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Abstract

For modeling some practical problems, graphs play very important roles.
Since many modeled problems can be NP-hard in general, some restrictions
for inputs are required. Bounding a graph parameter of the inputs is one of
the successful approaches. We study this approach in this thesis. More pre-
cisely, we study two graph parameters, spanning tree congestion and security
number, that are related to treewidth.

Let G be a connected graph andT be a spanning tree ofG. Fore ∈ E(T),
thecongestionof e is the number of edges inG connecting two components
of T − e. Theedge congestion of G in Tis the maximum congestion over all
edges inT. Thespanning tree congestion of Gis the minimum congestion
of G in its spanning trees. In this thesis, we show the spanning tree conges-
tion for the completek-partite graphs, the two-dimensional tori, and the two-
dimensional Hamming graphs. We also address lower bounds of spanning
tree congestion for the multi-dimensional hypercubes, the multi-dimensional
grids, and the multi-dimensional Hamming graphs.

The security number of a graph is the cardinality of a smallest vertex subset
of the graph such that any “attack” on the subset is “defendable.” In this the-
sis, we determine the security number of two-dimensional cylinders and tori.
This result settles a conjecture of Brigham, Dutton and Hedetniemi [Discrete
Appl. Math. 155 (2007) 1708–1714]. We also show that every outerplanar
graph has security number at most three. Additionally, we present lower and
upper bounds for some classes of graphs.
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Chapter 1

Introduction

Recently, graphs are used for modeling several practical problems such
as VLSI design problems, network routing problems, and flight scheduling
problems. Although the problems can be modeled without any lack of in-
formation by graphs, the modeled problems can be very hard, that is, NP-
hard [24]. To cope with NP-hard problems, several approaches are intro-
duced: approximation algorithms [54], randomized algorithms [40], expo-
nential time exact algorithms [56], fixed parameter algorithms [20], and so
on. On the other hand, it is known that some NP-hard problems can be solved
in polynomial time if the inputs have some natural restrictions. For example,
if the input graphs have bounded treewidth then many problems can be solved
in polynomial time [7]. In this thesis, we concentrate on this approach, that
is, the restrictions of the inputs. More precisely, we investigate the following
question: “For which graphs, are useful graph parameters bounded?”

Graph parameters are properties of graphs representable by numbers such
as: diameter, radius, maximum (or, minimum) degree, chromatic number.
Among graph parameters, the treewidth has been studied intensively because
of its usefulness. The notion of treewidth was introduced by Robertson and
Seymour in their Graph Minor project. Roughly speaking, the treewidth is
a graph parameter that indicates whether the graph has a tree-like structure
of small width. It is known that if the treewidth of the graph is bounded by
a constant then problems that can be expressible by Monadic Second Order
Logic are solvable in linear time [17]. However, the problem to determine
the treewidth of the input graph is NP-hard. Thus, to utilize treewidth, it is
necessary to develop approximation algorithms for treewidth or to determine
the treewidth of some natural graph classes.
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Since treewidth and related graph parameters have been studied inten-
sively, it is known that for some graph classes, such as outerplanar graphs,
series parallel graphs, and chordal graphs, the treewidth and some related
parameters can be determined in polynomial time. In this thesis, we study
treewidth and related parameters for some important graph classes. We ob-
tain lower and upper bounds, or exact bounds for those classes. We study
treewidth related parameters, the spanning tree congestion and the secu-
rity number, for graph classes completek-partite graphs, outerplanar graphs,
grids, cylinders, tori, hypercubes, Hamming graphs, and so on. These graph
classes play important roles in the algorithmic graph theory or the graph mi-
nor theory.

In the following, we give an overview of the present thesis. For more
precise definitions, see the corresponding chapters and sections.

Since a spanning tree of a graph has no cycle, a deletion of any edge in
the tree derives a partition of the vertex set into two parts. The congestion
of the deleted edge is the number of edges in the original graph between the
two parts. The congestion of a spanning tree is the maximum congestion
over all edges in the tree. The spanning tree congestion of a graph is the
minimum congestion over all its spanning trees. In Chapter 2, we determine
the spanning tree congestion of completek-partite graphs, two-dimensional
tori, and two-dimensional Hamming graphs. We also give lower and upper
bounds on the spanning tree congestion of Hypercubes, Hamming graphs,
and multi-dimensional grids. Additionally, we show that the treewidth of a
graphs is at most the product of its spanning tree congestion and its maximum
degree.

A secure set in a graph is a subset of the vertex set of the graph such that
any “attack” on the subset from its outer boundaries is “defensible.” In other
words, for any subset of a secure set, the number of its inner closed bound-
aries are at least the number of its outer boundaries. The security number of
a graph is the cardinality of the smallest secure set in the graph. The notion
of security number is introduced by Brigham, Dutton, and Hedetniemi [11]
in 2007. They have shown lower and upper bounds on the security number
of two-dimensional grids, cylinders, and tori. They conjectured that their up-
per bounds for cylinders and tori is the best possible. In Chapter 3, we settle
this conjecture affirmatively. We also study the security number of outerpla-
nar graphs, and show that any outerplanar graph has the security number at
most three. We present lower and upper bounds on the security number of
hypercubes as well.
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1.1 Definitions
In this section, we give some definitions that will be used in this thesis.

1.1.1 Graph

A graph Gis a pair of the vertex setV(G) and the edge setE(G). A vertex
v ∈ V(G) is an object, and anedge e∈ E(G) is an unordered pair of two
distinct vertices. Foru, v ∈ V(G), if {u, v} ∈ E(G) then we say thatu and v
are adjacent. In figures, we represent a vertex by a dot (or a circle) and an
edge by a line. For example, ifV(G) = {u, v,w} andE(G) = {{u, v}, {v,w}}
then the graphG is represented by Fig. 1.1.

u

v

w

Fig. 1.1 An example of a graph.

In this thesis, all graphs aresimpleandfinite, that is, there is at most one
edge between a pair of vertices and the vertex set is a finite set.

Two graphsG and H are isomorphicif there is a bijectionϕ : V(G) →
V(H) such that{u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(H). For example,
it is easy to see that the graphs in Fig. 1.2 are isomorphic (a 7→ w, b 7→ x,
c 7→ y, andd 7→ z).

a

d c

b

w

z
x

y

G H

Fig. 1.2 GraphsG andH are isomorphic.
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A walk in a graph G is a sequence of vertices (p1, . . . , pk) such that
{pi , pi+1} ∈ E(G) for each 1≤ i < k. For two verticesu, v ∈ V(G), au-v path
in G is a walk (p1, . . . , pk) such thatp1 = u, pk = v, andpi , p j if i , j. We
define thedistance between u and v, denoted bydistG(u, v), as the number of
edges in a shortestu-v path inG. Two pathsP1 andP2 areedge-disjointif
they do not share any edge. A set of paths isedge-disjointif the paths in the
set are pairwise edge-disjoint. Acycle in a graph Gis a walk (p1, . . . , pk)
such thatpi = p j if and only if eitheri = j or {i, j} = {1, k}. A graphG is
connectedif for every pairu, v of vertices,G has au-v path. A graphF is a
forestif F contains no cycle. A forestT is a tree if T is connected. A treeS
is astar if S contains at most one vertex of degree greater than one.

A graphH is asubgraphof a graphG if V(H) ⊆ V(G) andE(H) ⊆ E(G).
A subgraphH of G is aspanning subgraphif V(H) = V(G). If a spanning
subgraphT of G is tree thenT is a spanning treeof G. A subgraphH of
a graphG is an induced subgraphif u, v ∈ V(H) and {u, v} ∈ E(G) imply
{u, v} ∈ E(H). For example, see Fig. 1.3. We denote byG[S] the induced
subgraph ofG with the vertex setS ⊆ V(G), that is,V(G[S]) = S. We
call G[S] a subgraph of G induced by S. If S ⊆ V(G) induces a connected
subgraph ofG, we say thatS is connected.

a

cd

e

f

b

a

c

e

f

b

a

cd

e b

G H1 H2

Fig. 1.3 A subgraphH1 and an induced subgraphH2 of G.

The open neighborhoodof a vertexv in a graphG, denoted byNG(v), is
the set of vertices such that for anyu ∈ NG(v) there exists the edge{u, v} ∈
E(G). We define theclosed neighborhoodof a vertexv in a graphG as
NG[v] = {v} ∪ NG(v). The degreeof a vertexv in a graphG, denoted by
degG(v), is the number of neighbors ofv in G, that is,degG(v) = |NG(v)|. We
denote themaximum degreeand theminimum degreeof G by∆(G) andδ(G),
respectively, that is,∆(G) = maxv∈V(G) degG(v) andδ(G) = minv∈V(G) degG(v).
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We can extend the notion of the neighborhood of a vertex to the neighborhood
of a vertex set. ForS ⊆ V(G), let NG[S] denote theclosed neighborhoodof
S, that is,NG[S] = S ∪∪

v∈S NG(v).
Fore ∈ E(G), we denote byG−e the graph obtained by deletinge from G;

that is,V(G− e) = V(G) andE(G− e) = E(G) \ {e}. Similarly, for F ⊆ E(G)
let G − F be the graph obtained by deletion of all edges inF from G.

