5,463 research outputs found

    Euclidean Greedy Drawings of Trees

    Full text link
    Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes s, t in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of greedy embeddings in the Euclidean plane R^2 is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in R^2. This answers a question by Angelini et al. (Graph Drawing 2009) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.Comment: Expanded version of a paper to appear in the 21st European Symposium on Algorithms (ESA 2013). 24 pages, 20 figure

    Drawing Binary Tanglegrams: An Experimental Evaluation

    Full text link
    A binary tanglegram is a pair of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics or software engineering, it is required that the individual trees are drawn crossing-free. A natural optimization problem, denoted tanglegram layout problem, is thus to minimize the number of crossings between inter-tree edges. The tanglegram layout problem is NP-hard and is currently considered both in application domains and theory. In this paper we present an experimental comparison of a recursive algorithm of Buchin et al., our variant of their algorithm, the algorithm hierarchy sort of Holten and van Wijk, and an integer quadratic program that yields optimal solutions.Comment: see http://www.siam.org/proceedings/alenex/2009/alx09_011_nollenburgm.pd

    Analogies between the crossing number and the tangle crossing number

    Full text link
    Tanglegrams are special graphs that consist of a pair of rooted binary trees with the same number of leaves, and a perfect matching between the two leaf-sets. These objects are of use in phylogenetics and are represented with straightline drawings where the leaves of the two plane binary trees are on two parallel lines and only the matching edges can cross. The tangle crossing number of a tanglegram is the minimum crossing number over all such drawings and is related to biologically relevant quantities, such as the number of times a parasite switched hosts. Our main results for tanglegrams which parallel known theorems for crossing numbers are as follows. The removal of a single matching edge in a tanglegram with nn leaves decreases the tangle crossing number by at most n3n-3, and this is sharp. Additionally, if γ(n)\gamma(n) is the maximum tangle crossing number of a tanglegram with nn leaves, we prove 12(n2)(1o(1))γ(n)<12(n2)\frac{1}{2}\binom{n}{2}(1-o(1))\le\gamma(n)<\frac{1}{2}\binom{n}{2}. Further, we provide an algorithm for computing non-trivial lower bounds on the tangle crossing number in O(n4)O(n^4) time. This lower bound may be tight, even for tanglegrams with tangle crossing number Θ(n2)\Theta(n^2).Comment: 13 pages, 6 figure

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Improved Bounds for Drawing Trees on Fixed Points with L-shaped Edges

    Full text link
    Let TT be an nn-node tree of maximum degree 4, and let PP be a set of nn points in the plane with no two points on the same horizontal or vertical line. It is an open question whether TT always has a planar drawing on PP such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set PP for which such drawings are possible to: O(n1.55)O(n^{1.55}) for maximum degree 4 trees; O(n1.22)O(n^{1.22}) for maximum degree 3 (binary) trees; and O(n1.142)O(n^{1.142}) for perfect binary trees. Drawing ordered trees with L-shaped edges is harder---we give an example that cannot be done and a bound of O(nlogn)O(n \log n) points for L-shaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure
    corecore