEM
that describe the adaptation process makes sense.
By itself, it cannot predict what happens in the

truly transient phase; the simulation results

presented in 4.4.3(i)suggest that even more complex
and undesirable effects are present.

It is our opinion that a great deal of addi- X(t)
tional basic research is needed in the area of

adaptive control. Future theoretical investigation
must, however, take drastically new directions than Figure 4.2.2 Fully interconnected hybrid systems

those reported in the recent literature. The

.. ~~~~~~~_ .~~ .._ . ... .. ... ........ .
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5. The Thermodynamic Properties of Markov Processes
nonequilibrium thermodynamics, or the thermodynamics

.5.1 Introduction - of irreversible processes. The concepts presented
Classical thermodynamics developed as a de- in this section can be found in Callen [CAL 601,

scription of systems in equilibrium. Through Katchalsky and Curran [KAT 651,'Lavenda [LAV 78], or
Onsager's reciprocity relations, the treatment was Nicolis and Prigogine [NIC 77].
extended to nonequilibrium conditions where per-
turbations about equilibrium preserved a form of 5.2.1 A Characterization of a Thermodynamic System
linearity. The theory had a strong physical and a
weak mathematical basis. -'--'A system is that'subset of the'universe we iso-

Attempts have been made to further extend the late from its surroundings for thermodynamic study.
theory to describe systems far from equilibrium and An isolated system can exchange neither energy nor
reconstruct it on a firm mathematical foundation. matter with its surroundings; a closed system can
The need exists for a general axiomatic development exchange energy but not matter with its surroundings;
incorporating only those features of macroscopic an open system can exchange both energy and matter
processes which yield both their equilibrium and with its surroundings. A system is described by a
nonequilibrium thermodynamic properties. In this set of internal and external parameters. The state
chapter we show that, using stochastic system of the system can be specified by a set of values
theory, such an axiomatic development is possible. for these parameters.
Our approach rests upon the physically reasonable
assumption that for the purposes of a thermodynamic 5.2.2 The First and Second Laws
description of a system, the system can be viewed as
an ensemble of particles, each representable by a With a change in state of a system, the change
stochastic differential equation describing the in a state function depends only on the initial and
evolution of a Markov process. final states, while a path function depends on the

In Section 5.2, we present an overview of the path through which the change in state is effected.
principles of thermodynamics, in the context of Thus, the differential of a state function is exact
nonequilibrium thermodynamics, or the thermodynamics and the differential of a path function is inexact.
of irreversible processes. These ideas -- a The differential of a state function X can be de-
characterization of a thermodynamic system, the first composed (formally) into the sum of the differentials
and second laws, a definition of the equilibrium of two path functions,as
state and equivalent conditions, a decomposition of
the flows of work and the entropy production into dX = d X + dX ,
inner products of forces and fluxes, and Onsager's
reciprocity relations -- are captured by the theory where d X represents changes in X due to the flow
outlined in Sections 5.3 through 5.5. of X between the system and its surroundings, and

Two examples developed in the literature serve d.X represents the production of X in the system.
to illustrate the generality of our approach. As Using the terminology of Willems' work on
done by Brockett and Willems [BRO 791, in Section dissipative systems [WIL 72], we say a thermodynamic
5.3.1 we analyze the equations of motion for a system with storage function X is dissipative with
system constructed from a Nyquist-Johnson resistor d X
and a linear capacitor of time-varying capacitance. respect to the supply rate dt and lossless with

Particularly in developing a model of muscle respect to the sum of the supply rate and the dis-
contraction assuming the cross-bridge theory, our -d.X
formalism is invaluable. Hill [HIL 74, HIL 77], sipation rate - . The corresponding mathematical
using statistical mechanical theory, has outlined dt
a formalism which relates the rate constants and statements are:
free energy changes determined biochemically to d X d X d X
the mechanical and thermal properties of contracting dX e + i < e . (5.2.1)

= e < 0. (5.2-1)
muscle. As we show in a Section 5.3.2 our approach dt dt dt - dt dt -
yields the same results. Furthermore, without
additional work, we have proven reciprocity of the The first law of thermodynamics postulates the
model near equilibrium. existence of a state function E called the internal

In Section 5.4 we present an outline of the energy such that
results which applies to both continuous-state d E
:Markov processes (Markov diffusion processes) and dE = e
discrete-state Markov processes (Markov chains). dt dt

In Section 5.5 we develop an axiomatic :frame-
(5.2.2)

'work for thermodynamics assuming a Markov chain dE 
description of a thermodynamic system. As shown in = 0
the previous section, the results can be generalized dt
to broader classes of Markov processes, but the
proofs are most easily followed in the context of i.e., the internal energy of a system is conserved.
Markov chain theory. In a closed system, the flow of energy between the

Directions for further research are briefly system and its surroundings is equal to the dif-
discussed in Section 5.6. ference of the heat flow 6q and the work flow

' ';dw a-dt
5.2 Thermodynamics dt'as

In this section, we present an overview of the dt dw (5.2.3)
principles of thermodynamics, in the context of



By convention, a flow from the system to the sur- a system with W = , dG < 0. In steady state, all
roundings is positive for work and negative for heat. state functions are independent of time, so in a
In an open system, the heat and work terms include system where either W = 0 or Q = 0, D = 0 in steady
contributions due to the flow of matter between the state.
system and its surroundings.

The second law of thermodynamics postulates the 5.2.3 The Equilibrium State
existence of a state function S called the entropy,
such that A steady state can be maintained by a cyclic

d S~ -d S d So - -'' --'''-'mechanism. For example, in a cyclic reaction
dS e 1 e e
dt dt dt dt

d.S

> 0 (5.2.4)
dt -

Z Y

i.e., the entropy produced inside a system is non- a steady state could be maintained by
decreasing as a function of time. A temperature T
can be assigned to a system. Then,

dS
e a & (5.2.5)
dt T dt

For an isothermal change of state, at a con-
,stant temperature T, where a steady flow exists around'a cycle. When

detailed balance holds, there is "on the average,

d E - T - S (E - TS) the same frequency of transition from the condition
dt dt dt [X] to [Y] as from the condition [Y] to [X]. ... the

transitions from [X] to [Y] do not have to be thought
The (Helmholtz) free energy F is defined as as balanced with the help of some indirect route such

as [Y] to [z] to [XI," as expressed by Tolman [TOL 38]
F = E - TS , (5.2.6) When microscopic reversibility holds, as formulated

by Tolman [TOL 38], "any molecular process and the
We define heat flow, work flow, dissipation (entropy reverse of that process will be taking place on
production) rate, internal energy, and free energy as the average at the same rate," i.e., on the average,

a microscopic process is invariant under time-
1 -q ' reversal. Equilibrium is defined as that steady
T dt state for which detailed balance'holds, and is

equivalent to that steady state for which micro-
__ dw scopic reversibility holds. In a reaction system,

T dt there are no oscillations in the approach to

equilibrium.
D = (5.2.7) The equivalence of detailed balance, microscopic

dt reversibility, and equilibrium are quantum princi-

1 ples. Thermodynamics assumes D = 0 in a steady
U = T E state if and only if the steady state is an equili-

brium state. An equilibrium state is completely

G 1 determined by the external parameters of the system.
T There is an equilibrium state in which a system is

at a uniform composition.
and henceforth assume that the temperature T is in-
dependent of time. We summarize our discussion of 5.2.4 Forces and Fluxes
the first and second laws of thermodynamics by:

Nonequilibrium thermodynamics gives a structure
ad ; for the work flow W and the entropy production D,
dt U = Q - w which is nonzero for nonequilibrium states. The

work flow W can be written as the inner product of

ad- a-vector of fluxes I and a vector of forces F,
dt S = Q +D > Q (5.2.8) usually as

W = Z I.Fi = <I, F>

G = -W -D < -W .
dt -- For example, the flow of electrical work is the

product of current and voltage. The entropy
The heat flow Q and work flow W are observable only production D can be written as the inner product of
through effects produced in the surroundings; the a vector of fluxes J and a vector of forces X,
internal entropy production D is not observable D = Z J.X. = <J, X>. A steady state is an
through effects produced in the surroundings. In equilibrium st1ateif and only if all forces and

an isolated system W = Q = = 0 and ->0 In fluxes vanish identically. Close to equilibrium,
dt dt - a linear relation is assumed between the forces

.. , . . .. . . s . . .. ..... . .. . . . . . ...--~-



and fluxes, as . d
dq q dt +lFk- dw

(5.3.1)
-_ --_ dc = udt

Onsager showed that the matrix L is symmetric for
processes sufficiently closed to equilibrium (in the independent copies of the process a collection of
linear range) as a consequence of the principles independent copies of the process {q(t), t e to

Let p(t,q) be the density function of q.
of detailed balance and microscopic reversibility. the density 
The relationsL. L_. are known as Onsager's re-

)1 . is jlcan then be written as the Gaussian density
ciprocity relations. 2

There have been attempts to describe the evolu- 1 -

tion of a system toward steady state, far from the p(t,q) = e 2(t)

equilibrium state. For a system in which the 2r (t)
entropy flow is only at the physical boundary of the either the variance Z(t) or the density function
system, Nicolis and Prigogine [NIC 77] define a p(t,q) can be taken as the state of the system
quantity P as the rate of entropy production. For at time t.
zero fluxes or time-independent concentrations at
;the boundary, d P is decomposed as Definition 5.3.1. The fluxes of the system are

dt

dp = + X d dJ j (t,q) = - (t) q p(t,q) - kT(t)g ap
dXi + Xi dt J ~~~~~~~~~~~~~~~~~~~i i ~~~~(5.3.2)

u(t) = dc(t)

d P dP t
x J

X + (5.2.9)
dt dt ( ) Note that Kolmogorov's forward equation can then

be written as
For a system far from equilibrium (in the nonlinear

d P
range) dt is nonpositive, with equality if and only .

if the system is in steady state, in what has been
called the universal evolution criterion. Note that

d P is an inexact differential. Definition 5.3.2. A periodic trajectory of periodd P is an inexact differential.
x T is a solution Z(.) of

The thermodynamic concepts presented here are
based upon a weak mathematical foundation. We shall
show that, by assuming a thermodynamic system dE(t) = 2 E (t) + 2k T(t)g ,

evolves as a Markov process, these ideas can be dt c(t)

interpreted in terms of mathematical properties of
Markov processes. where c(t) = c(t+T)and T(t) =T(t+T), with the property

that E(t+T) = X(t) for some T<o. X
5.3 Examples

Definition 5.3.3. An equilibrium state is a state
5.3.1 The Example of Brockett and Willems of zero flux. Let p (t,q) denote the equilibrium

state of the system with time-independent parameters
A Nyquist-Johnson resistor connected to a c = c(t) and T = T(t). [

capacitor is a simple example of a thermodynamic
system. Brockett and Willems [BRO 79] have ob-
tained some intuitively-appealing results by 
analyzing the model. Our analysis shall serve as aq in p = kT
an introduction to a general treatment of the
thermodynamic properties of Markov processes.

Cthermodynamic properties of Matkov processes. by manipulation of (5.3.2) and the capacitance c
Consider a Nyquist-Johnson resistor at tempera- is constant. Thus

ture T and of conductance g connected to a linear
capacitor of capacitance c. Allow the temperature = kTc
T and capacitance c to be functions of the time
t e [t ,a). The equation of motion for the d7

capacitor charge q is the It3 equation and by (5.3.3) = 0. So an equilibrium statecapacitor charge q is the Ito equation dt
pe(t,q) is the unique invariant solution of

dq (t) =-9-- q(t) c~A -kTr~j g dwit) *Kolmogorov's forward equation with the parameters
c(t) (t ) + kT(tg dwt) fixed for all times s>t.

where k is Boltzmann's constant and w(t) is Brownian Definition 5.3.4. Let the external parameter F
motion. Assume the capacitance c is determined by be defined as
a control u q

F(t,q) = kT(t)c(t)

dc(t) (
dt ' u(t). ... - For an equilibrium state pe

Then the state equations for the network are a
- n pe = F

aq



Thus in equilibrium, the state of the system can be Definition 5.3.11. The work flow W is defined as
written solely in terms of the external parameter F.