1.1.2 Boundaries of a vertex set

We define the vertex boundary and edge boundary of a vertex set. These
notions play very important roles in this thesis. For a vertex setS ⊆ V(G),
we define theboundary edge setθG(S) as

θG(S) = {{u, v} ∈ E(G) | exactly one ofu, v is in S}.

We define the functionθ also on positive integerss ≤ |V(G)| as θG(s) =
minS⊆V(G), |S|=s |θG(S)|. For a vertex setS ⊆ V(G), we denote thevertex edge
set∂G(S) as

∂G(S) = {v < S | v is a neighbor of someu ∈ S in G}.

Clearly,∂G(S) = NG[S]\S. We also define the function∂ on positive integers
s≤ |V(G)| as∂G(s) = minS⊆V(G), |S|=s |∂G(S)|.

For example, see Fig. 1.4. In Fig. 1.4,S = {a,d,e}, ∂(S) = {b, c}, θ(S) =
{{a,b}, {b,d}, {b,e}, {c,d}, {c,e}}.

b

cd

e

a

S

Fig. 1.4 A setS = {a, e, d}, its vertex boundary∂(S) = {b, c}, and its edge
boundaryθ(S) = {{a, b}, {b, d}, {b,e}, {c, d}, {c, e}}.
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1.1.3 Cartesian product

For graphsG andH, theCartesian productof G andH, denoted byG�H,
is the graph whose vertex set isV(G) × V(H) and in which (g,h) is joined to
(g′,h′) if and only if eitherg = g′ and{h,h′} ∈ E(H) or h = h′ and{g, g′} ∈
E(G) (see Fig. 1.5). Note that for anyh ∈ V(H), the induced subgraph of
G � H induced by the set{(g, h) | g ∈ V(G)} is isomorphic toG. Ford ≥ 1,
thedth Cartesian powerof a graphG, denoted byGd, is defined as follows:
G1 = G andGd = G�Gd−1 for d ≥ 2.

G G H

a

b

c

d

w x y z

H

(a, w)

(b, w)

(c, w)

(d, w)

(a, z)

(b, z)

(c, z)

(d, z)

(a, x)

(b, x)

(c, x)

(d, x)

(a, y)

(b, y)

(c, y)

(d, y)

Fig. 1.5 The Cartesian productG � H of graphsG andH.

1.1.4 Graph classes

In this subsection, we define several important graph classes.
Thecomplete graph Kn is a graph with the vertex set{0, . . . , n− 1} and in

which there is an edge between every pair of vertices. LetV1,V2, . . . ,Vk be
the disjoint vertex sets andni = |Vi | for 1 ≤ i ≤ k. Thecomplete k-partite
graph Kn1,...,nk is a graph such that the vertex set is

∪
1≤i≤k Vi , and there exists

an edge{u, v} for u ∈ Vi andv ∈ V j if and only if i , j. We call a complete
2-partite graph acomplete bipartite graph. Note that ifni = 1 for everyi,
1 ≤ i ≤ k, then the completek-partite graphKn1,...,nk is isomorphic to the
complete graphKk. See examples in Fig. 1.6.
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K5 K3,3 K1,2,3,4

Fig. 1.6 A complete graph, a complete bipartite graph, and a complete
4-partite graph.

A graph isplanar if it can be drawn in the plane with no pair of crossing
edges. Aplanegraph is a planar graph with an embedding that causes no
cross. Afaceof a plane graph is a topologically connected region surrounded
by edges of the plane graph. A planar graph isouterplanarif there is a planar
embedding in which all its vertices are in the outer-boundary. An outerplanar
graphM is maximalif M is no longer outerplanar with the addition of a single
edge. It is known that any maximal outerplanar graphM has 2|V(M)| − 3
edges, andM has a unique Hamiltonian cycle (see [27, 18]).

Let [n] denote the set{0,1, . . . , n− 1}. Recall that a complete graphKn is
a graph whose vertex set is [n] and any two vertices are adjacent. A pathPn

is a graph whose vertex set is [n] and edge set is{{i, i + 1} | 0 ≤ i ≤ n − 2}.
For n ≥ 3, a cycleCn is a graph whose vertex set is [n] and edge set is
{{n− 1,0}} ∪ E(Pn). See examples in Fig. 1.7.

0 1 2 3 0 1 2 3

P4 C4

Fig. 1.7 A path and a cycle.

The graphKd
n = (Kn)d is called ad-dimensional Hamming graph. The

graphPd
n = (Pn)d is called ad-dimensional grid. If n is even (odd) then we

say thatPd
n is even(odd, respectively). The graphCd

n = (Cn)d is called ad-
dimensional torus. A d-dimensional hypercube Qd is thedth Cartesian power
of P2 = K2, that is,Qd = Pd

2 = Kd
2 . Note that we sometimes call more general



8 Chapter 1 Introduction

graphsPm�Pn andCm�Cn two-dimensional gridsandtwo-dimensional tori,
respectively.

1.1.5 Treewidth

The concept of treewidth was introduced by Robertson and Seymour in
their project of Graph Minor Theory (see [46] for example). Atree decompo-
sition of a graphG is a pair (X,T), whereT is a tree andX = {Xi | i ∈ V(T)}
is a collection of subsets ofV(G) such that

• ∪
i∈V(T) Xi = V(G),

• for each edge{u, v} ∈ E(G), there is anode i∈ V(T) such thatu, v ∈
Xi , and
• for eachv ∈ V(G), the set of nodes{i | v ∈ Xi} forms a subtree ofT.

The elements inX are calledbags. Thewidthof a tree decomposition (X,T)
equals maxi∈V(T) |Xi | − 1. Thetreewidthof G, denoted bytw(G), is the min-
imum width over all tree decompositions ofG. A path decompositionof G
is a tree decomposition (X,T) in which T is a path. Thepathwidthof G,
denoted bypw(G), is the minimum width over all path decompositions ofG.

For example, see Fig. 1.8. The graph depicted in Fig. 1.8 has treewidth at
most two, since any bag has cardinality at most three. It is easy to see that
the pathwidth of the graph in Fig. 1.8 is also at most two. To see this, remove
the bag{ f ,g} and insert a new bag{d, f ,g} between the bags{d,e, f } and
{d, f ,h}; then marge the bags{i, j} and{i, k} into a new bag{i, j, k}. Clearly,
the resultant structure is a path decomposition of the graph, and it has width
three, as required. It is known that a graph has treewidth one if and only if
the graph is a forest. Hence, we can conclude that the graph in Fig. 1.8 has
treewidth two (and pathwidth two, also).

h i
j

b
e

c d

f
kg

a

a

b c

c

d e
d

e f

f g

d
f h

h i

i j

i k

Fig. 1.8 A graph and its tree decomposition.
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1.2 The vertex boundary-width of complete trees
In this section, we briefly review results on the vertex boundary-width of

completek-ary trees. Thevertex boundary-width problemis to determine the
value of

vbw(G) = max
1≤i≤|V(G)|

min
S⊆V(G), |S|=i

|∂(S)|

for a given graphG. The vertex boundary-width is also called thevertex
isoperimetric peak. The completek-ary tree of depthd, denoted byTk,d, is
defined recursively. The starK1,k is the completek-ary tree of depth one. Let
d ≥ 2. For each vertex of degree one inTk,d−1, we addk new vertices as
neighbors of the vertex; The resultant tree isTk,d.

The author and Yamazaki [43] proved the following lower and upper
bounds onvbw(Tk,d).

Theorem 1.1(Otachi and Yamazaki [43]).

lg k
k+ 2 lgd + 6

· d − 1 ≤ vbw(Tk,d) ≤ d.

The above theorem was improved by Bharadwaj and Chandran [5].

Theorem 1.2(Bharadwaj and Chandran [5]). Let k ≥ 2 and d ≥ c1 logk,
where c1 is a suitable chosen constant. Then, for some constant c2,

c2√
k
· d ≤ vbw(Tk,d) ≤ d.

Finally, Vrt’o [55] has proved an asymptotically tight lower bound.

Theorem 1.3(Vrt’o [55]) . For k ≥ 4 and d≥ 3,

3
40
· d − 3

20
≤ vbw(Tk,d) ≤ d.

The above bound implies a somewhat unexpected factvbw(Tk,d) = Θ(d),
that is, the branching factork does not effect the vertex boundary width of
the complete trees. The exact value ofvbw(Tk,d) is still open.
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1.3 Related papers
The results in this thesis are based on the following two published papers.

1. Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki, On spanning tree
congestion of graphs,Discrete Mathematics, Volume 309, Issue 13, 6
July 2009, Pages 4215–4224. (doi:10.1016/j.disc.2008.12.021)

2. Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki, Security number
of grid-like graphs,Discrete Applied Mathematics, Volume 157, Issue
11, 6 June 2009, Pages 2555–2561. (doi:10.1016/j.dam.2009.03.020)

3. Yota Otachi and Koichi Yamazaki, A lower bound for the vertex
boundary-width of completek-ary trees,Discrete MathematicsVol-
ume 308, Issue 12, 28 June 2008, Pages 2389–2395. (doi:10.1016/

j.disc.2007.05.014)

The first paper is related to Chapter 2, and the second paper Chapter 3. The
result of the last paper in the above list is mentioned in Section 1.2.

1.4 Other papers by the author
Here, we list the author’s published papers that are not include in the list
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Chapter 2

Spanning tree congestion of
graphs

2.1 Introduction
In this chapter, we studythe spanning tree congestion problemfor some

classes of graphs. LetG be a graph andT a tree such thatV(G) ⊆ V(T). We
say thatT is ahostandG is aguest. Thedetour for an edge{u, v} ∈ E(G)
is the uniqueu-v path inT. We define thecongestionof e ∈ E(T), denoted
by ecG(e), as the number of detours that containe. Theedge congestion of G
in T, denoted byec(G : T), is the maximum congestion over all edges inT.
We define thetree congestionof G, denoted bytc(G), and thespanning tree
congestionof G, denoted bystc(G), as

tc(G) = min {ec(G : T) | T is a tree andV(T) = V(G)} ,
stc(G) = min {ec(G : T) | T is a tree,V(T) = V(G), andE(T) ⊆ E(G)} .

Several related problems have been studied. If the host graphs are paths,
the problem is well-knowncutwidth (or minimum cut linear arrangement)
problem (see [53]). Liu and Yuan [37] have determined the cutwidth for sev-
eral product graphs including two-dimensional grids and tori. When the host
graphs are restricted to ternary trees, and all vertices of the guest graph are
assigned to the leaves of the host trees, the problem iscarvingwidthprob-
lem [49].

For some applications, host graphs are not restricted to acyclic graphs. For
example, simple cycles [48], grids [4], and so on (see [44]). Note that if
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the host graph has a cycle, then the detour for an edge of the guest graph
cannot be determined uniquely, and so, one should take the best one of the
candidates.

Complexity results are known for several variants of tree congestion prob-
lem. Simonson [50] showed the problem is NP-hard if the host graphs are
trees with bounded degree even when the guest graph is planar. Khuller,
Raghavachari, and Young [32] have shown the NP-hardness for the follow-
ing General Congestion Problem: The input to the problem is two graphs
G = (V,E) and F = (V,E′). The problem is to find a minimum congestion
tree T of G such that E(T) ⊆ E′. They pointed out that ifF is the complete
graph, the problem can be solved in polynomial time [32], by using results of
Gomory and Hu [25], and Gusfield [26]. It follows that the tree congestion
problem is solvable in polynomial time. IfF = G, the problem is exactly
the spanning tree congestion problem. To the best of our knowledge, it is
not known that whether the problem is NP-hard even whenF = G. So the
complexity of the spanning tree congestion problem is not known.*1

There are several results for the spanning tree congestion problem. Si-
monson [50] presented an algorithm for the spanning tree congestion prob-
lem on outerplanar graphs that outputs an embedding with the congestion
at most one larger than the maximum degree of the input graph. Ostro-
vskii [41] showed some inequalities for the (spanning) tree congestion prob-
lem and studied the extremal graph problem of the spanning tree conges-
tion. Hruska [31] studied the problem of the spanning tree congestion for the
two-dimensional grids and the complete bipartite graphs. Castejón and Os-
trovskii [12] gave asymptotic estimates for the spanning tree congestion of
three-dimensional grids and tori. Löwenstein, Rautenbach, and Regen [38]
have shown that the spanning tree congestion of a graph onn vertices is at
mostn3/2.

In this chapter, we show the spanning tree congestion for some classes of
graphs. We also show, with some applications, a technique to derive a lower
bound of the spanning tree congestion. The rest of this chapter is organized
as follows. In Section 2.2, we introduce some notations and state a general
lower bound of the spanning tree congestion. In Section 2.3, we show the
spanning tree congestion for the completek-partite graphs. This properly ex-
tends the results of Ostrovskii [41] and Hruska [31] for the complete graphs

*1 Very recently, Hans L. Bodlaender and the author have proved the NP-hardness of the
problem [42]. See Subsection 2.9.1 for more details.
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and the complete bipartite graphs, respectively. In Section 2.4, we show the
spanning tree congestion for the two-dimensional tori. This problem is re-
lated to Hruska’s result for the two-dimensional grids [31]. In Section 2.5,
we show lower bounds of the spanning tree congestion for the hypercubes
and the multi-dimensional grids by edge-isoperimetric inequalities. In Sec-
tion 2.6, we show the spanning tree congestion of the two-dimensional Ham-
ming graphs (a.k.a. rook’s graphs). In Section 2.7, we give lower and up-
per bounds on the spanning tree congestion of multi-dimensional Hamming
graphs. In Section 2.8, we show a relationship between the spanning tree
congestion and the treewidth. In the last section, we state the concluding
remarks.

2.2 Preliminaries
Let G be a connected graph. Ife ∈ E(G) has a vertex of degree one as one

of its endpoints,e is called aleaf edge, otherwisee is called aninner edge.
By using the functionθ, the congestionecG(e) of an edgee ∈ E(T) can be
defined in a different form as

ecG(e) = |θG(Le)|

whereLe is the vertex set of one of the two components ofT −e. Note that if
e is a leaf edge ofT, thenecG(e) = degG(v) wherev is an endpoint ofe such
thatdegT(v) = 1. We omit the subscript of the functionecG(e) if the graph is
clear from the context.

From a basic property of trees, we can derive a general lower bound for
the spanning tree congestion.

Lemma 2.1 (Ostrovskii [41]). For any tree T, there is an edge e∈ E(T)
such that the number of vertices of the smaller component of T− e is at least
(|V(T)| − 1)/∆(T).

Corollary 2.2. For a connected graph G, stc(G) ≥ min⌊|V(G)|/2⌋
s=⌈(|V(G)|−1)/∆(G)⌉ θ(s).

Proof. Let T be a spanning tree ofG, e ∈ E(T) be an edge in Lemma 2.1,
andLe andRe be the vertex sets of the components ofT − e. Without loss of
generality, we may assume|Le| ≤ |Re|. SinceV(T) = V(G), we have that

|Le| ≤ ⌊|V(T)|/2⌋ = ⌊|V(G)|/2⌋ .
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SinceV(T) = V(G) and∆(T) ≤ ∆(G), we have that

|Le| ≥ ⌈(|V(G)| − 1)/∆(G)⌉ .

Hence,

ec(G : T) ≥ |θ(Le)| ≥ θ(|Le|) ≥
⌊|V(G)|/2⌋

min
s=⌈(|V(G)|−1)/∆(G)⌉

θ(s).

The lemma holds. �

2.3 Spanning tree congestion of complete

k-partite graphs
In this section, we consider the spanning tree congestion of the complete

k-partite graphs. Letn be the number of the vertices ofKn1,...,nk, that is,n =∑
1≤i≤k ni . We assumen1 ≤ · · · ≤ nk. We denote bydegi(Kn1,...,nk) the degree

of a vertex inVi . Clearly, degi(Kn1,...,nk) = n − ni . Note thatδ(Kn1,...,nk) =
degk(Kn1,...,nk) = n − nk and∆(Kn1,...,nk) = deg1(Kn1,...,nk) = n − n1. In the
following two subsections, we will show the following theorem.

Theorem 2.3. For k ≥ 2, 1 ≤ n1 ≤ · · · ≤ nk, and n=
∑

1≤i≤k ni ,

stc(Kn1,...,nk) =

n− n2 if n1 = 1,

2n− nk − nk−1 − 2 otherwise.

2.3.1 Case n1 = 1

First, we consider the casen1 = 1. We use Ostrovskii’s result [41]. For
each two distinct verticesu, v ∈ V(G), by m(u, v) we denote the maximum
number of edge-disjoint paths betweenu andv in G.

Lemma 2.4(Ostrovskii [41]). Let G be a graph and u, v ∈ V(G) be distinct
vertices. Then tc(G) ≥ m(u, v).

Lemma 2.5. Let k≥ 2 and n1 ≤ · · · ≤ nk. If n1 = 1 then

stc(Kn1,...,nk) = n− n2.
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Proof. Let V1 = {v1}. We define a spanning treeT as a starK1,n−1 with the
centerv1. Since all edges ofT are leaf edges,

ec(Kn1,...,nk : T) = max
2≤i≤k

degi(Kn1,...,nk) = deg2(Kn1,...,nk) = n− n2.

