2 research outputs found

    The kk-visibility Localization Game

    Full text link
    We study a variant of the Localization game in which the cops have limited visibility, along with the corresponding optimization parameter, the kk-visibility localization number ζk\zeta_k, where kk is a non-negative integer. We give bounds on kk-visibility localization numbers related to domination, maximum degree, and isoperimetric inequalities. For all kk, we give a family of trees with unbounded ζk\zeta_k values. Extending results known for the localization number, we show that for k2k\geq 2, every tree contains a subdivision with ζk=1\zeta_k = 1. For many nn, we give the exact value of ζk\zeta_k for the n×nn \times n Cartesian grid graphs, with the remaining cases being one of two values as long as nn is sufficiently large. These examples also illustrate that ζiζj\zeta_i \neq \zeta_j for all distinct choices of ii and $j.

    Treewidth and related graph parameters

    Get PDF
    For modeling some practical problems, graphs play very important roles. Since many modeled problems can be NP-hard in general, some restrictions for inputs are required. Bounding a graph parameter of the inputs is one of the successful approaches. We study this approach in this thesis. More precisely, we study two graph parameters, spanning tree congestion and security number, that are related to treewidth. Let G be a connected graph and T be a spanning tree of G. For e ∈ E(T), the congestion of e is the number of edges in G connecting two components of T − e. The edge congestion of G in T is the maximum congestion over all edges in T. The spanning tree congestion of G is the minimum congestion of G in its spanning trees. In this thesis, we show the spanning tree congestion for the complete k-partite graphs, the two-dimensional tori, and the twodimensional Hamming graphs. We also address lower bounds of spanning tree congestion for the multi-dimensional hypercubes, the multi-dimensional grids, and the multi-dimensional Hamming graphs. The security number of a graph is the cardinality of a smallest vertex subset of the graph such that any “attack” on the subset is “defendable.” In this thesis, we determine the security number of two-dimensional cylinders and tori. This result settles a conjecture of Brigham, Dutton and Hedetniemi [Discrete Appl. Math. 155 (2007) 1708–1714]. We also show that every outerplanar graph has security number at most three. Additionally, we present lower and upper bounds for some classes of graphs.学位記番号:工博甲39
    corecore