1 (t)
W M u (t)

Definition 5.3.5. = 2 2(t)

Let the internal force X be defined as

1 j(t,g) Proposition 5.3.12. The thermodynamic functions E,
X(tq) = ·Q,and W satisfy the "first law of thermodynamics,"

k T ( t ) q p ( t , q ) ........................................................... .......... .....

dE
iThe internal force X O iff the flux j = O. dt

Lemma 5.3.6. Proof:

~~~~~~~~a 1 P >~2
- Zn p = X + F E <aq 2 c

Proof: Follows by calculation. . So
2 2

Definition 5.3.7. Let the entropy-S be defined as > < u>
dt at'2 c 2 2

S(t) = 2(ln 2w + in 7(t) + 1) . 2
= <j, > - <u, P

Definition 5.3.8. Let the heat flow Q be defined c
as

=Q - W .
Q(t) = kT(t) <j,F> = kT(t) I j(t,q)F(t,q)dq

and the entropy production D as Definition 5.3.13. For a system at constant tempera-
ture T, the free energy G is defined as

dS(t) Q (t)
dt T (t) G = E - TS .

kg
By calculation, Q = g (T -

c kc * Proposition 5.3.14. For a system at a constant
temperature dG < -W, with equality iff the system is

Proposition 5.3.9. The entropy production t -

ID = k <j,X> > O. at equilibrium.

Proof:
with equality iff the system is at equilibrium.

ProofdG = dE T Proof: T
dt dt dt

dS Q
dt T Q - W - TD - Q

k If p ln p dq - k <j,F> = -W-TD<-W

- k <ap , in p> -k <j,F>
at Proposition 5.3.15. For any periodic trajectory

of period T

k < - a , n p >-Rk<j,F>

k' ,-a T
= k < j, a ln p - F>

;q

Proof:
k < j, X>

.2 T -
k< > > > dt < d ds dt = A

kTg p -- T dt
- 0

with equality iff equilibrium. d

We thus have the "second law of thermodynamics;" Proposition 5.3.16. For any periodic trajectory for
which the temperature is constant

ds >Q 
dt - T

I Wdt < o
Definition 5.3.10. The energy E is defined as 0

E (t) =1 (t)2 c(t)



Proof: Ae 1 we 1 df- wat< ft-dt o an c
T~dt(`lT dC dt ~O c

2 dt

The above propositions capture the classical thmen- dG
~ dynamic ideas governing the behaviour of heat en- .. dt '
gines. If we define the notation f+ to mean the
positive part of a function f, i.e., f+(t) = where
maxLf(t), 01, then Proposition 5.3.15 implies G Ee _TS

-- , 5 dt + T dt 1 kT (n 27 + ln +1)
0 T 2 c 2

Let T = sup {T(t)} and Tmin inf {T(t)}. 1 kT(ln 2n + ln Ee)max min 20<t<T 0<t<T
Then

'But
1 TQ+ 1

0 max Qd Tmn I Q - Q+)dt kT < p, -In p >

of < Tmrin = E + kT(ln 2r + lin C e) .
-J~A - T

T +t max

| Q dt - . = E -Ge
0

So

But, using Proposition 5.3.12,

d kT < p, -ln pe>

f Qdt f Wdt dE dGe
- O 0 = dE dGe

dt dt

~So -<= Q - (W - We )
T

fI Wdt T -
0 < max min By calculation

T - T 
f Qdt mS =-k< p, ln p>
0

Thus for a system at a constant temperature T
which is the classical bound on the efficiency of a
heat engine. d as e d T

Define an equilibrium trajectory (e(G) as dt ke >
7e(t) = kT(t) c(t). Under suitable smoothness p
assumptions, the function

a t t· .= -(W - We) - D < -(W - We) .Z*(t) = lim kT (-)c(-)
e+0 Deinand for any periodic trajectory

= kT*(t)c*(t)

is a solution of dt ed
, ' O O 

- da(t) -2 , g c (t) + 2kT*(t)
dt c (t) Through the appropriate definitions, the dif-

fusion process q has acquired a thermodynamic flavour.
whrt c*t In the next section, we show such is also.the case
where c*(t) li c) and T*(t) = li T() [WL 79]. for a Markov chain model of muscle contraction.
Se0

For a system at a constant temperature T the 5.3.2 A Model of Muscle
work extracted from an equilibrium trajectory

The mechanism of striated muscle contraction is
explained by 2 hypotheses [HUX 741:



(1) The length of striated muscle changes through set of actin-site-2-attached states. Let N be the
a sliding movement of thin (actin.) filaments cardinality of the state space E (which, for the
relative to thick (myosin) filaments. n viUVO reaction mechanism of (PRO 811, is 27).

Let the position (relative to the cross-bridge)
(2) Active movement results from a cyclical inter- at time t of the set of actin sites which were

action of projections of the myosin filaments -- nearest the cross-bridge at time t0 be given by
cross-bridges--with actin sites. The cross-
bridges act independently of each other and can X(t) R .

. be modeled as passive instantaneous elastic
elements in series with active force generators. Define an equivalence relation - on JR by

The first is the sliding-filament theory, now uni- x = y if and only if Ix-y = n, n, n=0,1,2,... ,
versally accepted; the second is the cross-bridge
theory, now widely accepted. where X = 385 A is the actin period. The set of

There are constraints upon any model of muscle equivalence classes of R.modulo - is
contraction. Hill [HIL 74, HIL 75, HIL 771 has
presented a theoretical formalism combining statisti- IR/ = A = [-X/2, X/2)
cal mechanics, thermodynamics, and chemical kinetics
to delineate the class of models which can describe For any x £ JR,we shall denote the equivalence class
energy transduction in muscle. We have been able to containing x by [x] and consider [x] as an element
develop a theory which yields the same results, but of A. Then the equivalence class [X(t)] s A is the
rests on a solid mathematical foundation. In position (relative to the cross-bridge) of the set
[PRO 811, we have presented a detailed treatment of of actin sites nearest the cross-bridge at time
a biochemically- and structurally-based model of t--the actin position at time t.
muscle contraction (which contains proofs of many of Given the initial actin position x0 at time tof
the theorems quoted here). the positional process {x(t), tsT} is deterministic,

We consider a muscle fibre as a collection of i.e., it is described by the ordinary differential
independent units. A unit is one cross-bridge equation
associated with a one-dimensional periodic array of
actin sites. A cross-bridge can bind to only a group dx(t)
of 2 sites per period. The site separation s = 55 , dt -v(t); x(t0) = xO,
the period X = 385 A, and the separation between the
cross-bridge joint and the actin site 2 = 150 A. As where v(t) is the shortening velocity. Define the
in Figure 5.3.1, we let x be the position of a point density function p(t,x) by
on the actin filament equidistant from the nearest 2
sites relative to the ~ = 90° position of a cross- x
bridge (which we shall henceforth call the actin 2 p(t,x)dx = Prx< x(t)] < ,
position), x £ [-X/2,A/2). Due to the lack f 

register between the myosin and actin periods, the 1
actin positions x should be distributed uniformly

over a 385 A interal. for xl, x2 S A, xl < x2. Thenover a 385 A interval.
We shall characterize our structural unit of a

cross-bridge and its associated array of actin sites Lemma 5.3.17.
by the cross-bridge conformation (the biochemical
state of the cross-bridge) and the actin position The density function p(t,x) satisfies
(the position of the nearest set of actin sites
relative to the cross-bridge). In a contraction, as
in Figure 5.3.2, we can imagine a set of actin sites ap(t,x) ap(t,x)
appearing to the right of an unattached cross-bridge. at x p(,x) 
The cross-bridge will execute a random walk through
a sequence of biochemical states' In any attached
state, the cross-bridge will assume an angle de- There is thus no diffusion term in the positionalstate, the cross-bridge will assume an angle de-
termined by the actin position and the site to which process Let/2
it is attached. However, the angle at which a cross- {
bridge will be found attached with greatest prob- x --
ability depends upon the biochemical state. /2

Consider a single structural unit of a cross- Then
bridge and its associated array of actin sites.
Let Theorem 5.3.18.

T = [to0 ,) Given (5.1) with P0 c Px' the solution p(t,x) C Px,

be the time set of interest. Let the conformation of t > t
the cross-bridge at time t be given by

Given the initial actin position x , or equivalent-
f(;t) 'e E = IuvuII'' , ly, given the positional process {X(t?, tET}, we

- ....shall assume the conformational process {~(t), tT}-
where I - {1,2,...,9} is the set of unattached states, is a Markov step process characterized by a set of

s N(N-1) transition rate functions (aij the rate for
I' = {1',2', ....9' }is thg set of actin-site-l- . the transition j-+i)
attached states, and I' - {1'',2'',...,9''} is the



{aij(t) aij (X(t)):i,j E E, isj, tT} : A Pr{(t+) = iji(t- ) = j}, tET,

associated with the directed graph for the state to be given by
space E (Figure 5.3.3). Assume intercommunicating
states with a.. # 0 if and only if aji # 0. Let + 1 { ',i

A, otherwise
A =(aij) ,

Let
where a.. = a.. The transition rates will have

-33 ifj I pi(tlx0) i= p(t,ilx0) = Pr{~(t) =
different values at different temperatures and-at
different concentrations of ATP, ADP, and P.. In 0
active muscle, on the time-scale of cross-bridge
cycling, nucleotide concentrations are maintained Then (tfxO) (p. (tfxo)) satisfies Kolmogorov's
constant by external reactions. Thus to describe forward equation
the thermodynamic properties of muscle we can con-
sider the transition rates at a fixed temperature dtj) t
:and fixed concentrations of ADP and Pi, but para- A
meterized by the time-independent ATP concentration dt , t (tlx
aC1R+. So 0

aij = aij(C,t) = aij(a, X(t))

A = A(a,t) = A(a, X(t)) . tsT-T ; (t 0fx) = (5.3.5a)

Specifically, referring to the directed graph for E,
and the boundary conditions

Kji (X(t))a, (i,j) E {(2,1),(2',1'), p(t+x0 = +p(t-x ,tET x (5.3 5b)J2.(t Ixg) - P p(t + ,= tsz , (5.3.5b)

(2'',1' ')} 
where

Kji(X(t)) [ADP, (ij)2{(9,l),(9,l), (P)
aij (a,X(t)) (9'','')} Let

x(t) = IxO - v(T)dT]
Kji(X(t))[Pi] , (i,j)c{(6,7),(6',7'), to

(6'',7' ')} andand
pi(tlx(t)) = p(t,ilx(t)) = Pr{f(t) =

.ji(X(t)), otherwise , il[X(t) ] = x(t)}

(5.3.4)
=- Pr{Q(t) = ilX(t0 ) = xO}

where K.. is the rate constant for the transition
-i. p .J t

Muscle structure dictates that a cross-bridge = Pr{f(t) = ilx(t0 ) = [x(t) + f v(T)dr]}
can bind to only the nearest set of actin sites. to
With finite detachment rate constants, there will = p.(txo) _ [x(t) + f v(r)dT]
be a nonzero probability that a cross-bridge will it x
not detach from an actin site by the time it has
passed into the range of the next set of actin
sites. To ensure detachment with probability one Then p(tlx(t)) = (pi(tjx(t)) also satisfies
and avoid introducing singularities in the parameters,
we let dg(t x(t))

T = {t:[X(t)]=-X/2} = {t: x- fv()dt dt A(ax(t) (t(t))

'0 '

-X/2}) (tolx(to)) _ 

and require boundary conditions at any t S T . and the boundary conditions

The set Tx0 is the set of times at which the cross- Et + 
bridge passes from the range of one set of actin P(t x(t) ) =
sites to the next. 0

By definition, detachment with probability one Let - -

is the occurrence with probability one of the
transitions i' + i and i'' + i. Thus we require E = > 0 for all icE, E pi = 11.



Then
Then ? pi (t,-X/2) = Pi(t,'/2) = 0, iI'UI'

Theorem 5.3.19. Let

Given 5.3.5) with OPE the solution (tlx 0) = P = { Pi(x) > 0 for all iSE, xeA,

p(tlx(t)) e PE' t > t E 0 X ~~~~~~~~~~~~~~/2
Note that P(x)dx 

-X/2
dp(tlx) 32(tlx) aE(tlx) dx

dt - at + aX Tt Then

= a9p(tlx) ap(tIx) Theorem 5.3.22.

v(t)
at vt ax Given (5.3.6) with pIIp (x) c P, 0 s E, and

P0(X) S Px, the solution k(,x) S p, t to '
So for xeA p(t x) satisfies A singlestructural unit is characterized at

time t by the cross-bridge conformation S(t) and

ak(tlx) ap(tlx) the actin position X(t). The joint process {E(t),
t v(t) a + A(a,x)p(t x); X(t), teT} is Markov. Assuming a lack of coupling

at DXamscefbe eoebetween structural units, a muscle fibre becomes
an ensemble of independent copies of the process

P(t Ix) =P {f(t), X(t), t£T} and the properties of a structural
0 .0. ~~~unit are the properties of the ensemble.

The boundary conditions (5.3.5b) become A muscle fibre is a thermodynamic system. The
system 7 is thus defined as (5.3.6). The state of

p (t,-X/2) = p. (t,X/2) = O, isI'UI' .the system 7 at time t is the vector probability
2.~i~~~ 2. ~~~~density function p(t,x). The state space is the

space P of all density functions of the process. We
Note that we can distinguish between p. (tlx) now show the system = has the expected thermo-
PrtE(t)=iJX(t)--=x} and pi(tlx0) = Pr{[(t)=ilX(t0)-x0) dynamic properties.
by writing

£(tlx) = (ti .x)I + t vdDafinition 5.3.23.

0XO=[x+f v (T) d-C 
~~~~~~t ~We shall call the unique solution of

to~0

{pat,.), tpex)

Define the density function p.(tx) = p(t,i,x) him p(t,·) - ~() .fo We now consider the joint process {{(t), XX(t) i E IUbyI toT}. where v Sand a are independent of time, a steady.

1 If~state. We shall say the system .evolves to a steady state,

steady statP() is the (un) if, given torm PDF.

Then joint process {(t),X(t),tT is Markov.

Lemma 5.3.21. ~~~~~~~~~If p0 (·) were not a uniform PDF, then p(t,x) =

Th dnstyfucio (~x) ats p0((X+vs(t-t 0 )I) would be periodic with periodDefine the density function p ( t,x) for v on the orderof a velocity of)

aftx) a(tx) contraction. The for ce (5.3.10) exerted) T by a musclex2

ax If the system A(,x)(tx) evolves t o a steady statelocity

- ~~contraction shows no such oscillations [JUL·75].(5.3.6) Furthen ( )rmoreis the lack of register between the myosinThen

t0,x~) = p0(x~) =P O(x) and actin p (er iodssuggests the functiorm PDFn p(t,x) de-Lenmma 5. 3. 21. P0 ([x+vS (t-to)1]) would be periodic with period

Theenstyun oscribing the deistribuntion (at time t of actins-fies S- ~ 10-p sec, for v on the order o f a velocity of
v
tcontraction. The forc e (5.3.10) ex erted by a muscle

a =_v(t)x +A(,x)p_,x) fibre in steady state during a constant velocity
-- ~: ~~~ contraction shows no such oscillations [JUL-75].

(5.3.6), Furthermore, the lack of register between the myoscin

P~~to"X) Pao (X) Ropo (x) and actin periods suggests the function p(t,x) de-
scribing the distribution at time t of actin
positions x is the uniform PDF. We shall therefore



take pO(x) as the uniform PDF and show that the ap (t,x) -ap (t,x)
system 7 evolves to a steady state when v=vS and = v(t) + E J (t,x), iCE.
ca are time-independent. a

With p(t,x) the uniform PDF,

The steady state condition vs a + Z J.. = 0 or
(tx) (tlx)p(tx) x . 1 

Z J.. 0 for vS = 0 does not exclude coupling
= A(tlx) J

.. . ................................... - - ..... between fluxes and rotational fluxes. When the
fluxes are identically zero, a steady state cannot

0 f=)x0 =x(t)+ f (t)dT be maintained by any cyclic mechanism. We dis-
x0[xt) t tinguish such a steady state as an equilibrium state.

s . Definition 5.3.29.
With v=vs time-independent, Definition 5.3.29.

t
A (a,[x- f v(T)dTJ) -A(a,[x -vS*(t-t )]) The equilibrium state is that steady state for

which v = vs = 0 and J = 0. We shall use the
to notation ee for the probability density function of

= A(a,[XO-v ((t+-)-t )]). the equilibrium state. -

The thermodynamic condition of detailed balance
Theorem 5.3.25. is equivalent to equilibrium by definition. The

thermodynamic condition of microscopic reversibility
For v = vs # 0 time-independent, is that of time-reversal invariance, as follows.

lim. (tJlx) = p(tlxo) = P tt+ s |xO) Definition 5.3.30.