Therefore,stc(Kn1,...,nk) ≤ n− n2.

... ...

V2 V3

... ...

Vk

v1 ∈ V1 = {v1}

Fig. 2.1 An optimum spanning treeT for Kn1,...,nk in Lemma 2.5.

To showstc(Kn1,...,nk) ≥ n− n2, we will demonstrate thatm(v1, v2) = n− n2

for any v2 ∈ V2. Clearly, there aren − n2 − 1 disjoint paths of length two
betweenv1 and v2, that is, the paths{(v1,u, v2) : u ∈ N(v2) \ {v1}}, and
furthermore there is the edge{v1, v2}. Thus,m(v1, v2) = deg(v2) = n − n2.
From Lemma 2.4,stc(Kn1,...,nk) ≥ tc(Kn1,...,nk) ≥ n− n2. �

Note that Lemma 2.5 can be applied to the complete graphs as well. To
see this, observe thatKn1,...,nk is the complete graph ofk vertices ifni = 1 for
all 1 ≤ i ≤ k.

2.3.2 Case n1 ≥ 2

Next, we consider the remaining casen1 ≥ 2. Recall thatn1 ≤ · · · ≤ nk

andn =
∑

1≤i≤k ni . The following two known lemmas can be integrated into
Corollary 2.8.

Lemma 2.6 (Ostrovskii [41]). If k ≥ 2 and ni = 2 for 1 ≤ i ≤ k then
stc(Kn1,...,nk) = 2n− 6.

Lemma 2.7(Hruska [31]). For 2 ≤ n1 ≤ n2, stc(Kn1,n2) = n− 2.
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Corollary 2.8. Let k≥ 2 and2 ≤ n1 ≤ · · · ≤ nk. If either nk = 2 or k = 2,

stc(Kn1,...,nk) = 2n− nk − nk−1 − 2.

We will show thatstc(Kn1,...,nk) = 2n−nk−nk−1−2 also holds for anynk ≥ 3
andk ≥ 3. This properly extends the above lemmas.

First we show the upper bound.

Lemma 2.9. If 2 ≤ n1 ≤ · · · ≤ nk, nk ≥ 3, and k≥ 3 then

stc(Kn1,...,nk) ≤ 2n− nk − nk−1 − 2.

Proof. Let v ∈ Vk−1. We define a spanning treeT of Kn1,...,nk as follows (see
Fig. 2.2):

V(T) = V(Kn1,...,nk),

E(T) = Ev ∪ Ecm,

where

Ev = {{u, v} | u ∈ NG(v)},
Ecm = a complete matching fromVk−1 \ {v} to Vk.

For any leaf edgeeℓ ∈ E(T), ec(eℓ) ≤ ∆(Kn1,...,nk) = n − n1. Let ein be
an inner edge ofT. Thenec(ein) = |θ({x, y})| for somex ∈ Vk−1 \ {v} and
y ∈ Vk such that the edge{x, y} ∈ Ecm. It is easy to see that|θ({x, y})| =
deg(x) + deg(y) − 2 = (n− nk−1) + (n− nk) − 2 = 2n− nk − nk−1 − 2. Suppose
2n−nk−nk−1−2 ≤ n−n1. Then, we haven ≤ nk+nk−1+2−n1 ≤ nk+nk−1,
a contradiction. Thus, 2n− nk − nk−1 − 2 > n− n1, and so,

ec(Kn1,...,nk : T) = 2n− nk − nk−1 − 2.

Hence, the lemma follows. �

Next we show the lower bound.

Lemma 2.10. If 2 ≤ n1 ≤ · · · ≤ nk, nk ≥ 3, and k≥ 3 then

stc(Kn1,...,nk) ≥ 2n− nk − nk−1 − 2.
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...

...

... ...

V1 V2

... ...

Vk−2

v ∈ Vk−1

Vk−1 \ {v}

Vk

Fig. 2.2 An optimum spanning treeT for Kn1,...,nk in Lemma 2.9.

Proof. Let T be a spanning tree ofKn1,...,nk. If T is a star, then the center of
T has degreen − 1 > n − n1 = ∆(Kn1,...,nk), a contradiction. Thus,T has an
inner edge. Lete be an inner edge ofT. We shall show that the edgee has
congestion at least 2n− nk − nk−1 − 2. We denote the vertex sets of the two
components ofT − e by Le andRe. Sincee is an inner edge, we have that
E(Kn1,...,nk[Le]) , ∅ andE(Kn1,...,nk[Re]) , ∅. If a detour contains the edgee,
we call it ane-detour. We divide the proof into following three cases:

1. nk < n/2;
2. nk ≥ n/2 and eitherVk ∩ Le = ∅ or Vk ∩ Re = ∅;
3. nk ≥ n/2, Vk ∩ Le , ∅, andVk ∩ Re , ∅.

[Case 1] nk < n/2: Without loss of generality, we may assume|Le| ≤ n/2.
For each vertexℓ ∈ Le, the number ofe-detours connectingℓ to its neighbors
is at leastdeg(ℓ) − (|Le| − 1), sinceℓ has at most|Le| − 1 neighbors inLe.
Therefore, we have

ec(e) ≥
∑
ℓ∈Le

(deg(ℓ) − (|Le| − 1)) =
∑
ℓ∈Le

deg(ℓ) − |Le|(|Le| − 1).
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SinceE(Kn1,...,nk[Le]) , ∅, it holds thatLe * Vk. Hence, there exists a vertex
in Le that has degree at leastdegk−1(Kn1,...,nk), and so,∑

ℓ∈Le

deg(ℓ) ≥ degk−1(Kn1,...,nk) + (|Le| − 1)δ(Kn1,...,nk)

= degk−1(Kn1,...,nk) + (|Le| − 1)degk(Kn1,...,nk).

Sincenk < n/2 and|Le| ≤ n/2, we can see that|Le| < n− nk = degk(Kn1,...,nk).
This implies|Le| + 1 ≤ degk(Kn1,...,nk). Thus, we have

ec(e) ≥ degk−1(Kn1,...,nk) + (|Le| − 1)degk(Kn1,...,nk) − |Le|(|Le| − 1)

= degk−1(Kn1,...,nk) + degk(Kn1,...,nk) + (|Le| − 2)degk(Kn1,...,nk) − |Le|(|Le| − 1)

≥ degk−1(Kn1,...,nk) + degk(Kn1,...,nk) + (|Le| − 2)(|Le| + 1)− |Le|(|Le| − 1)

= degk−1(Kn1,...,nk) + degk(Kn1,...,nk) − 2.

Sincedegi(Kn1,...,nk) = n− ni , the lemma holds in this case.
[Case 2] nk ≥ n/2 and eitherVk ∩ Le = ∅ or Vk ∩ Re = ∅: Without loss

of generality, we may assumeVk ∩ Re = ∅. This impliesVk ⊆ Le, hence, we
have thatec(e) ≥ |Re|nk. SinceE(Kn1,...,nk[Re]) , ∅, |Re| ≥ 2. If |Re| ≥ 3 then
ec(e) ≥ 3nk = 4nk − nk ≥ 2n − nk, sincenk ≥ n/2. Otherwise|Re| = 2. Let
Re = {r1, r2}. Then{r1, r2} ∈ E(T), sor1 andr2 belong to differentVi ’s. Thus,

ec(e) = deg(r1) + deg(r2) − 2

≥ degk(Kn1,...,nk) + degk−1(Kn1,...,nk) − 2

= 2n− nk − nk−1 − 2.

[Case 3] nk ≥ n/2, Vk ∩ Le , ∅, andVk ∩ Re , ∅: First, note that we do
not use the assumptionnk ≥ n/2. This assumption is added here only for
guaranteeing that the case analysis covers all cases exactly.

Without loss of generality, we may assume|Vk∩Le| ≥ ⌈nk/2⌉. Sincenk ≥ 3,
|Vk∩Le| ≥ 2. Then there are three verticesk1

ℓ , k
2
ℓ , kr ∈ Vk such thatk1

ℓ , k
2
ℓ ∈ Le

andkr ∈ Re. SinceE(Kn1,...,nk[Re]) , ∅, Re contains a vertexir ∈ Vi such that
i , k. Similarly, Le contains a vertexjℓ ∈ V j such thatj , k. We call the
verticesk1

ℓ , k
2
ℓ , kr , ir , and jℓ initial verticesand denote them byI (see Fig. 2.3).

