33,937 research outputs found

    On input-to-state stability of stochastic retarded systems with Markovian switching

    Get PDF
    This note develops a Razumikhin-type theorem on pth moment input-to-state stability of hybrid stochastic retarded systems (also known as stochastic retarded systems with Markovian switching), which is an improvement of an existing result. An application to hybrid stochastic delay systems verifies the effectiveness of the improved result

    On almost sure stability of hybrid stochastic systems with mode-dependent interval delays

    Get PDF
    This note develops a criterion for almost sure stability of hybrid stochastic systems with mode-dependent interval time delays, which improves an existing result by exploiting the relation between the bounds of the time delays and the generator of the continuous-time Markov chain. The improved result shows that the presence of Markovian switching is quite involved in the stability analysis of delay systems. Numerical examples are given to verify the effectiveness

    Almost sure and moment exponential stability of Euler-Maruyama discretizations for hybrid stochastic differential equations

    Get PDF
    Positive results are derived concerning the long time dynamics of numerical simulations of stochastic differential equation systems with Markovian switching. Euler-Maruyama discretizations are shown to capture almost sure and momente xponential stability for all sufficiently small timesteps under appropriate conditions

    Almost sure exponential stability of backward Euler–Maruyama discretizations for hybrid stochastic differential equations

    Get PDF
    This is a continuation of the first author's earlier paper [1] jointly with Pang and Deng, in which the authors established some sufficient conditions under which the Euler-Maruyama (EM) method can reproduce the almost sure exponential stability of the test hybrid SDEs. The key condition imposed in [1] is the global Lipschitz condition. However, we will show in this paper that without this global Lipschitz condition the EM method may not preserve the almost sure exponential stability. We will then show that the backward EM method can capture the almost sure exponential stability for a certain class of highly nonlinear hybrid SDEs

    Stability of hybrid stochastic retarded systems

    Get PDF
    Abstract-In the past few years, hybrid stochastic retarded systems (also known as stochastic retarded systems with Markovian switching), including hybrid stochastic delay systems, have been intensively studied. Among the key results, Mao et al. proposed the Razumikhin-type theorem on exponential stability of stochastic functional differential equations with Markovian switching and its application to hybrid stochastic delay interval systems. However, the importance of general asymptotic stability has not been considered. This paper is to study Razumikhin-type theorems on general theorem moment asymptotic stability of hybrid stochastic retarded systems. The proposed theorems apply to complex systems including some cases when the existing results cannot be used

    Hybrid deterministic stochastic systems with microscopic look-ahead dynamics

    Get PDF
    We study the impact of stochastic mechanisms on a coupled hybrid system consisting of a general advection-diffusion-reaction partial differential equation and a spatially distributed stochastic lattice noise model. The stochastic dynamics include both spin-flip and spin-exchange type interparticle interactions. Furthermore, we consider a new, asymmetric, single exclusion pro- cess, studied elsewhere in the context of traffic flow modeling, with an one-sided interaction potential which imposes advective trends on the stochastic dynamics. This look-ahead stochastic mechanism is responsible for rich nonlinear behavior in solutions. Our approach relies heavily on first deriving approximate differential mesoscopic equations. These approximations become exact either in the long range, Kac interaction partial differential equation case, or, given sufficient time separation con- ditions, between the partial differential equation and the stochastic model giving rise to a stochastic averaging partial differential equation. Although these approximations can in some cases be crude, they can still give a first indication, via linearized stability analysis, of the interesting regimes for the stochastic model. Motivated by this linearized stability analysis we choose particular regimes where interacting nonlinear stochastic waves are responsible for phenomena such as random switching, convective instability, and metastability, all driven by stochasticity. Numerical kinetic Monte Carlo simulations of the coarse grained hybrid system are implemented to assist in producing solutions and understanding their behavior

    Stabilisation of hybrid stochastic differential equations by delay feedback control

    Get PDF
    This paper is concerned with the exponential mean-square stabilisation of hybrid stochastic differential equations (also known as stochastic dierential equations with Markovian switching) by delay feedback controls. Although the stabilisation by non-delay feedback controls for such equations has been discussed by several authors, there is so far little on the stabilisation by delay feedback controls and our aim here is mainly to close the gap. To make our theory more understandable as well as to avoid complicated notations, we will restrict our underlying hybrid stochastic dierential equations to a relatively simple form. However our theory can certainly be developed to cope with much more general equations without any diculty

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method

    Stability of stochastic impulsive differential equations: integrating the cyber and the physical of stochastic systems

    Full text link
    According to Newton's second law of motion, we humans describe a dynamical system with a differential equation, which is naturally discretized into a difference equation whenever a computer is used. The differential equation is the physical model in human brains and the difference equation the cyber model in computers for the dynamical system. The physical model refers to the dynamical system itself (particularly, a human-designed system) in the physical world and the cyber model symbolises it in the cyber counterpart. This paper formulates a hybrid model with impulsive differential equations for the dynamical system, which integrates its physical model in real world/human brains and its cyber counterpart in computers. The presented results establish a theoretic foundation for the scientific study of control and communication in the animal/human and the machine (Norbert Wiener) in the era of rise of the machines as well as a systems science for cyber-physical systems (CPS)
    corecore