We shall say the joint process {~(t), X(t), tOT}
and s (tJxO) is independent of the initial distri- is invariant under time reversal if, for all t, s CT,

bution p(toxO). * i, jEE, x, yeA,

Theorem 5.3.26. p(t,i,xjs,j,y) = p(s,i,xlt,j,y),

For v--vs time-independent and p(t,x) the uniform where p(t,i,xjs,j,y) is defined by

PDF,

lim R(t,x) = RS(x) = R (tO x2
s t+00 0 XO=x I p(t,i,xls,j,y)dx = Pr{f(t)=i,

and p (x) is independentof the initial distribution x1 <x(t)<x2 1(s)=j,X(s)=y}

o (X) and the time t. g

In a steady state, the average behaviour of a for XlX2EA, xl<X 2

single cross-bridge over the time period s yields

the time-independent state of the system.v Theorem 5.3.31.

Corollary 5.3.27.
The system Z is in the equilibrium state if and

The limiting distribution only if the process { (t), X(t), t£T} is invariant
under time reversal. [

s(tlx =
) = 0pS([x0 -vS(t-t0)]) ' As is to be expected from kinetic theory, we can

show
We can distinguish the equilibrium state as a

particular steady state, as follows. Theorem 5.3.32.

Definition 5.3.28.
A steady state is the equilibrium state if and

The fluxes of the system Z are the probabilistic a... (a,x)
fluxes only if v=o and in = for

closed path a.. (a,x)
j1

Ji.(t,x) =ai.(ca,x)p.(t,x) - a.i(Ca,x)pi(t,x), all xeA and for all closed paths of the directed
1) 3.) ) j3. 3. graph associated with the state space E. ·

i, jeE, xcA The equilibrium constant for the reaction i++j

and the deterministic flux v(t). * K.. =
13 K,.

The fluxes Ji are elements of the matrix J = (J. .)...
Note that j..= -J.. We can rewrite (5.3.6) as13 Corollary 5.3.33.31 ii

A steady state of (5.3.6), with A given by (5.3.4),
is an equilibrium state if and only if v=O and for

,, . .. .. I- .. .. .. .. ..... .. . . .. .~~



-all xeA, units of entropy.) We define the free energy G of
l s v ....the system Z as

K..K
Kij j JZ ' = 1 for the closed paths (5.3.7a) X/2
K.3 .i i Pi(t,x)

G(t) = Pi (t,x)In dx , (5.3.9)

-k/2
i C- j

-- ·- o~~----~ i $(5.3.7b)Ai 5 j.3.b) ,the entropy S of the system E as

;~~~ Mt,,l dx

= 1 for the closed paths (5.3.8a) S(t) =- f Pi(t,x)] n e ,Kii, ,K i P4 j,,x)
-joP 1(-X/2)

i C- j and the internal energy U of the system Z as

ii f ~(5.3.8b) 
i I jog ,

and U(t) = -- I pi (t,x)lnp e (x)dx

= [ADP][P ]
-X/2

e e KIyD
The input u is a force -- the chemical potential

where i~nfD = ' *1, 1 of ATP--and the input v is a flux--the shortening
Ywhere KH = K ,l"l" velocity.

In equilibrium, we have the relation Definition 5.3.34.

e e
J. ix) = 0 = a.i (x)p(x) - aj..(x)pi(x) . The flux J conjugate to the force u is defined

as

So the equilibrium state Ee(x) is determined by - a d
A d G (t))

Pe (x) a.. (e ,x)
e 1 e

pe(x) and the force F conjugate to the flux v is defined as
Pi (x) aji (e,x)

F ( d G(t)) _=O, v= ' (5.3.10)

P p(x) = V .i X
From (5.3.9) we compute the rate of change of the

Note that Theorem 5.3.32 guarantees free energy as

e d" 'e pi(tx)
= 1 = ( = at Pi(t,x)ln e x

closed path a..o. ,x) closed path pe(x) -X/2 i(

X/2 api (t,x)
In order for the system . to evolve to the + Z ft dx

equilibrium state at some ATP concentration and zero i -J
shortening velocity, we must choose the x-dependence
of the parameters Ki. such that (5.3.7) and (5.3.8)
are satisfied for ali xeA. As physical observation / r2
confirms the existence of the equilibrium state, = 'v(t)
i.e., a steady state of zero force and zero flux i '-/2
.(Proposition 5.3.36), we shall sa choose the para-
meters K... Then by defining u = 9 n -a, the system

Z will evolve to the equilibrium statee if and only + Jj (tx in dx
'if u=0 and v=0. We shall consider the system as Pi (X)' Pi (x)
:controlled by inputs u and v.

Given that the uncontrolled system evolves A/2
to the equilibrium state, one might wish to know
how far the system . is from equilibrium. The state i j< J

functions of thermodynamics can be thought of as -X/2

distance measures on P, the space of all density .
functions of the process {M(t), X(t), teT}. (We a (
choose a temperature scale such that Boltzmann's a. n ia)/ ji dx
constant k is unity and by considering the system e e
Z at a constant temperature take all quantities in aij (e x)/aji (a x)



pe (Xx) p. (t,x)
i -/2 I- X/2 Pi a cross-bridge in state i and at position x and

il C JI[+ a j i ttx+ Z J .(tx) an x a ty) as
j ~i j<i - i aji((atx)pi(t(x) ay) 

X/2 the force exerted on the actin filament by a cross-

= 2U J (J2l(tx)+J2,1 1(tx)+J 2 1 1 1 1 (tx))dx bridge in state i and at position x. Then
-X/2

v~~~~~~ ~F- = () E ·
-vt) £ J tlnpe (x) dx ee b x=Xst) 

'% / 2 PF (t) W 

becomes the mean force exerted on the actin filament,
n1 J . (t x ) which can be observed as an output of the system £

j<i -X/2 3 jix)Pi force F are outputs of the system Z, observable as

expected values.

From Definition 5.3.34 we obtain Definition 5.3.35.
X/2

f_ fThe work flow W is given by

J(t) = (J2 1 (tx)+J2 11 1' (tx)+J2' 1'' (t,x))dx-X/2 W -= -Ju + Fv. 

X/2

F(t) =(tx) - npi(x)dx Define the external forces Fij as-(t) Pi(t,x) a - nx .
1-X/2 Lax ia..(a,x)

As( P.) a. =(ax) = i, j£E, j<i,

d= t E{(Total transitions from 142, l'+2' 1' '1 2'') the internal forces Xij as

-(Total transitions from 2+1, 2'+1' 2''+1")1, [ Ji (tx) 1
Xij(t,x) = in 1+ a.j(ax)Pi(twx ) i jE, j<i,

J is the mean ATP flux, which can be observed as an J 1 J
output of the system £ [PRO 811. As

the heat flow Q as

A/2 p(x)anthenrppd-X/2(t) = N I pid(tx) F ln d-1 -/2

X/2 P (t) and the entropy production D as

P. N/X p.tx ; dU=dx 
i pe(x) D = .. (tx) X(t,x)dx-X/2 Jij X ij

i j<i_i ~-X/2 (t i dt S Qx)+ D QX/x

(t) The entropy production D>O, with equality if and
- E n only if the system Z is at equilibrium. The first

Pw (X) x=x(t) and second laws of theromodynamics follow:

and d

1X/2 p (xG (t) = Pi(t'x) in dx

d

= E n

M( t ) In a steady state, the state functions U, S, and
G are time-independent. So in steady state W = Q =
-D < 0, with equality if and only if the steady
state is the equilibrium state. As the heat flow



Q and the entropy production D are independent of the steady state s(. ) is reciprocal if the operator
equilibrium state, the work flow W is independent of
the equilibrium state in steady state. In steady Hs (6v,6u) - (6J,6P)
state we can write

is self-adjoint, where-(6v,6u) and (6J,6F) are
related by the dynamical system

Fv + D> Fv _ a p
-,,~ ~ ~ ~ ~ ~ ~ ~ ~ ~~"i .. -u %-: _-A a: - 6o (5.3.1la)

i.e., the free energy of ATP (u) is both dissipated A

as heat (-Q = D) and converted into external work
(Fv). The efficiency of muscle is the efficiency of & = C SP+ D6u (5.3.11b)
the transduction of chemical work flow from the
reservoir controlling the ATP concentration to the 6F = Cp , (5.3.llc)
system (Ju) into mechanical work flow from the
system to a weight in the surroundings (Fv). We
thus define the efficiency n as the ratio of the where 62 is defined as the solution of (5.3.11a) and
mechanical work flow to the sum of the mechanical the parameters of the system are defined by

work flow and the heat flow from the system to the
surroundings (-Q). So ap (t,x)

' AQ = v ax + A(Ca,x) Sp(t,x)

n = -..=._ < 1 in steady state .

Fv-Q Ju B (bi

Although J and F are averaged quantities,
we can still show that they both vanish only in p(x)(ij) (1,2),2
a steady state that is the equilibrium state. ij i

__________ ____ b (X)= K.. (x)ap.( x),(i,j)E:{(2,1), ( 2'l'),(2'',1'')}
Proposition 5.3.36.

In a steady state, = O if and only if the

steady state is the equilibrium state.

Using Corollary 5.3.27, we can transform the akS(x)
expressions for the mean ATP flux and mean force to
integrals over the time period X/vS. -2 ax

Proposition 5.3.37.

In a steady state, for any TET (i,j)c{(2,1), (2',1')(2'',1'')}

s %/2

(ij){ 2,1), (2'1'),(2'','')} pj(t,x)-Kij(x) pi(t,x)dx
(ij)e{(2,l) , f1(K2

-X/2

T+(X/vS )

I (aij (a,[x0 -v (t-t) ) X /2

28 = . I * Pi (t,x) ax npe(x) d

PJ (tlx0)-ai (a,[x0-vs(t-to )]p (tlx0))dt

T+ (X/vs )

S D = (K1 2 X) (X)+K1,2,(X)P,(X)+Kl,,2, (x)
Pi (tlx0)

i -X/2

, s * P1,,~ (x))dx

1ntdt .

[ axn ix x= xI[o vs t-tc)]] dt. Let the operators

3 BB) : JR2 + L2 (A, RN)
Close to equilibrium, we can show that the 2 -2

'linearized input-output relationship of the system

reciprocal relations of thermodynamics. L C = : N R

Definition 5.3.38.

! We shall say the system linearized about a Then



* : L2 ( . .. .. . Also by calculation

X/2 "
e

| I bI
| = diag(pi (x))A' (ae,x)diag

X12 - ~(i (x)i(x) 

B*~ = I/2 (N. = diag(pe)A*diag

B~ 2apiX*-L (xt) Pi

--s i -(x ) d x

Hence, for the system Z linearized about an equili-
brium state

D 0

2. - (C; CI) :,JR- L(AhJR)H ffe(t) = CeAtB + dS(t)
0 0

1 C C (c )

- (g 8' dI e ]diag(pi) e diage

Kij(x)Ct, (i,j)s{(1,2),(1',2'),(1",2')} i i

ci(x) -Kij (x), (i,j)s{(2,1),(2:1'),(2" ,1")1 D 

· diagq(pC* + 6 (t)
O, otherwise IC

C2 = C2 DX , nP 

c=C=[a in·13~i(X)]~~~~~ = B*eA* t C* + ' " 6(t)

Lemma 5.3.39. 0 

If the linearized system (5.3.11) is a continu- He*(t)
olusly controllable and observable realization on
L2 (A IRN-1) of the input-output relation between
(tu,Sv) and t6J,~F), then reciprocity implies the(t) is defined for t +

existence of an operation T such that

(->)
AT = TA*

We prove sufficiency, given the linearized system
CT= B* (5.3.1D) is a continuously controllable and observa-

ble realization on L2(A,3RN-1) of Hs , by proving

Theorem 5.3.40. 1 its contrapositive, i.e., we prove that if the
steady state is not an equilibrium state, then the

The system Z linearized about the equilibrium system E linearized about the steady state is not
state is reciprocal. r rrrreciprocal. Using Lemma 5.3.39, we need only show

that no T exists such thatsystem (5.3.11) is a continuously controllable and
observable realization on L2(A, IRN -1) of Hs, then the AT = TA*
system Z linearized about a steady state is recipro-
cal if and only if the steady state is the equili- = B
brium state. 

Proof: for a nonequilibrium steady state.
If such a T exists, then

For the system Z linearized about an equilibrium
state, we find

By Theorem 5.3.26, the steady state solution p is
e unique. So

b (x) -.p.(x) c (x)
T1 -R

s

ape (x)
a e (a 

ax = _Pe (x)(- x lnp i) But then,

So l *1= o

B = -diag(p )C* - ' :-- while

'C =B*r-diag [ 1



C(T1) = C s
dissipation inequalities related to the second law.