Observe that we can selectir and jℓ so thati , j. Otherwise, every vertex
except for vertices inVk is in Vi . This contradictsk ≥ 3. We will estimate the
number ofe-detours starting from one of the initial vertices. More precisely,
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e

Le Re

ir

kr

k
1
ℓ

jℓ

k2
ℓ

Fig. 2.3 Initial verticesI =
{
k1
ℓ , k

2
ℓ , kr , ir , jℓ

}
.

we estimate the number ofe-detours fromI to (1) I , (2) Vk \ {k1
ℓ , k

2
ℓ , kr }, (3)

Vh (h < {i, j, k}), and (4)Vi ∪ V j \ {ir , jℓ}.
(1) From I to I : Since there are four edges{ir , jℓ}, {ir , k1

ℓ }, {ir , k2
ℓ }, and

{ jℓ, kr } betweenLe andRe, there are foure-detours.
(2) From I to Vk \ {k1

ℓ , k
2
ℓ , kr }: We will show that there existnk − 3 e-

detours. Recall that|Vk| = nk ≥ 3. If nk = 3 there is noe-detour since
Vk \ {k1

ℓ , k
2
ℓ , kr } = ∅. Otherwise, for eachv ∈ Vk \ {k1

ℓ , k
2
ℓ , kr }, there is a detour,

from ir or jℓ to v. Thus, the number ofe-detours is|Vk \ {k1
ℓ , k

2
ℓ , kr }| = nk − 3.

(3) From I to Vh (h < {i, j, k}): For eachv ∈ Vh, there exist at least two
e-detours; from{ir , kr } or { jℓ, k1

ℓ , k
2
ℓ } to v. Hence, the number ofe-detours

from I to Vh is at least 2|Vh| = 2nh.
(4) From I to Vi ∪ V j \ {ir , jℓ}: For eachu ∈ Vi \ {ir }, there exists at least

onee-detour; fromkr or { jℓ, k1
ℓ , k

2
ℓ } to u. For eachv ∈ V j \ { jℓ}, there are two

e-detours; from{ir , kr } or {k1
ℓ , k

2
ℓ } to v. So the number ofe-detours fromI to

Vi ∪ V j \ {ir , jℓ} is at least|Vi \ {ir }| + 2|V j \ { jℓ}| = ni + 2n j − 3.
From the above observations (1–4),

ec(e) ≥ 4+ (nk − 3)+

 ∑
ℓ∈{1,...,k}\{i, j,k}

2nℓ

 + (ni + 2n j − 3)

= nk + 2(n− ni − n j − nk) + ni + 2n j − 2

= 2n− nk − ni − 2.

Sincei , k, ec(e) ≥ 2n− nk − ni − 2 ≥ 2n− nk − nk−1 − 2. �

Corollary 2.8, Lemma 2.9, and Lemma 2.10 imply Theorem 2.3 for the
casen ≥ 2.
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2.4 Spanning tree congestion of two-dimensional

tori
Recently, Hruska [31] has determined the spanning tree congestion of the

two-dimensional gridsPm � Pn.

Theorem 2.11(Hruska [31]). For m≤ n,

stc(Pm � Pn) =

m if m= n or m odd,

m+ 1 otherwise.

In this section, we consider a related problem. We will show the spanning
tree congestion of the two-dimensional tori. Atwo-dimensional torusis the
Cartesian product of two cycles, that is,Cm �Cn for some integersm,n ≥ 3.
The following result can be shown by Lemma 2.15 and Lemma 2.18 derived
later.

Theorem 2.12. stc(Cm �Cn) = 2 min{m,n}.
Note that Castejón and Ostrovskii [12] showed the spanning tree conges-

tion of square toriCn�Cn, independently. Clearly, our result is more general
than theirs.

A vertex ofCm�Cn is represented as (i, j) for some integers 0≤ i ≤ m− 1
and 0≤ j ≤ n − 1. Cm � Cn has an edge{(i, j), (i′, j′)} if and only if either
i = i′ and j = (( j′ + 1) modn), or j = j′ and i = ((i′ + 1) modm). We
say thatith copy ofCn in Cm � Cn is the ith column, and jth copy ofCm

in Cm � Cn is the jth row. We denote theith column and thejth row by
Col(i) andRow( j), respectively. Note that there aremcolumns andn rows in
Cm �Cn (see Fig. 2.4).

The following lemma follows immediately from the definition of the func-
tion θ (see [3]).

Lemma 2.13. For an r-regular graph G and a set S⊆ V(G),

|θG(S)| = r |S| − 2|E(G[S])|.

Since Cm � Cn is 4-regular, we have the following corollary from
Lemma 2.13.
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Row (1)

Row (n− 2)

Col(2) Col(m− 2)

(0, 0) (m− 1, 0)

(m− 1, n− 1)(0, n− 1)

Fig. 2.4 A two-dimensional torusCm �Cn.

Corollary 2.14. Let T be a spanning tree of Cm�Cn, e∈ E(T), and Le be the
vertex set of a component of T− e. Then ec(e) = 4|Le| − 2|E((Cm�Cn)[Le])|.

Now, we show the upper bound.

Lemma 2.15. stc(Cm �Cn) ≤ 2 min{m,n}.
Proof. Without loss of generality, we may assumem≥ n. Our spanning tree
T is defined as follows (see Fig. 2.5):

V(T) = V(Cm �Cn),

E(T) = Etop∪ Evert,

where

Etop = {{(i,0), (i + 1,0)} | 0 ≤ i ≤ m− 2} ,
Evert = {{(i, j), (i, j + 1)} | 0 ≤ i ≤ m− 1,0 ≤ j ≤ n− 2} .

Let et ∈ Etop andet = {(i,0), (i + 1,0)} for some 0≤ i ≤ m− 2. Let Let be
a vertex set of the component ofT − et that contains (i,0). Then it is easy to
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see that|Let | = (i + 1)n and|E((Cm�Cn)[Let ])| = (2i + 1)n (see Fig. 2.5). So,
from Corollary 2.14,

ec(et) = 4(i + 1)n− 2(2i + 1)n = 2n.

Let ev ∈ Evert andev = {(i, j), (i, j + 1)} for some 0≤ i ≤ m− 1 and 0≤ j ≤
n− 2. We denote byLev the vertex set of a component ofT − ev that contains
(i, j + 1). Then clearly|Lev | = n− j − 1 and|E((Cm �Cn)[Lev])| = n− j − 2
(see Fig. 2.5). So, from Corollary 2.14,

ec(ev) = 4(n− j − 1)− 2(n− j − 2) = 2n− 2 j ≤ 2n.

From the above observations, we haveec(Cm�Cn : T) = 2n as required. �

(m− 1, n− 1)(0, n− 1)

(0, 0) (m− 1, 0)
et

Lev

Let
ev

Fig. 2.5 An optimum spanning treeT for Cm �Cn in Lemma 2.15 (m≥ n).

Next we show the lower bound. To this end, we need some definitions and
a corollary. LetS be a subset ofV(Cm�Cn). We say thatS spans ith column
if S contains all vertices ofCol(i). Similarly, we say thatS spans jth row
if S contains all vertices ofRow( j). We say thatS touches ith columnif S
contains some vertex ofCol(i) andS does not spanCol(i), and similarly,S
touches jth rowif S contains some vertex ofRow( j) andS does not span
Row( j). If an edgee ∈ E(Cm�Cn) is contained by some column then we say
thate is vertical; otherwisee is horizontal.

Obviously, the following proposition holds.
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Proposition 2.16. If S ⊆ V(Cm �Cn) touches ith column ( jth row) then the
ith column ( jth row) contains at least two vertical (horizontal, respectively)
boundary edges.

Since the set of vertical boundary edges and the set of horizontal boundary
edges are disjoint for anyS ⊆ V(Cm�Cn), the following corollary holds from
Proposition 2.16.

Corollary 2.17. Let S ⊆ V(Cm � Cn). If S touches c columns and r rows
then|θ(S)| ≥ 2(c+ r).

Now, we are ready to show the lower bound forstc(Cm �Cn).

Lemma 2.18. stc(Cm �Cn) ≥ 2 min{m,n}.
Proof. Let T be an arbitrarily spanning tree ofCm�Cn. Let e ∈ E(Cm�Cn)
be an edge in Lemma 2.1, andLe be the vertex set of the smaller component
of T − e. Then⌈(mn− 1)/4⌉ ≤ |Le| ≤ ⌊mn/2⌋ since|V(Cm � Cn)| = mnand
∆(T) ≤ ∆(Cm � Cn) = 4. By estimating|θ(Le)|, we will show thatec(e) is
large enough. Note that|θ(Le)| = ec(e) here. We divide the proof into the
following three cases:

1. Le spans some columns and some rows;
2. Le spans some columns but no row, or some rows but no column;
3. Le spans neither columns nor rows.

[Case 1] Le spans some columns and some rows: Without loss of gener-
ality, we may assumem ≥ n. We denote byc andr the number of spanned
columns and rows, respectively. Since each column is a copy ofCn and each
row is a copy ofCm,

|Le| ≥ max{cn, rm}.