....- P ; ..... We have derived expressions for the ATPase rate

and contractile force and have shown a simple
LJ - ' method for calculating the ATPase rate and con-

-- O0 - tractile force in steady state. In [PRO 81] we
isJ show how the values found for the structural para-

meters and rate constants can be incorporated into
for all nonequilibrium steady states, by Proposition a model to predict the physiological properties of

-5.3.36. So no such T exists for a nonequilibrium muscle. Thus here we have shown-that our class of
steady state. U models is plausible as an explanation of energy

transduction in muscle. In [PRO 81] we prove that
Equilibrium is equivalent to time reversibility the model in our class of models which has its

defined in terms of the conditional probabilities, parameters determined by biochemical and structural
as in Theorem 5.3.31. We now relate reciprocity data mirrors reality by predicting the physiological
of the system E linearized about equilibrium to a data.
form of time reversibility defined in terms of
the work flow, using a result of Day [DAY 71]. 5.4 An Overview of the Subject

As the linearized system is time-invariant,
we let t = -c without loss of generality. Then 5.4.1 Preliminaries
for first-order deviations of the inputs u and v
about their equilibrium values (of zero) the work In this section, we present the outline of an
flow axiomatic framework for thermodynamics assuming a

Markov process description of a thermodynamic system
W(t) = -J(t)u(t) + F(t)v(t) -E. Our purpose here is to show how the results apply

. iu to both continuous-state Markov processes (Markov
_u M t)u (s) diffusion processes) and discrete-state Markovj He(t-s) [ ds . processes (Markov step processes) and demonstrate

_. v(t) v(s) how seemingly-unrelated examples fit rather nicely
into our framework.

Consider a Markov process {X(t), tET}, whereThe total work done by the system E is thus
T = [t o,) is the time set of interest. Let the

t~ rX~~~~ ~process X describe the motion of a particle in a
W (u ( -, v ( - ) ) = J W(t)dt . state space X. As the thermodynamic system E,

-CO take an ensemble of particles -- a collection of
independent copies of the process X. The state at

We shall say the inputs u(-) and v(-) are the time t of the system E is then the density function
dynamical reversals of the inputs u(-) and v(-) if Pt() = p(t,-). The state space is the space P
for all t E 3R,

of all density functions of the process X.

-(t) = u(-t) Statistical mechanics considers a theromdynamic
system as an ensemble of particles. The theory of

X(t) = X(-t) . the Brownian motion of a particle in an external
·field of force is based on the Langevin equation,
which describes the evolution of a Markov process

versals of the inputs u(. ) an d are the dynamical (e.g., KAC 69 and [NEL 67]). Thus the ideas
tversals of the inputs u() and.v) if for all that a macroscopic thermodynamic system is an en-t E /R,

semble of microscopic particles and that the motion

u(t) = u(-t) of a microscopic particle can be considered a Markov
process have a solid basis in physics. Starting with

'4~a~~ dX(t) d X = -(collection of independent copies of a Markov process --v(t) = -- that a thermodynamic -v(-t)s
dt dT we proceed to develop the theory of thermodynamics

rigorously, which is an original approach.

Then The transition density function p(t,xis,y)
satisfies Kolmogorov's forward and backward equations.

Theorem 5.3.41. The distribution function P(t,r) = Pr{X(t) e r} =
p(t,x)dV. As the density function p(t,x) =

If He(t) =H (t) for all tE3R ,then for theIf Hle(t) = e*(t) for all tc~R+,then for the E{p(t,xls,y) } s<t, Kolmogorov's forward equationfirst-order deviations of the inputs u and v about s<t olmogorov's forward equation
their equilibrium values and for all piecewise
continuous u and v the total work done by the systemt A
Z is invariant under the dynamical reversal of the at t
inputs. *

In this example, we have shown that our class defines the evolution of the state pt on P. The
of models which describe energy transduction in operator of the backward equation is the adjoint
muscle exhibits the properties required of any model of A -- A*.
of a thermodynamic system--the evolution of the The state space X can be continuous or discrete.
system to a steady state, the equivalence of time- For a discrete state space, we give a topology to
reversal invariance and the equilibrium state, the set X by associating a directed graph with X.
reciprocity of the linearized system if and only The expressions of vector calculus can then be
if the linearization is about equilibrium, and defined for a discrete state space.

:,__~____~_,, ~ __~,.__~..~......~..__~ ._. . , , .-



5.4.2 Characterizations of Equilibrium
5.4.2 Characterizations of Equilibrium if F(x)-dx = 0, for all closed paths CCX and an

equilibrium state is a homogeneous state if and only
We can write Kolmogorov's forward equation as if F=.

The connection between the intertwining equation
d f p(tx)dV 2 - n * JdS time-reversal invariance, and the condition on the
dt d = external parameters was first studied by Kolmogorov

r ar in the context of Markov process theory (and using a
different terminology). Recent references are

; for all regions rc X, where we define probabilistic [KEI 79] for Markov chains and [KEN 781 for Markov
fluxes J in terms of the state pt and the parameters diffusion processes. However, these ideas are dis-
of the operator A of the forward equation. If a cussed in the framework of time-reversible Markov
unique invariant solution of Kolmogorov's forward processes and not connected to thermodynamics.
equation is the initial state, we say the system For continuous-state Markov processes, we
Z is in a steady state. The steady-state condition are able to characterize processes for whichf n.J dS = 0 for any region PcX does not exclude p(t,xls,y) 2 p(s, Rxlt, Ry) in steady-state, where

fn-J dS = 0 fo any regio raX does ot excludeR is a linear map from X into itself. If R is a
ar diagonal matrix with entries either 1 or -1 (a
circulation around 3r, the boundary of r. When the signature matrix), then p(t,xjs, y) = P(s, Rxit, Ry)
fluxes J are identically zero, a steady state can- corresponds to the condition of dynamic reversibility,
not be maintained by any cyclic mechanism. We thus a special case of which is discussed by Anderson
call that steady state for which all fluxes vanish [AND 80 .
identically an equilibrium state. The thermodynamic
condition of detailed balance is equivalent to 5.4.3 Interactions of a Thermodynamic System with
equilibrium by definition. We prove a state is an Its Surroundings
equilibrium state if and only if the intertwining
operator equation To model interactions of a thermodynamic system

with its environment, we describe systems with time-
AM = M A* dependent parameters. The evolution of a Markov

Pt Pt process can be described by a stochastic differential
holds, where M is the operator multiplication by equation. We shall say two thermodynamic systems are

Pt interconnected if the parameters of the stochastic

Pt. We then use this result to show the system £ differential equation describing the evolution ofis in equilibrium if and only if the condition of one process (or both) can be written as functions of
stime reversal invariandc holdsyif defined as itithe other process (or both). The state of an inter-

p(t,xis,y) = p(sxlty) for all t, seT, x, yeX. connected thermodynamic system is the probability
When I(X) h | dV < a, there is an equilibrium density function for the joint process.When P(X ) _i dV < -, there is an equilibrium

X . The external and internal parameters of the
state which is independent of x, which we call the joint process are functions of (x , x2), where

x1 ~ X1 , wic ca 2 , and X1 x X2 is be state space ofhomogeneous state. The homogeneous state cor- X1 e X, x2 e X2 and X X X2 is e state space of
responds to the thermodynamic condition of uniform the joint process. We in addition take the parameters
composition. Using the result that the system 7 as functions of u(t, xl, x ), where u is an external
will evolve to the homogeneous state if and only control applied to one-or ~oth systems -- we thus
if the operator A is self-adjoint, we show the allow both open-loop and feedback controls. In the
system will evolve to the homogeneous state if and absence of either work or heat flow, thermodynamics
only if the condition of positional reversal in- suggests a system will evolve to equilibrium. We
variance holds, defined as formalize this thermodynamic idea with the as-
p(t,xls,y) = p(t,yls,x) for all t, s e T, x, yex. sumption that a thermodynamic system will evolve to

The condition of time reversal invariance can equilibrium if and only if the system is uncon-
be stated in terms of the joint probabilities as trolled.
p(t,x; s,y) = p(s,x;t,y). This gives a physical Our formalism allows us to control a thermo-
meaning to the condition of zero flux -- namely, dynamic system of interest either directly or by
the system is in the equilibrium state if and only controlling a thermodynamic system to which it is
if for any regions ri, r 2 C X, connected. For that part of the process which

evolves deterministically through the action of the
E {(Total transitions from rl to r) control, we define deterministic fluxes V such that

1 2 for the system to evolve to equilibrium, V must be
- (Total transitions from r2 to P l)} . equal to zero.

We define external parameters F and interfnal .5.4.4 The'Dissipation Inequalities of Thermodynamics
parameters A of the thermodynamic system E.
Knowledge of the internal and external parameters Let us now consider a thermodynamic system E,
is equivalent to knowledge of the operator A. For which may be an interconnection of thermodynamic
a system which evolves to an equilibrium state pe, systems and acted upon by external controls. Given
-Vln pe - F. Thus an equilibrium state can be the uncontrolled system evolves to the equilibrium

state, one might wish to know how far the system Ewritten solely in terms of the external parameters. state, one might wish to know how far the system 
As C ln px)d= 0, for all closed paths C X e is from equilibrium. The state functions of thermo-
if a steady state is an equilibrium state, then dynamics can be thought of as distance measures on
C (steady state isfor alln equilibrium state, then P, the space ofall density functions of the process.
F(xdx = 0, for all closed paths CCX. We prove Define the distance betweenstates p and p

a steady state is an equilibrium state if and only t t



tht 2 p(x) -values F in the case of work flow. The external

,given that X(t) = x, as A(P ,P) = In ( 2 forces conjugate to the deterministic fluxes V are
t t(x) P tVA (p t,e) in the case of work forces and

.The function A has two valuable properties: If (l in the case of heat forces, where
Pt A(1,Pt) in the case of heat forces, where =-V

Pt = the state of the system , and p a describes that part of the system-which evolves
steady state, then E{-Pt A(P (x), pt(x))} = 0. deterministically. If V is independent of x, these

-Furthermore, the dt t t forces can be defined as expected values. If V -V=0,
Furthermore, the function IAI is a metric on JR+. Y

the heat forces vanish.
It can be verified that only multiples of A possess We define the work flow W and heat flow Q as
'these two properties. ew d erthes inner products of the fluxes and their conugate

We define the free energy of the system L. at forces. The dissipation rate D, defined as
time t, G(t), as dS

G-t) =eE{Ad- (x~t)), , - Q, can be expressed as the inner product of the

G(t) = E{A(pt(x(t)), pt (x(t))) , probabilistic fluxes J and appropriately-defined
'conjugate internal forces. The free energy G,

the entropy of the system £ at time t, S(t) as entropy s, internal energy U, work flow Ws heat

flow Q, and dissipation rate D satisfy the dissipa-
S(t) = E{(l1,pt(x(t)))}, tion inequalities of thermodynamics and have the

required values in steady state, equilibrium, and
and the internal energy of the system £ at time t, the homogeneous state, which we interpret as the

U(t), as equilibrium state of an isolated system.

U(t) = E{A(l, pt(x(t)))}, 5.4.5 Reciprocity

where p is the equilibrium state to which the
where Pt is the equilibrium state to which the The deterministic fluxes V and external work

system will evolve when the control is set to zero forces determined by the external parameters F-Fe
at time t. We find can be considered as inputs to the thermodynamic

Pt(x) system £. The outputs of the system E are then the

G(t) = I p(x) In dV > 0, probabilistic fluxes J and the external work forces
Pt e(X) V A(Pt,pe) computed from the system state and in

XPtx ty t t
many cases expressible as expected values.

with equality iff Pt = D' We say the thermodynamic system E linearized
about a steady state is externally reciprocal if the
operator mapping the inputs to the outputs obtained

-$S(t) = - PJt(x) ~in pt(x)dV < in 1(x), by linearizing the system is self-adjoint. We prove
the system E linearized about a steady state is

with equality iff Pt is the homogeneous state, externally reciprocal if and only if that steady

r e state is the equilibrium state. A similar result is
U(t) = - j pt(x)ln pt(x)dV > 0 . obtained for internal reciprocity when we consider

X the map from the probabilistic fluxes, internal

We interpret the free energy as the distance of the parameters, and state to the internal forces. Thus

system Z from the equilibrium state, the entropy under our assumption that a thermodynamic system

as the distance of the system Z from the homogeneous evolves as a Markov process, Onsager's reciprocity

state, and the internal energy as the distance of theorem can be stated precisely and proven.

the equilibrium state from the homogeneous state. Usinga. result of Day [DAY 71], we show that,
just as equilibrium is equivalent to time reversal

(H ) (x) invariance expressed in terms of the conditional

The function -p lxn i-n P dV appears fre- transition probabilities, external reciprocity isJH(112) equivalent to the invariance of the work done by

X p(x) the system E under time reversal of the inputs.

quently in the statistics and information theory
literature (e.g., see [WIL 76]) and is known by 5.5 The Thermodynamic Properties of Markov Step

many names, including the "average weight of evi- Processes
dence in favor of H1 against H , given H1 " [WIL 76].
Aside from incorporating this function, our ap- In this section, we develop an axiomatic
proach is original. framework for thermodynamics assuming a Markov step

External work forces are defined through the process description of the system. The results

Frechet derivatives of the free energy flow presented in this section can be generalized to

dG broader classes of Markov processes, as indicated in
with respect to the fluxes J and V, evaluated the previous section.

at equilibrium conditions. Similarly external heat Consider a Markov step process i(t), tET =

forces are defined through the Frechet derivatives [t ,0), which describes the motion of a particle.

of the entropy flow dS with respect to the fluxes A thermodynamic system E is a collection of inde-

J and V, evaluated aftequilibrium conditions. The pendent copies of this process, represented

external forces conjugate to the probabilistic mathematically as an ensemble of particles.

fluxes J are equivalent to the external parameters The state of the system E at time t is its distri-

F in the case of heat forces and are the difference bution function £(t). The state space will be

of the external parameters F and their equilibrium the space of all distribution functions of the

~~___--_-~~~~~~~~_~~th sp of ll -- 1d1 istr~ibuio fncionasd*D1. of~- the1~----



e(t) process. The steady state conditions Z J. = 0 do not
Assume that {((t), teT} is a conservative Markov

step process with state space E = {1, .......N}), with exclude rotational fluxes. When the matrix of
fluxes J(t) is identically 0 for t > t , a steadyinfinitesimal generator the bounded operator A*,

whose entries are a*.(t). The entries a.. can be state cannot be maintained by any cyclc mechanism.
1] l] We distinguish these steady states as equilibrium

interpreted as infinitesimal transition rates, as states.

Pr{f(t+s) = j(t) = i} = a(t) i at)s + o(s) (5.5.1) Definition 5.5.4. An equilibrium state is a steady
..... l -.. 13 . .. estate for which J = 0. We use the notation p for

The probability distribution of 5(t) is described the probability distribution of an equilibrium state.I
by the Fokker-Planck equation, as

Definition 5.5.5. The process 5 is invariant under

d = A(t time reversal if, for all t, s E T,
d- p(t) = A t) (t)p; (t) p0 (5.5.2)

- P3(ths) = P(s it),
where the entries of the A(t) matrix are a..(t) =
a*i(t). Let P denote the space of all prolability where (P(tjs))ij =Pr {i(t) = jf (s) = i}. 
31 -E ''

measures on E. Then, equation (5.5.2) defines an
evolution. on, -becauseterWith this background, we can establish a numberevolution on _r because the Markov process is

conservative. We will assume the following condi- of results, which can be easily verified:
tions on the process .

Lemma 5.5.6. The state p(t) is an equilibrium state

Assumption 5.5.1. The Markov chain of transitions if and only if

associated with the process i is irreducible. Every A = {diag p (t)}A* {diag 1/p.(t) 
state is reachable with finite probability from every A = {diag (t)}A* {diag (t)} .
other state. *

Corollary 5.5.7.[KEI 79] If the steady state s is an
Assumption 5.5.1 guarantees the following conditions equilibrium state, the N eigenvalues of the matrix

[KEI 72]: A are real and

(1) A unique solution of (5.5.2) exists which > 

is a steady state solution, denoted ES, o = Al > N
with all entries strictly positive.

Corollary 5.5.7 shows that the approach to
(2) The nullspace of A is of dimension 1. equilibrium is without oscillations as all the

eigenvalues are real.
We define a thermodynamic system E as (5.5.2). The
state of the system is p and the state space is P Theorem 5.5.8. The system Z is in an equilibrium

state if and only if the system has time reversal
Definition 5.5.2. The fluxes of the system E given invariance. [
by (3.2) are the elements of the matrix J, where

Note that'Theorem 5.5.8 is the mathematical

J~ij = a jpj - apji, . · version of the statement in Section 5.2 that micro-
Jij = a.ijPj - ajii ' scopic reversibility holds at thermodynamic equili-

brium. In addition to the concept of equilibrium,
We can interpret the fluxes as outputs of the we want to identify the equilibrium state which

thermodynamical system, from the equation corresponds to a uniform distribution. This is done

in the following results.
J.. = dt E {Total transitions from j to i}

3- ETotaL transitions from i Definition 5.5.9. The homogeneous state is that- E{Total transitions from i
to j1 equilibrium state where

e 1
Notice that Equation (5.5.2) can be rewritten as: Pi 

d
dt Pi (t )

= J ij(t) (5.5.3) Definition 5.5.10. The process 5 is invariant under
positional reversal if, for all t, s e. T,

Since the fluxes can be written as expected
values, we consider them externally observable;
that is, the fluxes are outputs of the system E.

where ' denotes transpose.
Consider now a thermodynamic system which does not w
interact with the environment. We model these

interactions as affecting the parameters of A. When Lemma 5.5.11. The system will evolve to the
homogeneous state if and only if A = A' ·

the parameters of A are time invariant, we define a
steady state as follows. Notice that Lemma 5.5.11 and Lemma 5.5.6 provide

a characterization of systems which evolve to

Definition 5.5.3 A steady state sS is the unique homogeneous states. Namely, the system will evolve
solution of the equation to the homogeneous state if and only if the condi-

tions of position reversal invariance hold. To have
; Al s= O · [ time reversal invariance, the system must be in an



.equilibrium state, from Theorem 5.5.8. To have Proof: The proof of this result is a tyical proof

position reversal invariance, the system must evolve of results in this section. By definition,

to a homogeneous state, but it does not have to be

there yet. Thus, we can have position reversal in- J = a..p. - a .p.