SinceLe spans a column and a row,Le intersects all columns and rows. So,
Le touchesm− c columns andn − r rows. (Recall thatCm � Cn containsm
columns andn rows.) Hence, from Corollary 2.17,

|θ(Le)| ≥ 2(m− c+ n− r).

Suppose|θ(Le)| < 2n. Then, we have that 2(m−c+n−r) < 2n, which implies
m< c+ r. Therefore,

mn< (c+ r)n ≤ cn+ rm ≤ 2 max{cn, rm} ≤ 2|Le|.
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This implies|Le| > mn/2 that contradicts|Le| ≤ ⌊mn/2⌋. Thus,|θ(Le)| ≥ 2n.
[Case 2] Le spans some columns but no row, or some rows but no col-

umn: If Le spans a row thenLe touches all columns. So,|θ(Le)| ≥ 2m from
Corollary 2.17. The opposite case can be proved by the symmetry argument.

[Case 3] Le spans neither columns nor rows: Letr andc be the number
of touched rows and touched columns, respectively. From Corollary 2.17,
|θ(Le)| ≥ 2(r + c). Clearly,rc ≥ |Le|. It is well known that (r + c)/2 ≥

√
rc.

Thus,
|θ(Le)| ≥ 2(r + c) ≥ 4

√
rc ≥ 4

√
|Le|.

Now we have the following three subcases:
[Case 3-a] m, n: If m> n, thenm≥ n+ 1, and so,

|θ(Le)| ≥ 4
√
|Le| ≥ 4

√
(mn− 1)/4 ≥ 2

√
n2 + n− 1 ≥ 2n.

Otherwise, that is, ifn > m, we can derive|θ(Le)| ≥ 2m by the symmetry
argument.

[Case 3-b] m= n = 2ℓ for some positive integerℓ:

|θ(Le)| ≥ 4
√
|Le| ≥ 4

√
⌈(mn− 1)/4⌉ = 4

√⌈
ℓ2 − 1/4

⌉
= 4ℓ = 2n.

[Case 3-c] m= n = 2ℓ + 1 for some positive integerℓ:

|θ(Le)| ≥ 4
√
|Le| ≥ 4

√
(mn− 1)/4 = 4

√
ℓ2 + ℓ.

Clearly, 4
√
ℓ2 + ℓ > 4ℓ+1 for ℓ ≥ 1. Thus, we have|θ(Le)| > 4ℓ+1 = 2n−1,

which implies|θ(Le)| ≥ 2n. This completes the proof. �

The method used in the above proof is not essentially new. For example,
Rolim, Sýkora, and Vrt’o used a similar method to show the cutwidth of
cylindersPm �Cn [47, Theorem 1].

2.5 Lower bounds for two classes of graphs
In this section, we show lower bounds of spanning tree congestion for two

classes of graphs. We use Corollary 2.2 to derive the lower bounds.
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2.5.1 Multi-dimensional grids

Recall that ad-dimensional grid Pdn is thedth Cartesian power of a path
Pn, that is,P1

n = Pn andPd
n = Pn � Pd−1

n for d > 1.

Lemma 2.19(Bollobás and Leader [9]). For 1 ≤ s≤ nd,

θPd
n
(s) ≥


4s/n if s < nd/4,

nd−1 if nd/4 ≤ s≤ 3nd/4,

4(nd − s)/n if s> 3nd/4.

Theorem 2.20. stc(Pd
n) ≥

⌈
2(nd − 1)/(dn)

⌉
for d ≥ 2.

Proof. Obviously,∆(Pd
n) = 2d and|V(Pd

n)| = nd. So, from Corollary 2.2 and
Lemma 2.19,

stc(Pd
n) ≥

⌊nd/2⌋
min

s=⌈(nd−1)/(2d)⌉
θ(s) ≥ min

nd−1,
⌈nd/4⌉−1

min
s=⌈(nd−1)/(2d)⌉

4s
n


≥ min

{
nd−1,

2(nd − 1)
dn

}
.

Sinced ≥ 2, nd−1 ≥ 2(nd − 1)/(dn). Thus, the theorem follows. �

The above theorem has two applications. First, from Theorem 2.20,

stc(Pn � Pn) ≥
⌈
2(n2 − 1)/(2n)

⌉
= ⌈n− 1/n⌉ = n.

This lower bound is the best possible (Hruska [31] has shownstc(Pn � Pn) =
n). Second, we can derive a lower bound for thehypercube Qd = Pd

2. From
Theorem 2.20,

stc(Qd) = stc(Pd
2) ≥

⌈
2(2d − 1)/(2d)

⌉
=

⌈
(2d − 1)/d

⌉
.

This bound, however, is not so good. In the following subsection, we will
show a better lower bound for the hypercubes.
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2.5.2 Hypercubes

Hruska [31] conjectured thatstc(Qd) = 2d−1.*2 In this subsection, we show
thatstc(Qd) = Ω(2d log2 d/d) andstc(Qd) ≤ 2d−1.

By the following lemma, we have an edge isoperimetric inequality forQd.

Lemma 2.21(Chung, Füredi, Graham, and Seymour [16]). Let G be a sub-
graph of a hypercube and̄δ be the average degree of G. Then|V(G)| ≥ 2δ̄.

Corollary 2.22 (See e.g. [3]). θQd(s) ≥ s(d − log2 s) for 1 ≤ s≤ 2d.

Proof. Let S ⊆ V(Qd) and δ̄ the average degree ofQd[S]. Then
2|E(Qd[S])| = δ̄|S|. SinceQd is d-regular,|θ(S)| = |S|

(
d − δ̄

)
from Lemma

2.13. By Lemma 2.21, we have 2δ̄ ≤ |S|. It follows that δ̄ ≤ log2 |S|. From
the above observations,|θ(S)| ≥ |S| (d − log2 |S|

)
. Hence, the corollary

follows. �

Chandran and Kavitha [13] have shown that the carvingwidth ofQd is 2d−1.
To show this, they showed the following lemma.

Lemma 2.23(Chandran and Kavitha [13]). θQd(s) ≥ 2d−1 for 2d−2 ≤ s ≤
2d−1.

We will show a lower bound forstc(Qd) by analyzing the functionθQd .

Theorem 2.24. stc(Qd) ≥ (2d − 1)log2 d/d.

Proof. Let f (s) = s(d − log2 s) and f ′(s) be the derived function off (s).
Then

f ′(s) = d −
(
log2 s+

1
ln 2

)
.

Thus, f ′(s) > 0 for 1 ≤ s ≤ 2d−2. It follows that f (s) is a monotonically
increasing function ons for 1 ≤ s≤ 2d−2. Hence, we have

2d−2

min
s=⌈(2d−1)/d⌉

f (s) ≥ f

(
2d − 1

d

)
=

2d − 1
d

(
d − log2

2d − 1
d

)
>

2d − 1
d

log2 d.

*2 Recently, this conjecture has been disproved by Law [35]. See Subsection 2.9.1 for more
detail.
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Therefore, from Corollary 2.2, Corollary 2.22, and Lemma 2.23,

stc(Qd) ≥ min

2d−1,
2d−2

min
s=⌈(2d−1)/d⌉

f (s)

 ≥ min

{
2d−1,

(2d − 1) log2 d

d

}
.

It is easy to see that (2d − 1) log2 d/d ≤ 2d−1 for d ≥ 1. Hence, the theorem
follows. �

The above bound for the hypercubes is not so strong to settle the conjec-
ture. To show the upper bound 2d−1, we use binomial trees. Binomial trees
are introduced in the studies of theminimum average distance spanning tree
of the hypercubes [19, 52]. Ad-level binomial tree Bd is a spanning tree of
Qd: B1 is an edgeQ1 rooted at 0;Bd consists of two (d − 1)-level binomial
trees and an edge between roots of the two trees; The root ofBd is one of the
roots of twoBd−1’s. See Fig. 2.6 for example, and see references [19, 52] for
formal definitions. From the construction ofBd, it is easy to see that for any
edgee ∈ Bd, the smaller componentC of Bd − e induces a subcubeQδ for
someδ < d. SinceQd is d-regular andQδ is δ-regular, we have

|θQd(C)| = |V(Qδ)|(d − δ) = 2δ(d − δ).

It is easy to verify that 2δ(d − δ) ≤ 2d−1 for δ < d. Therefore, we have the
upper bound.