variance at any time if A is symmetric, whereas time

reversal invariance depends on having achieved a Hence,

steady state. a..
Adopt the convention that if aij = aji = 0,lnl + 

............. ai .---. . --.--.. ajiPi i--

:the ratio a = 1. With this convention, we de-
a..ji

fine the forces Fij as: = - Xij - F
13

Definition 5.5.12. The force F.. is defined as In addition,

a.. P i
Fij ~ -In aij E In l - = In 1 = 0

i -na.. closed path j

'Hence,
:The elements of the set {F..i; i, j E E, i > j}

~~~~~~~~~~13 ~(Xij + Fij) =0
are called the external parameters of the system E. closed path

The elements of the set a.ji; i,j C E, i>j} are

called the internal parameters of the system E. C With this result, we can characterize the forces

F.. associated with a system approaching equilibrium
Knowledge of the internal and external parameters 13

of the system is equivalent to knowledge ofA as conservative. This result is expressed as:

provided that aji 0 0 for i < i.
provided that for Theorem 5.5.15. A steady state is an equilibrium

In equilibrium, we have the relation state if and only if

e e e
Jj = p aijPj i (a) Z Fij =0 for any closed path of

closed path

Hence, the directed graph of the process.
e

Fij = -ln ( e ). (b) aij = 0 implies aji = 0 for all i, j E. E.

If, in addition, F.. = 0 for all i, j S E, the

That is, for systems which achieve thermodynamic equilibrium state is the homogeneous state. U
equilibrium, the forces are always finite and the The concepts and results described so far apply

parameter set {Fij, a..i; i>j} completely specifies primarily to systems whose parameters A are con-

the process. In addition, the equilibrium state of stant, so that no interactions with the environment

the system can be written solely in terms of the are obtained. For nonequilibrium thermodynamics,
external parameters F... these interactions must be modeled explicitly. This

13 is done in the rest of this section.

Definition 5.5.13. Let X.. be defined as The interactions are modeled through the time
13 dependence of the matrix A. We assume that this

J.. time dependence is caused by an external deter-

X..i = ln(l + -a' ) ministic process controlled in the surroundings
ajiPi of the system. Let a_(t) be the state vector of this

dynamical system. We assume that the coupled

The elements of the set {X..; i>jl are called evolution of the thermodynamic system Z and the
13l]lfre .state a is given by

internal forces. U
It is easy to verify that the internal force dE

Xij is zero if and only if the corresponding flux A(F(t).a(t))p(t); to) P

J.. is zero. Hence, at steady state, the internal

forces are all zero if and only if the steady state J = J(F(t),a(t),W(t))

is an equilibrium state.

Lemma 5.5.14. Consider the transitions of the ( X a V(cat),J(t),u(t)); (t ) = (55.4)

process as a directed graph between the states in

E. Consider any cycle in the graph, also referred
to as a closed path. Then F(t) = F(a(t), u(t))

Xi.. + F.. = ° a(t) = a(c(t), u(t))

closed path 3 closed path 13 . .

where F, a, J are vectors composed of F.., aji, J .,



i > j, and u(t) is an external control. We have Definition 5.5.18. The free energy of the system
assumed that aij = 0 implies aji = 0, so that Fij Z at time t, G(t), is given by

.is finite and F, a describe the system.

G(t) = E{A(pi(t), pi(t))} .
Assumption 5.5.16. For any pair of initial condi-
tions (ao, O), and any bounded, integrable control The entropy of the system 7 at time t, S(t), is given

byu(t), there is a unique solution to Equations (5.5.4).
? When u(t) is zero everywhere, let -(t) E{A(l,-p ..t) I

aS (a%) = lim a(t ; a , .
tom t The internal energy of the system x at time t, U(t)

i s independent of the initial'is given by
Assume that a is independent of the initial distri-
bution SO. Assume that the unique solution of U(t) = E{A(l, pe(t))} ·u

A(F(t (a ),0), a(aS(a ),))S(a ) = Notice that p. (t) depends functionally on a(t),-i . ..o -- -- - from Definition 5.3.17. Hence, all of the state
functions are dependent both on the state of the

is an equilibrium state, and that, for u(t) not 'system p(t), and the initialvalue of the parameters
identically zero, there exists no steady state which a(t), when the system is left uncontrolled. In
.is an equilibrium state. g other words, the state functions depend on the

complete state, p(t) and a(t). Using the
By assumption, the system E will evolve to functional expression for A, we can evaluate the

equilibrium if and only if the process which de- concepts in Definition 5.5.18, as follows, in terms
termines the parameter values is uncontrolled. The of the state p(t) and the reference equilibrium
equilibrium state is unique and depends only on the state pe(t).
values to which the parameters are driven before
the controls are released. p.(t)

G(t) = E pi(t) In ( ) (5.5.5)
Definition 5.5.17. Let pe(t) denote the equilibrium i e (t)
state solution of the uncontrolled system (5.5.4)with
the initial condition a = a(t). We call pe(t) the (5.5.6)
refenence equilibrium Hsate-at time t for the thermo- (t)np t)
dynamic system.

Since the fluxes J(t) are externally observable,(t) - (t)lnpe(t) (5.5.7)
the process a(t) can be controlled externally. Thus, i i i
the parameter set

{F(t), a(t), pe(t), ape ~, Vt), t e T} These expressions lead to some simple relations be-
tween these functions, due to the properties of the

_a ·logarithm function. These relations are summarized
in the following theorem.

can be viewed as the external interactions of the
surroundings with the system E. In what follows, Theorem 5.5.19. The thermodynamic functions G, S,
we show how these interactions can be interpreted and U satisfy:
in terms of work flow, heat flow and other thermo-
dynamic concepts. (a) G = U - S.

The state functions of thermodynamics can be
thought of as distance measures on P . Define the (b) G(t) > 0, with equality if and only if
distance between states p (t) and p2it), given that p(t) - pe(t).
i(t) = i, as

2l (t) (c) S(t) < In N, with equality if and only
2fpit) pi(t)) =ln' (-__i ) if p(t) is a homogeneous state.A (p W , P (t W 1n Pt 2

Pi t) (d) U(t) > 0. U
The function A has two valuable properties: If~1 It is easy to see that the relations between the
P (t) = (t), the state of the thermodynamic system state functions described in Theorem 5.5.19 cor-
T, and p (t) = Ps, its steady state, then respond to the classical relations of thermodynamics,

summarized in Section 5.2, Equations (5.2.1) -
AE d (pl(t), p2(t)), = 0. (5.2.6). In the next definition we identify thedt ti i thermodynamic concepts of interactions with the

Furthermore, the function JAI is a metric on [0,1]. environment.
It can be verified that only multiples of A satisfy Definition 5.5.20. The deterministic fluxes at time
these two properties. Using this conditional dis- t are the elements of the vector V(t) which describe
tance, we define the thermodynamical properties of the evolution of a(t) The external forces Fwj

Fw'V , and Fq'J are defined as:



wJ .... d -... ' ; (c)- Fq'J(s) = 0 if and only if the system
FW, =aJ dt j .G(t)Z.. .- will evolve to the homogeneous state.

FwV a ( dd Gat))| | (d) if a ,... A is of rank N-1i, then FW' (t)=

_--~ dt J=O,V=0 0 if and only if the system Z is in equilibrium
at time t.

q,J 3 d
F3 'J -dt (dt ) J= 0 V=0 Notice that the assumptions on a imply that the

inputs F(t), Fet), (t) and n t are con-

These forces are defined at equilibrium condi- stant. The proof follows from Lemna 5.5.14 and

tions, J = 0, V = 0. The forces represent the ef- Theorem 5.5.15.
fect of variations in the external input set when Recall that J, F are conformally arranged
the system is at equilibrium. A stronger charac- vectors with N(N-1) entries. We now define work

terization of these forces can be derived using the flow as the effect of forces and fluxes.
expressions in Bquations (5.5.5) - (5.5.7). Define

! e Definition 5.5.22. The work flow W is given by
Fe(t) as the vector whose elements F.

e . (t) are

arranged similarly to F, and are deflAed by w = C. FwJ> + <V, wY

ep (t) q .Fij(t) = -ln ( ei ) *(5.5.8) The heat flow Q is defined as
P. =t) <J. Fq> .

Then, from (5.5.5), we can compute the rate of The entropy production D-is defined as
change of free energy as

D = s -Q .

d eddG = . ((d pi)ln(-Pe) + t Pi - P d n p).

Pi Lemma 5.5.23. D = < J,X> > 0, with equality if and

(5.5.9) only if the system is at equilibrium. U

The second term in (5.5.9) drops out because total The proof follows from the identities
probability is conserved. The remainder can be

written as d 
writte J, Fw 'J> - < V, FW'V>- < J,X> (5.5.14)

- G = Z E J.. ln(-) - J.ln (-) +
dt j j 2- Pj ii j ie d U - <JFe > < VFw, > (5.5. 15)

p ln p . V(t)) (5.5.10)
i a a Vt(5i and from the fact that J. and X.. have the same sign.

1 ) Lemma 5.5.23 verifies the thermodnamic statement
From Equation (5.5.10) and Definition 5.5.20 we that entropy production D is positive, and zero
obtain only at equilibrium, as stated in Equation (5.2.4).

Fw,~J(~) _ - Fe (t) * (5.5.11)Using the results of Lemma 5.5.23 and Equations
F_ (t) = F(t) -Fet) (5.5.11) (5.5.11) and (5.5.12), we obtain the first and

FWV (t) =- p() a P e second law of thermodynamics, Equation (5.2.8):
(t) = P i(t) n Pi(t) a(t) (5.5.12)

d

Fq' (t) = F(t) . (5.5.13) dt

The next result characterizes the effects of

these forces. S + D >
d

Theorem 5.5.21. Assume a is constant for t>s. Then,

(a) Fq'J (s) = 0 if and only if the

closed path 13d-t G = -W -D < -W.

system will evolve to the equilibrium state.

(b) FW' (s) = 0 if and only if the system E will The thermodynamic state functions U, G, S,and D
-- olve to the equilibrium state. can be interpreted in terms of the theory of dissi-

.- ~ evolve to the equilibrium state. pative systems as described in [WIL 72]. The free

energy of the system is a storage function, G. The
entropy production D is the dissipation rate of the

thermodynamic system, which is nonnegative. Hence,



the thermodynamic system is dissipative.- We can also obtain the equivalent statement of
In steady state, all of the state functions are the universal evolution criterion of Prigogine

constant. Hence, the work flow W, heat flow Q, and [NIC 77]. Define a variable Z as the rate of
the negative of the entropy production D are all entropy change. That is,
equal and negative. If the steady state is an
equilibrium state, all of these quantities are zero. Z = S
This implies that W must be independent of the
reference equilibrium state, in any steady state. Then, Equations (5.5.14) and. (5.5.15) imply
We will write Ws explicitly as a product of forces - -
and fluxes, with the forces independent of the
steady state, using concepts from graph theory d d P
and circuit theory. dt 

i j<i j
Note that, in steady state, 7 J.. = 0, so i

j 1p
1)j~7 pn -- J. 

Kirchoff's current law is satisfied for the graph of + Z £ lnp) J
the Markov process, with J.. considered as a current.

13
These currents can be written as a set of indepen- drZ d Z
dent loop currents flowing around closed paths of = - + -

dt dt
ithe graph [BOS 65]. Thus,

Ji..j= z llt;ij1 where Z
all loop I d
currents k dt ij 'dt p

i j<i ij

where j = 0, -1, 11 depending on whether link ij
is in loop k or not and its orientation. Note that = - ( i) > 
J.. =-J... i

With this notation, we can write Ws as with equality if and only if the system has reached
steady state. This is the equivalent statement of

Ws = Q = < J,F> by (5.5.13) Equation (5.2.9).
In a macroscopic sense, we can consider the

= )E J F fluxes V and the forces FW,J as inputs to the
ji i ij ij thermodynamic system E. The outputs of the system

canbe viewed as the fluxes J and the forces FwV.

.ij In other words, the inputs to the system are the
= C z£ ai3 IC F external parameters and the deterministic fluxes,

i j<i loop currents k while the outputs are expected values computed from
k the system state. In addition, the fluxes J, the

=- z Ik F.. *internal parameters a and the state p define the
kloop currents closed path internal forces X. Concepts of reciprocity involve

loop currents closed path
k of k these input-output relationships, as well as the

internal relationship between state and internal

Notice that WS is independent of the reference forces. Close to equilibrium these relationships
equilibrium state, because the sum around any closed can be expressed as linear, leading to the nextequilibrium state, because the sum around any closed

result.
path of Fe. is zero.

Consider now an uncontrolled system with time- Definition 5.5.27. The thermodynamic system 
independent parameters. By Assumption 5.5.16, the linearized about a steady state p is externally
system approaches an equilibrium state. By Theorem reciprocai if th e oper ato (vw) ---> (xy)
5.5.21 FW ' is zero; hence, the work flow W is zero. reciprocal if the operator Hs : (vw) ---> (x,Y)is self-adjoint, where (v,w) and (x,y) are related
However, the heat flow is zero only in steady state. by the dynamical system
This leads to the definition of an isolated system.

d s
Definition 5.5.24. An isolated system is an uncon- d u = A + B v + B w
trolled system with time independent external para- + B2
:meters and constant internal energy U. u

= -1- -1-+ Dl

Lemma 5.5.25. The internal energy of the system
Z. is constant if and only if the reference equili- I -C2 -D2 '

brium state is homogeneous. 
and the parameters of the system are defined by

Theorem 5.5.26. If a system is an isolated system, s
then ss

(a) W Q= 0 = a
q,J WJ ss

(b) Fq 'J J 

(c) t S > 0 . a _B 2 --

dtF w ~p



~~a - t .,' , .....Theorem 5.5.28. The system 7 linearized about a
Cl .. steady state is internally reciprocal if and only if

the steady state is an equilibrium state. v

If the linearized system H in Definition 5.5.27
c = a FWIV is a minimal realization on]R/-1 of the input output
-2 ss relation between (v,w) and (x,), then external

reciprocity implies the existence of a matrix T such
ethat

D ...F TT=TD2 av F[ w 2

The system £ is internally reciprocal if the opera- This follows from the assumed symmetry of Hs and a

tor L: (J, a, p) --> X has representation result of Willems [WIL 72]. An

additional characterization of external reciprocity
- is provided in the next theorem.

-XI. =O= -xISs" and
oa x = 0 -x s s Theorem 5.5.29. Assume that the linearized system

H is minimal on . Then, the system X is

Xss is symmetric * externally reciprocal when linearized about a steady
~I55aJ -state if and only if that steady state is an

equilibrium state.

External reciprocity involves the input-output Earlier in this section, we showed that equili-
relations of the thermodynamical system, linearized brium was equivalent to time reversibility in terms
about a steady state. Internal reciprocity looks at of the conditional transition probabilities. It
the relation between the internal forces X and the turns out that external reciprocity is equivalent

internal parameters J, a, and p. We can now to a form of time reversibility in terms of the
characterize reciprocity in terms of equilibrium work flow. This is based on a result of Day [DAY 71].
concepts.

Let t = -~. For first-order deviations of

By definition, we know the forces F 'J, denoted by fw'j, and fluxes V,

in denoted by v, about their equilibrium values, the
Xij In (1 + a. .P instantaneous work flow at time t is

Therefore, W(t) = < [ , Hs(t-S) j > ds

6(i - k) 6(j - 1)

kl ss asi + Jij The total work done by the system is thus

co

ax.. JS. 6(k - j) 6(1- i) TW(fw 'j , v) f W(t)dt 
13

al ssssk1 ss s 3J..
ps a..s p (l +- - ) Define the time reversal of a function f(t) as f*(t).

31 Jiii . . Then, Day's result implies that, for all piecewise

continuous fw'I, v, if the linearized system is
externally reciprocal, then

ax. J (:i - k) TW(fw'j] v) = TW((fw'J)*, v*)

Pk ss p(a jiPi Jij which correspondsto time reversal of the inputs.
For a minimal system, Willems [WIL 72] es-

tablished that the matrix T is symmetric. In our
ax ax : case, whenever the system is linearized about an

Hence, for - d a-nd to be 0, it is neces- equilibrium state, the matrix T will be given by

T = diag(p) .
sary and sufficient that the fluxes J be zero, at -

steady state. This condition also guarantees We can consider linearization of G for small devia-ax e
symmetry because a- is diagonal. Since J is zero tions of p about S . For Equation (5.5.5), let g

be the perturbation of G; then,
at equilibrium states, we have proven: (P p)2

( i - D )2((_ e) T -1 e1 ~i~ 1 e -l e

i P.
!,. , _ X~~~~~~~~~~~~~~~~~~~~P ,.,,,._.. ..... ,._._._. ......-.-.-.-.-. ''..'.'.-'.'.'.'.



This function is called the coenergy of the system in

NWIL 72], and serves the role of a storage function
in establishing stability results.

5.6 Directions of Future Research

We have made the assumption that a system con-

sisting of an ensemble of identical particles,
corresponding to a thermodynamic system, can be

studied in terms of the properties of a Markov
process. This leads to the development of a theory

which corresponds rather nicely to thermodynamics,

describing both equilibrium and nonequilibrium,

linear and nonlinear processes. This correspondence

provides a basis for the analysis of complex physi-

cal systems operating under thermodynamic con-

straints and hope of applying a theory of stochastic Fig. 5.3.2. A set of actin sites appears to the
control in a physically-meaningful manner to such right of an unattached cross-bridge.
*systems. The cross-bridges attaches and cycles

The above results have been developed rigorously through 2 attached states, each with

for Markov step processes with a finite state space different preferred angles. As the

and formally for Markov diffusion processes. angle at which the cross-bridge is
A program for the future should include: attached decreases, the probability

of attachment becomes sufficiently
(1) A rigorous development of the results for small that the cross-bridge detaches.

Markov diffusion processes.

(2) Better characterizations of interconnections

of thermodynamic systems and the reference
equilibrium state.

(3) A generalizaton of the performance bounds

for periodic trajectories of Example A M

5.3.1 to the general case. M

A-- MA 4MOD-MDA D A,- MT-.-- M T----A 2 M T

-- s5f S5A{ A2.M-.M OD.AA M D A1 M Tc MMT- A2 M T
~~·385~t .. t . t .. I

I .. .. j A - M(ODP)e-MM(D P)-A 2zM (D P)M

27S I ACTIt FILAMENT 1 \t ?D A2 D/D Ar M(OP)

\ 1~-150 A .az M.D-Pe . _A. M (D (P)- )
A2 M-DP.i A ·MA& 0mP)l

MYOSIN FILAMENT

Fig. 5.3.2 A directed graph for the state space E.
The states are numbered clockwise, from

Fig. 5.3.1 The actin position x and the cross- M for state 1, Al.M for state 1', and

bridge tilt angle i. For unattached A2

states 4 is independent of x; for 1 2
attached states T - ATP, D = ADP, and P = P.. The super=

scripts *, **, and + distinguish bio-

/2 + tan- 1 (x - s/2)/Z, chemical states.

CB attachment to site 1

71/2 + tan l(x + s/2)/2,
CB attachment to site 2

By convention, x decreases in con-
traction, when the actin filament moves
to the left relative to the myosin
filament (indicated by the arrow).
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6. Conservative and Dissipative Systems (iii) The map x (x;Q): R IRs,t

is a homeomorphism for any s < t.
6.1 Introduction - The significance of this theorem is that stochastic

differential equation behave exactly like ordinary
One'of the important problems in the study of differential equations except on a null set.

interconnected power systems is the transient stabi-
lity problem. This problem has attracted consider- 6.3. Dissipative Systems
able attention recently and methods have been pro-

~'_posed using Lyapunov function ideas. In construct- In order to extend the definition of dissipa-
ing the Lyapunov function the idea of energy func- tiveness to a stochastic setting we adapt the frame-
tions serves as an important guide. One of thetions serves as an important guide. One of the work of Willems [WIL 79]. Using the notation of
objectives of the present work is to develop a Willems, a dissipative system (deterministic) in
theory of stability of stochastic differential state space form is defined by a triple ft,v,Sl,
systems based on ideas of conservation and dissi- with Z a system in state space form on X x W (X =
pation of energy which would be applicable to state space, W = space of external variables), v:
stability (stochastic). problems for power systems. W x E IR such that V(w();) e L1 for all we 
At the same time, this theory must contain as a = external behavior) called the upply rate e
special case the deterministic theory of stability and S: x E a function called the storage
based on ideas of dissipation as the variance of and S: X x R function, such that the dissipation inequality

-function, such that the dissipation inequality
the noise processes involved tends to zero. In
the deterministic case such a theory was developed t
by J.C. Willems [WIL 791. by JC Wiems [WIL 79] S((t ),t) + V(w(t),t)dt > S(x(t ),tl)

As a result of these considerations it was ) 1
decided to take a closer look at conservative and t (6.3.1)

o (6.3.1)dissipative linear systems, even in the determinis-
tic situation. It is shown later in this chapter in satisfied for all t t and (x,w) e E.
that the theory of conservative linear systems is If the above inequality holds with equality theIf the above inequality holds with equality theintimitely connected to Scattering Theory as de- system is said to be conservative.
veloped by Lax and Phillips [LAX 67] and many of For the generalization to stochastic systems,
these ideas extend to linear gaussian systems. consider equation (6.2.1) together with the obser-
We also show in this chapter how recent results in vation equation
stochastic differential equations provide the
right framework for extending the ideas of Willems
for dissipative systems to a stochastic setting. dyt = h(St ) dt + dnt , (6.3.2)

6.2 Recent Developments in Stochastic Differential where yt is a p-vector-valued random variable and h
Equations (Kunita) [KUN 81]). a map from J d to mRP which is assumed to be square

integrable and nt a p-vector-valued Brownian motionSuppose we are given independent of 
1 m independent of t'

(i) Bt= (B P. '-IBt ), t e [o,T] which is We then extend the definition of dissipativeness
an m-dimensional Brownian motion. d to a stochastic setting by refering the dissipation

(ii) X (t,x),...,x (t,x), t e [o,T], x e IR inequality to hold in one of two following ways:
are d-vector-valued Lipschitz continuous

functions i.e. X.(t,x) = (Xi(t,x),.., rtlX xj(t'x)). I PXj(t,x)). S(t Ito) + (dBtYt)dt > S( ,t) (6.3.3)
Consider an Ito equation t t 1

0
m

d =t = X (x,Et)dt + (t )dB (6.2,1) for almost all
t o t j=l X (t t or

A continuous d-vector process t is called a solu-
tion of (6.2.1) with the given initial condition E[S(Et t) - S( t] + j EV(dBty)dt > 0
Ei = x, if it is Ft measureable for each t > s o 1 t
and satisfies o (6.3.4)

t m t (E denotes expectation).
Ct x X (r, f.. j(rE )dB3 The two definitions of dissipativeness a priori lead= x + )dO(r, + j 1 ]~~t j5·Ix ° (r drJ j=1 j r r to different results. Nevertheless they need not

(6.2.2) be contradictory. These ideas will be developed
further in a forthcoming paper [MIT 82] using the
theory developed by Bismut [BIS 811. It leads to

We then have: st the study of stochastic variational problems involv-
Theorem: (Kunita) ing stochastic integrals in the cost functions and

We can choose a modification of the solution makes essential use of the ideas of Kunita cited

in a way such that for almost all earlier.

(i) ~ (x,) is continuous in (s,tx). 6.4. Stochastic Calculus of Variations
(ii) E (x,@) = t ( t(x,c))@).

t'lt 3 t2't3 t1 t2 The idea developed in the previous section is
holds for any tl < t2 ~ t3 and x. related to the study of stochastic calculus of vari-

ations and stochastic mechanics as developed by



Fleming [FLE 81a]. In this work a certain logarith; . lm
mic transformation relating linear parabolic equa- T(e T

tions and Bellman-Hamilton-Jacobi equations plays zve
an important role. These ideas have also been
extended to the context of non-linear filtering by For a (N-F) system which further satisfies T and T*
Fleming and Mitter [FLE 81b]. are asymptotically stable, GT is unitary, Now

It is felt that these ideas will play an im- consider the unitary map
portant role in the work of Propp and Wyatt, (see .

? Chapter 5) ' since it gives stochastic varia- -

Ttional interpretations of Fokker-Planck equations. U on6.5. Linear Conservative Systems and Scattering DT

Theory K .

In this section we discuss the relationship K * CV'T* CX 3 VT T V
between linear conservative dynamical systems and

Scattering Theory as developed by Lax and Phillips. Let
'For simplicity we consider the discrete-time situ-

ation. The continuous-time case can be handled by P ' ·DT* D O'. D T*
an appropriate conformal transformation. For all

definitions and notation see either [NAG 70] or
[LAX 67]. p+ T e Te.T

Consider the system

Firstly, U is the minimal unitary dilation of T.
x(t+l) = Fx(t) + Gu(t) Now the quadruple (U, p, V+, X) is a Lax-Phillips

·(M) (6,5.1) system,
y(t) = Hx(t) + Ju(t) Define

where u(t) e U, x(t) e X and y(t) e Y where U, X s(z) = (U - zI)
and Y are finite dimensionalspaces and we have T* T
arranged matters such that U and Y are isomosphic where V and V considered as embedded in K, and
to subspaces of X, and F: X + X, G: U + X, Hi X + Y T* T

P denotes projection. This is termed the Heisen-
and J: U + Y are linear transformations.

berg Scattering matrix. This coincides with the
We assume that (A-/ is controllable and oh-

.We assume that () is controllable and ob- Nagy-Foias characteristic function considered
servable and it is also conservative, that is,

earlier. The significance of this result is that

the spectral structure of T gives all the infor-
I Ix(t)12 + llu(t)112 = 1lx(t+l) 12 +Iy(t) l2 , mation about conservative systems.

Thqse ideas can be generalized to a stochastic
(6.5.2) setting, where u(1) is now thought of as a white

Gaussian sequence, by working with spectral den-
Vt > 0 and Vx(o). This is equivalent to the matrix sities. Conversely starting from a Gaussian pro-

cess y(t) it is possible to define the scattering
matrix by means of a canonical procedure. The

| G trtdB en f h olwn iarmdfdefinition of the scattering matrix may be illus-
H D trated by means of the following diagram. The de-

tails of this work will be avialable in the forth-
being unitary. It can also be verified that F is coming report be Avniel and Mitter [AVN 82].
a contraction. It can then be proved
Theorem: (M) is unitarily equivalent to Cu d a

iFigure 6.1.Cully

where DT*: 1 T* ~X, T being an invariant sub-space of X and DT: X + V V. subspace of X, HereT
LT is a contraction. T(N-5.3), form the a Foias characteristic funcD T*

(z) = - T* + Z DT* ( ) T Figure 6.1.

where DT,: PT* ' X, V_~ being an invariant sub-

ispace of X and DT: X T' T ubspace of Xis analyere
T is a contraction.
For (5.3), form the Nagy-Foias characteristic func-

;tion

OT(Z) = - T*JDT* + z DT* (T-zl) DT

It'can be shown that ~_(z) is a contraction

in the interior of the unit disc where it is analy -
tic. System (N-F) is controllable and observable
if and only if T and T* are asymptotically stable,

Define



7. Deterministic Analysis of Stability | !of solutions, multivalued extensions of f onto its
l discontinuity surfaces are required. Every~ tra-

7.1 Introduction -jectory can be represented by a sequence of transi-I
Dtion points and times, {x(ti),ti}.

The presence.of relays and logical devices in Definitions of various types of stability and
power system feedback loops at all levels gives instability can be constructed from an examination
rise to the possibility of discontinuous (switching) lof the invariant limit sets of the trajectories.
behavior of the control variables of the system as IFor diced systems, the range of asymptotic behaviori
functions of time. While the methods of stochastic; !of trajectories starting from different initial I
stability provide a more general framework for the iconditions can be exceedingly rich. The possibility
evalution of stability of discontinuous systems, of approximate global stability analysis using non-
they do not in many cases lead to a useful char- deterministic automata is examined and its limi-
acterization of sample path properties. Yet these tations are indicated.
are often essential in assessing the validity of In practice, diced systems might be viewed as
a complex model, since they may be readily compared 1approximations of continuous or discontinuous
with actual operating records. In most cases of systems. In the former case, for instance, we
practical interest a deterministic model or models might seek the best piecewise-constant (finite-
can be derived from a stochastic model by setting element) approximation to a continuous system.
noise terms to their mean values or considering Wang (3] has presented an application of this type
each possible value taken by a discrete random for solving partial differehtial equations. In
variable, etc. A differential-equation or diff- the latter case, a state space diffeomorphism
erence-equation model is obtained. Classical might be used first to transform the discontinuities
stability theory deals with the asympotitc pro- tof a system to lie along coordiante axes, and then
perties of trajectories generated by a system in a a diced approximation could be developed which
given initial state or set of initial states. I would preserve the discontinuous behavior of such
Classical stability theory for discontinuous systems Isystems. The potential practical advantages of
is not well-developed, and even basic questions of Idiced approximations lie in a reduction of in-
existence and uniqueness need to be resolved; the iformation storage required to characterize a system
means for resolving such questions are often diff- and the possibility of assessing its approximate
lerent for deterministic and stochastic systems. 'asymptotic behavior without a detailed simulation.

In order to highlight the major effects of i For example, at the time of a known failure
discontinuities on stability a class of piecewise- !of a power system, it is often desirable to pre-
"constant systems, termed diced systems, have been 'dict the long-term consequences of various control
rexamined in detail. This analysis, described !strategies so that an operator can decide among
Ibelow, leads to the conclusion that, in addition to: ithem. Yet the system is too big to store all possi-
the usual issues of stability theory, discontinui- ble consequences in advance. A practice which has
ties may lead to a fracturing of trajectories and , thus been followed in some cases [EWA 68] is toruna
a growth in the number of possible solutions to simulation "faster than real-time" for each control
ithe dynamic equation. This "chain-reaction" effect. strategy. While the issue of approximation accuracy
has not been traditionally studied by stability is not treated here, the results suggest that signi-
theorists: it may be viewed as a new type of in- :ficant economy of real-time computation might be
stability. In other words, not only the magnitude achieved by approximating the dynamics of a diced
but also the cardinality of trajectories may be system. However, they also suggest that the patterns
dynamically unstable. This calls into serious of stability and instability exhibited by such dis-
question many of the proposed methods for predicting !continuous systems may be highly complex and that
the future behavior of a power system; in the pre- analytical methods are not likely to yield clear-
sence of discontinuities, trajectories may be un- cut predictions about global stability.
predictable. Let i = [i, ... in] Z n be a multi-index on the

Other qualitative aspects of deterministic . n-tuples of integers (Z). Let b = [bl1...,bn]Bn
power system models have been studied in related represent an n-tuple of binary numbers (B = {0,1}).
works ([JOH 81a,b], [WIM 81]).. These include re- Let Xi(x): Rn + R be the characteristic function
presentation of asynchrony, dynamic modelling of iof the open set {x = Ixl.....,xn]R n lik < xk < ik
.multitasking,.and realization theory. i+ 1, k = 1,2,....,n

Definition: A diced initial value problem
7.2. Stability of Diced Systems - Preliminaries 7 (IVP) is specified by a system of ordinary differen-

itial equations
Diced systems, as defined here, are finite-

dimensional autonomous, continuous-time dynamic x(t) = f(x(t)) ; = x r ; t > t (7.2.1)

systems governed by equations of the form d- (t) = 0 -

f(x(t)); Xo(to) = xoCRn, t > to, where f : Rn Rn where f : R - R has the particular form
is piecewise-constant with discontinuities only on 
the surfaces where one or more coordinates of Rn f(x) = fn X (x) b = OEBn (7.2.2)-
take integer values. A diced system in R2 is very n bi i
easy to illustrate: the plane can be divided into I
a uniform gird, and within each square a vector
representing the magnitude and direction of f is and f ;ERn for each multi-index i.
shown (Figure 1). The surfaces of discontinuity of f may be

Existence and uniqueness of a solution for any classified by their dimension. Let l(b) : Bn -

fixed initial state, xo can be studied using a l,.,n be a function denoting the number of "l"s
generalization of the method introduced by (FIL 64]; 'in the binary n-tuple b. For fixed iEZn, consider
traectories may exhibit sliding mode segments and i the sets
higher-order non-differentiable behavior as illu- 
strated in Figure 1. In order to obtain existence bi k k k+l if b (7.2.3)

:<iai = k k 1bSbi 
=

{xSR
n
.i i k

<
xk

<
k1 if bi = 0 .2.3

~~~~ · · "-·"·~~~~~~~~~~~~~~~~~~"~~~~~- `~~~~~~~~~~~~~~- -~~~~~~~~~~~ ~ 



possible to do this in a self-consistent and unbias d
manner.

These may be viewed as the set of submanifolds "at- 'A fourth alternative has been selected here:
tached to"the point x = i.* For example Soi is thee 1(d) To sacrifice uniqueness and continue all sol-
interior of the n-dimensional cube indexed by its utions through a discontinuity.
vertex at x=i; Sli (the shorthand 1 denoting b = )In this way a viable deterministic existence theory
l[,l,...,l]) is the single point x=i. The submani- can be developed, at the cost of considering a coun

folds of dimension p associated with x=i are table number of alternative solutions. A "physical'
justification for adopting this approach is that

Sp = Si 1(b) = n-p} -P= O 01 ...,n. (7.2.4) in the presence of small perturbations of the ini-
I bi np p - ,1 tial conditions, a solution near to at least one

alternative solution will occur.
This notation provides a compact classification of A constructive procedure is given for defining
all of the subsets of Rn which are of interest. solutions.. To simplify its presentation, a multi-

In the next section, conditions for well- valued continuation of f to the surfaces Sbi, b 0<
posedness of a DIVP are examined. This is done by is first defined. Initially, f is specified on the
extending f to its discontinuity surfaces (from submanifolds Sn = {Si) of dimension n. The con-

{foi}, we generate {fbi} , b 7 O0Bn). Then a con- tinuation proceeds recursively to submanifolds,
structive procedure can be used to generate solu- ISP of dimension n-l, n-2,...,0. Recall that SO is
tions x(t) = .(t,to,xo) for each xoERn, toR and ijte-point set f{xRn|x = ik, ik an integer}. Nota-
hence to define the transition map 4: R x R x Rn Itionally, a single valued fbi will not be distin-
.4 Rn. - Let X denote the function space in which guished from a multivalued f ., the implication
trajectories are defined. This leads to the being that the prescribed ruie is applied to each
following possible value of fbi in turn, and the set of all

Definition: A diced system is an autonomous results is retained. Let p=n. Suppose fbi are knowi
dynamical system (X,Rn,4) (See [WIL 7111. on S9, p < q < n. Then fb can be extended to SP- 1

Stability has been viewed as a qualitative ! las follows, for each iEZ .

property of a dynamical system, and concerns the I Suppose SbicS~- ±. Let indices j..j n p-l 1)
asymptotic behaviors of trajectories x( ) = (-,tol 'denote the ordered nonzero positions of b, .e.,
Ixo) as xOEX is varied. Stability of diced systems b = 1, k=l,..., n-(p-l) and b =0 otherwise. The
!is discussed in Section IV. Two useful notions k neighborhoods of Sbi of dimension q, p < q < n,;
will be those of the positive limit set and the in- ican be defined as follows. For q=n, consider all
.variant set [WIL 70]. 1 indices i1 formed by decrementing ijk by one for any,

Definition: The set C Rn is invariant with subset of the subindices k=l,..., n-(p-l), including
n-lrespect to the system x(t) = ?(x(t),t) if for any ;the null-set; then SieSnT -is a neighborhood of S

xoQ there is a to such that the motion w(t,toxO) here b 0. For q = n-7, consider all values b i
belongs to Q2 for all t > to. having a single "one" in one of the positions jl...i

Definition: The set E C Rn is called the posi j and for each i, form 1 from thelremaining
.i -P- n-l 

tive limit set of a bounded motion f(t;to,xo) if, in-(p-l) - indices as above; then S 31 S: is a
for any point p E i, there exits a sequence of times ;neighborhood of Sbi. For q = n-2, consider all
{tn} tending to infinity as n ~-, so that Ivalues b having "ones" in any two of the positions

ils'a n-(pl) and from each B and 1 from the
lim ,x ) (t-'o p 0x ) ° (7.2.5)-P Ij =remainina n-(p-l)-2 indices as above; then SESi S
n--t n'o o 0is a neighborhood of Sbi. This procedure is

continued until q=p.
The values of f . on S ESP. are determined

In applying these definitions it will be use- from the values of f~ on each of its neighborhoods -
ful to recall that a function x(t) is periodic of ' SbtPSq, p < q < n. IQis thus sufficient to give the
period T > 0 if x(t) = x(t+T) for all t; "the" jprocedure for determining fbi, assuming that these
period of a periodic function is defined as the Ivalues on higher-dimensional submanifolds are known
least T for which this equality holds. i(i.e., the values can be determined recursively).