1

0

11

10

01

00

111

110

101

100

011

010 001

B1 B2 B3

000

Fig. 2.6 Binomial trees.
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2.6 Spanning tree congestion of rook’s graphs
In this section, we exactly determine the spanning tree congestion of gen-

eralized two-dimensional Hamming graphsKm � Kn. These graphs have
several natural characterizations. Arook’s graphhas the vertex set{(i, j) |
i ∈ [m], j ∈ [n]} which corresponds to the cells of them× n chessboard;
A vertex (i, j) in a rook’s graph is adjacent to (i′, j′) if and only if a rook
at the cell (i, j) can move to the cell (i′, j′) (see Fig. 2.7). In other words,
(i, j) is adjacent to (i′, j′) if and only if eitheri = i′ and j , j′, or i , i′

and j = j′. Thus, the rook’s graph on them× n chessboard coincides with
Km � Kn. It is also known thatKm � Kn is the line graph*3 of the complete
bipartite graphKm,n. Line graphs of bipartite graphs are used in the proof of
the Strong Perfect Graph Theorem [15]. Several properties of rook’s graphs
were studied [39, 30, 34, 1, 2].

(0, 2)

(3, 2)

(0, 1)

(3, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 3) (0, 4)

(3, 3) (3, 4)

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

Fig. 2.7 A rook’s graphK4 � K5.

Lindsey [36] has solved the edge-isoperimetric problem for general-
ized d-dimensional Hamming graphs. In thelexicographic order≺lex,
(a1, . . . , ad) ≺lex (b1, . . . , bd) if and only if there existsi (1 ≤ i ≤ d) such that

*3 The line graph L(G) of a graphG is a graph such thatV(L(G)) = E(G) and in which two
verticese1, e2 ∈ V(L(G)) are adjacent if and only ife1 ∩ e2 , ∅.
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ai < bi andai′ = bi′ for eachi′ < i.

Lemma 2.25([36]). Let p1 ≤ p2 ≤ · · · ≤ pd. Then for each s,1 ≤ s ≤∏d
i=1 pi , the collection of the first s vertices of Kp1 � Kp2 � · · · � Kpd taken in

the lexicographic order≺lex provides minimum for the functionθ.

In the rest of this section, we assume without loss of generality that 2≤
m ≤ n. In this section,θ = θKm�Kn. We call the vertices{(i, j) | j ∈ [n]} the
row i, and the vertices{(i, j) | i ∈ [m]} thecolumn j. The following lemma is
our main tool.

Lemma 2.26. Let m≤ n, and s= qn+ r ≤ mn for nonnegative integers q
and r< n. Then,θ(s) = (m− q)qn+ (m+ n− 2q− r − 1)r.

Proof. Let S ⊆ V(Km � Kn) be the firsts vertices taken in the order≺lex.
From Lemma 2.25,|θ(S)| = θ(s). It is easy to see thatS consists ofq rows
andr vertices contained by another row. LetR denote ther vertices (R may
be empty). There are

(
n
2

)
edges in each row, andn edges between each two

rows. There are
(
r
2

)
edges inR, andr edges betweenR and another row. So,

we have that|E((Km � Kn)[S])| = q
(
n
2

)
+

(
q
2

)
n +

(
r
2

)
+ qr. SinceKm � Kn is

(m+ n− 2)-regular, we have, from Lemma 2.13, that

|θ(S)| = (m+ n− 2)(qn+ r) − 2|E((Km � Kn)[S])|
= (m− q)qn+ (m+ n− 2q− r − 1)r,

as required. �

Using Lemma 2.26 and Corollary 2.2, we derive a lower bound for
stc(Km � Kn). We divide the range⌈(mn− 1)/(m+ n− 2)⌉ ≤ s ≤ ⌊mn/2⌋,
in Corollary 2.2, into two ranges⌈(mn− 1)/(m+ n− 2)⌉ ≤ s ≤ n and
n < s≤ ⌊mn/2⌋. This is possible sincen ≥ ⌈(mn− 1)/(m+ n− 2)⌉.

Lemma 2.27. θ(s) ≥ min
{
θ(n), θ

(⌈
mn−1

m+n−2

⌉)}
for m≤ n and

⌈
mn−1

m+n−2

⌉
≤ s≤ n.

Proof. From Lemma 2.26,θ(s) = −s(s−m− n+ 1) for s≤ n. Since−s(s−
m− n+ 1) is a quadratic convex upward function ons, the lemma holds. �

Lemma 2.28. θ(s) ≥ θ(n) for m≤ n and n< s≤ ⌊mn/2⌋.
Proof. Let q andr be two integers in Lemma 2.26. Clearly, 1≤ q ≤ m/2.
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From Lemma 2.26, we haveθ(n) = (m− 1)n and

θ(s) = (m− q)qn+ (m+ n− 2q− r − 1)r.

Since 1≤ q ≤ m/2, we have that (m− q)q ≥ m− 1. Thus,

(m− q)qn≥ (m− 1)n.

Sinceq ≤ m/2 andr < n, we have thatm+ n− 2q− r − 1 ≥ 0, and hence,

(m+ n− 2q− r − 1)r ≥ 0.

Therefore, we have

θ(s) = (m− q)qn+ (m+ n− 2q− r − 1)r ≥ (m− 1)n = θ(n),

as required. �

Corollary 2.29. For m≤ n, stc(Km � Kn) ≥ min
{
θ(n), θ

(⌈
mn−1

m+n−2

⌉)}
.

Next, We show the upper bounds.

Lemma 2.30. stc(Km � Kn) ≤ θ(n).

Proof. The spanning treeT is defined as follows (see Fig. 2.8):

1. For each rowi, construct a starK1,n−1 with the center (i, 0);
2. For the column 0, construct a starK1,m−1 with the center (0, 0);
3. The union of the constructed stars isT.

Each edgee constructed in the first step is a leaf edge ofT. Thus,ec(e) =
θ(1). If an edgee is constructed in the second step,ec(e) = θ(n). Since
m,n ≥ 2, θ(1) = m+ n− 2 ≤ (m− 1)n = θ(n). Hence, the lemma holds. �

Lemma 2.31. For m≤ n, stc(Km � Kn) ≤ θ
(⌈

mn−1
m+n−2

⌉)
.

Proof. For simplicity, letx =
⌈

mn−1
m+n−2

⌉
. The spanning treeT is constructed as

follows (see Fig. 2.9):

1. Construct a starK1,m+n−2 with the center (0,0);
2. For each columnj, 1 ≤ j ≤ n−1, construct a starK1,x−1 with the center

(0, j) and the leaves{(h(i j), j), (h(i j+1), j), . . . , (h(i j+x−2), j)}, where
i j = ( j − 1)(x− 1) andh(i) = (i modm− 1)+ 1 (see Fig. 2.9(a));
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(0, 2)

(3, 2)

(0, 1)

(3, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 3) (0, 4)

(3, 3) (3, 4)

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(1, 4)

(2, 4)

Fig. 2.8 The spanning tree ofK4 � K5 in Lemma 2.30.

3. For each rowi, 1 ≤ i ≤ m− 1, construct a star with the center (i,0)
whose leaves are the vertices of the row that are not contained any
other star;

4. The union of the constructed stars isT (see Fig. 2.9(b)).

From the following claim, it suffices to show that for any edgee in T, the
smaller component ofT − ehas at mostx vertices.

Claim 2.32. θ(s) ≤ θ(x) for s≤ x.

Proof. First, we show thatx ≤
⌈

m+n−1
2

⌉
≤ n. Clearly, the second inequality is

holds sincem ≤ n. Supposex =
⌈

mn−1
m+n−2

⌉
>

⌈
m+n−1

2

⌉
. This implies mn−1

m+n−2 >
m+n−1

2 . Simplifying this inequation, we have that (m−1)(m−2)+(n−1)(n−2) <

0, which contradictsn ≥ m≥ 2. Thus, we havex ≤
⌈

m+n−1
2

⌉
≤ n.

Lemma 2.26 impliesθ(s) = −s(s − m − n + 1) for s ≤ n. Clearly,
θ
(⌈

m+n−1
2

⌉)
= θ

(⌊
m+n−1

2

⌋)
is the peak of the function. Thus, the function

is nondecreasing fors≤ x. Hence, the claim holds. �

Without loss of generality, we assume thatT is rooted at the vertex (0,0).
If an edgee in T is not incident to the vertex (0, 0), thene is a leaf edge, and
e has congestionθ(1) ≤ θ(x). Suppose thate is connected to the root (0,0).
Then, eithere= {(0,0), (0, j)} or e= {(0,0), (i,0)} holds.
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(a) Consecutive property of
leaves of stars in the second
step (x = 4).

(b) The union of the stars.

Fig. 2.9 The spanning tree ofK6 � K7 in Lemma 2.31

[Case 1] e= {(0,0), (0, j)}: Thenec(e) = |θ(V(T(0, j)))|, whereT(0, j) is the
subtree ofT rooted at (0, j). Clearly,T(0, j) is a star in the second step of the
above construction. Thus,|V(T(0, j))| = x andV(T(0, j)) is included in a clique.
So,ec(e) = θ(x).