Define SSi to be an input submanifold to Sbi if
7.3. Existence and Unitqueness . {(fBi) = 0 for all £ such that by = 1, and for all

:remaining 2 in the set Jl ... n-..(l) (I 
consider the DIVP (7.2.1), (7.2.2). Defining jfor those 2 such that it = i2 while (fb) > O for

solutions within the cubes Soi by integration is those 2 such that io-. Define Sis to be an
entirely straightforward; all difficulties arise ;output submanifold if (fi) = O for all 2 such that
in attempting to extend solutions across the dis- lb, = 1, and for all remaining £ in the set Jl....
continuity surfaces of f; in general, there is no > for those such that 

3n-(p-l), ( f~[)1 > 0 for those 1 such that i~ = 1
unique continuation. Various possibilities are while (ffS) ) > for those such that = i- Note
(a) To restrict the class of f so that continua- !that those sets for which (fUZ)t 3 0 when b I, 1
tions are always unique (this is very restrictive Ineed not be considered. So long as the set of out-l
indeed, and essentially eliminates many interesting {put submanifolds of Sbi is non-empty, fbi is assignT
phenomena from consideration). Jed the set of all values fbi on the output submani- i
(b) To eliminate the non-continuable surfaces from ifolds. If the set of output submanifolds is empty,'
the domain of f; however, then all points on all | Ifbi is assigned the set of all values fbi on the &
trajectories leading to such surfaces must also be !output submanifolds. If the set of output submani-i
eliminated, and a large part of the original domaini is a genealized sliding su-Ifolds is empty, Sbi is a generalized sliding cur-
Df definition may ultimately be excluded. Iface. Consider fbi on SbiSCs in the input set. Ifi
(c) To choose an ad hoc rule for continuation of this set is empty, set fB = 0. Recall that SSIS [ I
;olutions; however, it proves difficult or im- is formed by keeping i unchanged in all but one

Aposition, say jk, of b, so r = [bl,...,bj-l, 0,
'The obvious injection of the integers into the b b and either o i or 1
reals is implied.H _ _ .. , , ___.._ -- ____ _ _ . ,__ b n] and either , = i or I - .

reals is_~~~~~~~~!~~~p~~l~~~~ed~~~, __ k~~~~



ijk+lri. n Thus there are a maximum of 2(n-(p-l)) f 1Asymptotic solutions need not be unique, but the
surfaces in this subset of the input set. These Irate of growth in the number of solutions can be
surfaces are considered in pairs to determine the Ibounded as a function of k, since the maximum num-
admissable values of fbi; using the example above, ber of output submanifolds can be bounded above for
if SBi is in the input set then (fbi)jk < 0 and if any Sbi. If there is only one asymptotic solution
Sri is the input set (fBI)~ > 0. If both elements through (xo,to), it is said to be unique. Continu-
are members of the input se kthen ous dependence of P(t,to,x,) with respect to xo,

of course, is not to be expected'for't > t .

fbi 
=

[(fblb)jkfi (fSi)Jkfi]/[(fik- ()J
f [ bi ikbi k h k 7.4. Stability

(7.3.1)
The usual definitions of stability presuppose

a solution which is well-posed in the sense of
f .= 0 existence, uniqueness, and continuous dependence
bi on the initial data. Diced systems, in general,

The set of possible values of f on a generalized do not possess the last two properties... One al-
slidig mode is completed by bi each ternative is to nevertheless use the standard no-

sliesl yconsider in g a uch c tions of stability, restricting their domain of
S5 eS- in this manner. In all such cases, (fbi)application to those initial states for which the
k = 1,...,n-(p-l) are zero, so that further mo- a pplication to those initial states for which the ,

tusual notions of well-posedness are (locally) satis.tion occurs on Sbi itself. fied. Unfortunately, the set of such initial
Thus, the procedure for extending the function fied. Unfortunately, the set of such initial

f to all of Rn is completed. The complexity of the states appears quite difficult to characterize and
procedure arises from the large number of possibil- thus imposes an awkward restriction on the appli-

ities which can arise. A number of such special i t
I A nother alternative, introduced-here, does not

cases are illustrated on Figure 2. Evidently, the Another alternative
procedure for extending f is not the only one which! impose such restrictions, butweakens the notion of
could be devised. sIn the next step, construction !stability that is employed. Stability is viewed

of solutions, however, it will become apparent that!
the underlying principle has been to define f in a system is then said to be stable when all of its

trajectories share this property.
manner which preserves all trajectories that might '
arise from each initial condition. Definition: The motion of diced system (7.2.1)

Let xoERn be given as the initial condition 1(7.2.2) initiated at (to,x o) is
:of (7.2.1) at t = to; let Sbi£SS be the smallest I {
,submanifold containing xO. Let fbi denote one of M(to,Xo) = {4(t0to,Xo), t > to| x is a transition

0 0 0 function initiated
/the extended values of f on Sbi. Define ti t

at (to x o)}

(, to Ix )=x + f bi(T-to) * t < T < tl (7.3.2)
0ox '0 + o bi (t 0) o o -<which is the set of all trajectories originating at

The time tl is defined as follows: for each £ such j(to'xO).
that (fbi)Z is nonzero, let (tl)k denote the first ytDefinition The motion (to,) of a diced
IT > to such that [4(T,to,xo)]z is an integer; then system is said to be

l= minE tjl) and tl = 4(t ,t0,x* , If £bi = i (a) Bounded in magnitude if there is a constant
.tl =min[(tl)k] and t1 = ~(tl,toXo), If fbi 

=
0t ! 1 o > 0 such that

then tf e XO, and this solution terminates. Other r
wise, xl defines new values of b,ij and p, and the

{ max
solution process continues: msup 4 t x) < 

CM(to'Xo) t>t

| (Ttk'xk) xk + fbi(Tht) ; t T < tl tk¢
(b) Bounded in cardinality if there exists a con-

[7,3.3)! 'stant N such that

iOn those surfaces where fbi is multivalued, each I

possibility mustbe examined in turn; in this sense, sup cardinaity of )} < N
t>t

- is also multivalued. Each trajectoiy pieced- 1 o 
itogether in this fashion can be summarized by a
| sequence {Xk'tk}^ k -0,1, ...... in some casest these The concepts of boundedness in magnitude and
[sequence {xk,tk}, k = 0,1,... in some cases, these i

xcardinality are independent. In both cases, the
sequences are finite and in other cases infinite. cardinality are independent. In both cases, the
By inspection of {xk} alone, a corresponding se lonly difficulties occur at t-, since (a) any
Byiquence of regions o ak}, where ckfSbi} is the m- fl(t,t ,x ) is by construction bounded for all
quence of regions {Gk}, where c{Sthe min Iiiet and (b) the cardinality of -(t,to'xoa )inite tis ) is
imal submanifold containing xk, can be constructed finite t, by cnstruction, for dinaltyl finite t. The

A solution of (7.2.1), (7,2.2) is then defined jfinite, by construction, for all finite t. The
in the obvious manner, as any ~(t,to,xo) constructedlowing propositions are almost immediate.
by the continuation procedure (7.3.3). It has the Proposition 7.4.1: In (7.2.1), supose 
property that for any finite admissable k, (14to < F f or all ,x) - xI F (t-to)

xO) is piecewise continuous on [to,tk]. This sol- or all 4cM(t x ) I Proof: he extension of f to f always
ution by continuation is said to be asymptotic if r Oi bi
lim tk = .An asymptotic solution is piecewise guaranteed that ifbi F and the construction

An o asymptrpot solution irsent piewie procedure (3.3) guaranteed that the estimate of the|continuous. For purpose of the present work, a 
proposition held for each t q e.d.

solution will be said to exist if the state-space Propoition 7.4.2: held for each t .q.e.d. 
continuation is asymptotic.* 1 n

Suppose for system (2.1) there exists B > 0
h"Moreover if lim tkO a, solutions by time-continu1 !such that for all lil > B, and k = 1,..,,n, (fo )k

ation could be defined; however, their properties ik < 0. Then M(to,Xo) is bounded in magnitude.
will not be explored here. Proof. For any i such that Iii > B, every

~~~ - -~ -~ -~ .I- - _---
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8sel$bi copt+ a utput.sukmanifolds;,with the same i .act, the, eyaluatio5,oftabity1, according to
|i| or smaller [ii, and input submanifolds with th Ithe definitions given, can be based merely on know
same Ji| or larger, ]it further more, Si always,_. ... 'ledge of the sequence {ak of submanifolds contain,

outputs to So with l11 < li]. Thus the construc- ing {Xk}, since it is known from the constriction
tion process cannot terminate for I| iaB?, and forA'E [ procedure that tktl > tk and from the asymptotic
such i, i ..is.reduced at least once every n. in-_... --. assumption that.. lm tk - .__This. suggests that a
tervals; hence every solution satisfies (t,t ,xO)l, way to generate the sequence a{o} autonomously
B for t sufficiently lage.j Thus M(to,xo) is 0 without explicit integration and generation of fxk

:magnitude-bounded. I l .AUFfiOtk} would be particularly! valuable in the assess-

Proposition 7.4.3:- buppose that-for _every,,,_ L_ ment of stability. This has not been achieved yet
i£Zn, bSBn, Sbi has at most one output submanifold_ Knowledge of the time-structue ftk} of in-
Then the motion M(to,xo ) f (7.2.1), (7.2.2) is dividuai solutions can be of further value in re-
bounded in cardinality. [ (ORJGANiZ 7fining stability notions., To simplify the remain-

Proof: The extensio procedure of Section f ing concepts it is now assumed that the trajector-
7.3,,shows thatz in this casefbi' takes the value on l ies-are 'uniquely-defined :(e.g.,i;-as occurs in Pro-
:its output submanifold or the value zero. If a ' position 7.4.3) and bounded. Suppose H is a posi-
trajectory enters Sbi, it either continues uniquely tive limit set of such a solution inr the conven-

to the output submanifold, or terminates at Sbi. tional sense of Section7.2 (eq. 7.2.5)). Then in--
In either case, the cardinality of the solution can- the usual manner it can be shown that T is bounded,
not increase during its construction. ------.-.--. - closed, non-empty and invariant, the last propertyj

Thus there are two notions of instability for being a consequence of time-invariance. In fact,'
diced systems: solutions may become unbounded in as a consequence of finite-dimensionality of Rn,--.
magnitude, and/or they may become unbounded in all such solutions are asymptotically almost-peri-

cardinality. This second form of instability is odic [DAF 74]. Two cases of special interest are
new: a trajectory can fracture and a chain reac- the asymptotically constant (equilibrium) solution
tion of subsequent fractures may ensue--the com- and the asymptotically periodic solution. These 
plexity of the process grows without bound. can be identified directly from the sequence {xk,

Next, a notion of stability is put forth. tk} characterizing 4(t,to,xo);''
Suppose that the motion M(to,xo) of a diced system Proposition 7.4.4: If the sequence {xk,tk}
is bounded in magnitude and cardinality (or simply is finite of length N, the positive-invariant limit
"bounded"). Then a set S C Rn consisting of a set consists of one point, the last value xN (for
finite union of the submanifolds Sbi-is termed a which tN = -). If the sequence {xk,tk} is jointly
positive limit set of a (bounded) trajectory f(t, periodic of period m for k > N, then the positive-
to,xo) if for any point xES, there exists a se- invariant limit set is a cycle (closed curve) in
quence of times {Tkl, tending to infinity as k4-, Rn.
so that ' ' Proof: For the first case, note that the con-

struction procedure automatically defines tN = X
lim)¢(¶kt ,x ) - x( = O (7.4.1) when the sequence is finite, and this implies a
k3w , ,,,,,, constant solution for t > tN. In the second case,

note that since {xk,tk} completely specify f(t,to,
where )(denotes the set-membership metric, i.e., xo), 4 must be periodic tk+mtk, k > N, whenever

if XeSbi, - {xk,tk} is periodic (in fact, the solution is a
linear interpolation between these points).

Y-X(~ I ' y.Si . ' It is interesting to note that for diced sys-
)YX( = 0......bi........ tems, the establishment of an equilibrium or per-

iodic solution after a finite time (tN) is often

1 y~Sbi to be expected (whereas this would be considered
................................- i"~ ,exceptional in the case of continuous differential;

In applying this definition, it is important i equations); however, in some cases almost periodic'
to recall the standing assumption from Section 7.3, .solutions may also exist.-
that all trajectories are asymptotic, so that such'
sequences { k } exist.' - ...... ...................7.5. Discussion and Conclusions

Definition: A bounded motion M(to,xO) of a
diced system is termed pointwise stable if all tra- The present account of 'the stability of 'dicedl
jectories f(t,to,xo)s M(to,xo) have the same posi-t systems leaves a number of questions unanswered
tive limit set. The motion is locally stable for and raises some new ones. 'A study of methods for"
xOSSbi if all trajectories f(t,to,x)e M(to,x), temporal continuation of non-asymptotic solutions
xSbi, 'have the same positive limit set. The mo- is needed; such solutions may represent a new sort:
tion is globally stable if all trajectories f(t, of sliding mode which can arise in higher dimen-
to,x) have the same positive limit set. ...... . . sional spaces, as suggested by an example of [UTK~' 

Concepts of uniform stability will not be 78]. The possibility of extending the techniques
discussed since only time-invariant diced systems developed here to time-varying systems has' been"
are considered in the present account.* mentioned; Filippov's general existence results

.apply to this problem. A study of the partitions-'
*The results could be extended in this direction o

for systems with continuous time-variation; however ing of initial states which is implied by the pro-;
posed stability definition would also be fruit-..

discontinuously time-varying systems may not be con- p
.ful; what properties are shared by initial state

tinuable, as Filippov pointed out. - sets giving rise to the same asymptotic solution?'- ,
j .a "['~:'::~ ~ ~' ' ;.. --.:' In general, it would appear that the initial states

.. A. _ ..... ..... ............. ........... _. ......... _....... ..... .. ........................... ... .......... . ...........

1--i-~ ~ , *i UA.. i--- -.!isj-, hJ hb' I,. i :
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Iwithin a give :region Sbij:can, ultimately end up r
widely dispersed. The possibility of using an
automaton to simplify theji propagation of solutions
has also been raised. The approximation of contin- ' 
iuous systems by diced systems has n'6tTbidfir'ex-4e'XI ST PAG H ERE '~
*plored, but under appropriate conditions, a-bound_ 
on the approximation error should be achievable. L

in spite of the questions that are unanswered, 
some modest progress has beenu made toward defininqUTHOR
the stability_properties .f diced systems. _First
a constructive continuation procedure for higher
dimensions has bee-n -fou'nds -the-problem readily
evades one's intuition above n = 1,2 and even 3i':,YiANIZATIJON
endless combinations of difficult situations may 
occur. Second, a compromise on the'issue of uniu- :..
ness has been .put forth:, the number.of admissable
solutions at any finite time is bounded. Third, I ,/_
the concepts of stability have been generalized . - /
to provide meaningful criteria for discontinuous 
systems of diced type. i .

Returning to the electric power system ex-
ample cited in the opening -section, it would appear
that the implications of the research might be very
disturbing, for two primary reasons. First, a new
type of instability--an unbounded growth in the Figure 7,2: Illustration'of Nonuiqueness-of
number of possible solutions with time-has been Solutions ::--
identified. Second, and independently, the parti- i
tioning of the initial state--at least in worst-
case situations--based on asymptotic properties, :.

appears to be very fine and irregular; thus a small ..... - ·i
perturbation in the initial state may give rise to
completely different asymptotic behavior than is
found for the unperturbed initial state. Both of
these phenomena imply that the future behavior of
a diced system with a (approximately) specified
initial state may be fundamentally unpredictable;
if the long-term future consequences of a present
control policy are unpredictable, the problem of
choosing the best policy becomes more difficult
and planning must be done with a shorter horizon.
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