[Case 2] e= {(0,0), (i,0)}: Thenec(e) = |θ(V(T(i,0)))|, whereT(i,0) is the
subtree ofT rooted at (i,0). Clearly,T(i,0) is a star in the third step, and thus,
|θ(V(T(i,0)))| = θ(|V(T(i,0))|). So, it suffices to show that|V(T(i,0))| ≤ x. Since
the vertices are consecutively taken in the second step, the numbers of the
remaining vertices in any two rows can differ by at most one. For the root
and the stars in the second step, 1+ x(n − 1) vertices are used. So, the sum
of the number of the remaining vertices ismn− 1 − x(n − 1), and so, each
row contains at most⌈(mn− 1− x(n− 1))/(m− 1)⌉ unused vertices. Suppose
that x < ⌈(mn− 1− x(n− 1))/(m− 1)⌉. Then clearlyx < (mn− 1 − x(n −
1))/(m− 1) also holds. This implies thatx < (mn− 1)/(m+ n− 2), which is
a contradiction. �

Corollary 2.33. For m≤ n, stc(Km � Kn) ≤ min
{
θ(n), θ

(⌈
mn−1

m+n−2

⌉)}
.
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Corollaries 2.29 and 2.33 together imply

stc(Km � Kn) = min

{
θ(n), θ

(⌈
mn− 1

m+ n− 2

⌉)}
for m≤ n. We give the main theorem in a more transparent form.

Theorem 2.34. For m≤ n,

stc(Km � Kn) =

(m− 1)n if m2 − 3m+ 3 < n,(
m+ n− 1−

⌈
mn−1

m+n−2

⌉) ⌈
mn−1

m+n−2

⌉
otherwise.

Proof. Let x =
⌈

mn−1
m+n−2

⌉
. From Lemma 2.26,θ(s) = (m+ n− 1− s)s for x ≤

s≤ n. Let f (s) = −s(s−m− n+ 1). Then f (s) is a quadratic convex upward
function, and its peak is taken ats = m+n−1

2 . Thus, f (n) = f (m− 1) = θ(n).
Sincem ≤ n, it holds thatm− 1 < m+n−1

2 < n. It is easy to see thatx ≤ n.
Hence,θ(n) = f (m−1) < f (x) = θ(x) if and only if m−1 < x (see Fig. 2.10).
Sincem− 1 is an integer,m− 1 <

⌈
mn−1

m+n−2

⌉
if and only if m− 1 < mn−1

m+n−2.

Simplifying this inequation, we have thatm2 − 3m+ 3 < n. �

m + n− 1

2
m + n− 1

s

f (s)

nm− 1

θ(n)

x

O

Fig. 2.10 The functionf (s) in Theorem 2.34.

For readers’ convenience, we explicitly state the spanning tree congestion
of the square rook’s graphKn � Kn = K2

n, which is a direct corollary of
Theorem 2.34.
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Corollary 2.35. For n ≥ 2,

stc(K2
n) =

(3n− 4)(n+ 2)/4 if n is even,

3(n− 1)(n+ 1)/4 if n is odd.

Proof. It is easy to see thatstc(K2
2) = stc(C4) = 2, whereC4 is a simple

cycle on four vertices. Obviously,n2 − 3n + 3 < n implies n = 2, and⌈
mn−1

m+n−2

⌉
= ⌈(n+ 1)/2⌉ sincem= n. Theorem 2.34 implies forn ≥ 3 that

stc(K2
n) = (2n− 1− ⌈(n+ 1)/2⌉) ⌈(n+ 1)/2⌉
= ⌊3(n− 1)/2⌋ ⌈(n+ 1)/2⌉ .

It is routine to verify that the corollary holds from the above equation.�

2.7 Multi-dimensional case
In this section, we study the spanning tree congestion of multi-dimensional

Hamming graphs. More precisely, we show upper and lower bounds on
stc(Kd

n) for n,d ≥ 3. For hypercubesQd, we have already shown that

(2d − 1) log2 d/d ≤ stc(Kd
2) ≤ 2d−1.

We extend the above bounds to the casen ≥ 3.
First, we show a lower bound. In the previous section, Lemma 2.26 was the

main tool. If we had such an exact closed formula for the multi-dimensional
case, it would be easy to estimate bounds onstc(Kd

n). However, since the
graph in this section may have arbitrary high dimension, it is not easy to
derive such a formula. So, we should use an asymptotic estimation. Fortu-
nately, such an estimation is known.

Lemma 2.36 (Squier, Torrence, and Vogt [51]). Let G be a graph with s
vertices and t edges that is a subgraph of Kd

n , where n≥ 2. Then,

2t ≤ (n− 1)slogn s.

SinceKd
n is d(n − 1)-regular, Lemmas 2.13 and 2.36 imply the following

corollary.

Corollary 2.37. θKd
n
(s) ≥ (n− 1)s(d − logn s).
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Fornd−1 ≤ s≤ nd/2, the following simple estimation is good enough.

Lemma 2.38. θKd
n
(s) ≥ (n− 1)nd−1 for nd−1 ≤ s≤ nd/2.

Proof. Let S be the firsts vertices ofKd
n taken in the order≺lex. From

Lemma 2.25,θ(s) = |θ(S)|. Let s = nd−1q + r for some integersq and r
such that 1≤ q ≤ n/2 and 0≤ r < n. From the definition of≺lex, S consists
of q copies ofKd−1

n and r vertices in another copy ofKd−1
n . We call ther

verticesR and the remainingnd−1 − r verticesT, in the copy ofKd−1
n . Note

thatR may be empty.
Each vertex inS has a neighbor in theith copy ofKd−1

n , q + 2 ≤ i ≤ n.
Similarly, each vertex inT has a neighbor in any copy ofKd−1

n included by
S. Thus,

θ(S) ≥ (nd−1q+ r)(n− q− 1)+ (nd−1 − r)q

= q(n− q)nd−1 + r(n− 2q− 1).

If q = n/2 thenr = 0 sinces = nd−1q + r ≤ nd/2. If q < n/2 then 2q < n,
and so, (n − 2q − 1) ≥ 0. Hence,θ(S) ≥ q(n − q)nd−1. If q(n − q) < n − 1
then (q − 1)(q − n + 1) > 0, and so,q < 1 or q > n − 1. This contradicts
the assumption. Thus, we have thatθ(s) ≥ q(n − q)nd−1 ≥ (n − 1)nd−1, as
required. �

Lemma 2.39. stc(Kd
n) ≥ (nd − 1) logn d/d for n,d ≥ 3.

Proof. Let f (s) = (n − 1)s(d − logn s) and f ′(s) be the derived function of
f (s). Then f ′(s) = (n− 1)(d− 1/ ln n− logn s) > (n− 1)(d− 1− logn s), and
so f ′(s) > 0 for s≤ nd−1. This implies thatf (s) is monotonically increasing
for 1 ≤ s≤ nd−1. Thus, we have that

nd−1

min
s=

⌈
nd−1

d(n−1)

⌉ f (s) ≥ f

(
nd − 1

d(n− 1)

)
=

nd − 1
d

(
d − logn

nd − 1
d(n− 1)

)
>

nd − 1
d

logn d.

Thus, with Corollary 2.2 and Lemma 2.38, we have that

stc(Kd
n) ≥ min

{
(n− 1)nd−1,

nd − 1
d

logn d

}
.

We claim that (nd − 1) logn d/d ≤ (n− 1)nd−1 for n,d ≥ 3, which implies the
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lemma. Suppose (nd − 1) logn d/d > (n− 1)nd−1. Then we have

dnd−1 <
nd − 1
n− 1

logn d =

(
nd−1 +

nd−1 − 1
n− 1

)
logn d,

(d − logn d)nd−1 <
nd−1 − 1

n− 1
logn d.

Clearly, d − logn d ≥ logn d sincen,d ≥ 3. Thus, we have thatnd−1 <
(nd−1 − 1)/(n− 1), which is a contradiction. �

Next, we show an upper bound.

Lemma 2.40. stc(Kd
n) ≤ (n− 1)nd−1 for n,d ≥ 3.

Proof. We recursively construct the required spanning treeTd of Kd
n . For

d ≥ 1, Td is rooted at the vertex (0, . . . , 0). If d = 1 then the spanning tree
T1 is the starK1,n−1. If d ≥ 2 then constructTd−1 for each copy ofKd−1

n , and
construct the starK1,n−1 with the center (0, . . . , 0) and the leaves (i,0, . . . , 0),
1 ≤ i ≤ n − 1 (they are the root vertices ofn copies ofTd−1). Note that the
spanning tree in Lemma 2.30 coincides withT2 if m= n.

It is easy to see that for any edgee in Td, the smaller componentC of
Td − e induces a Hamming graphKδn for someδ < d. SinceKd

n and Kδn
are (n − 1)d-regular and (n − 1)δ-regular, respectively, we have|θKd

n
(C)| =

|C|(n− 1)(d − δ) = nδ(n− 1)(d − δ) from Lemma 2.13. It is routine to verify
thatnδ(n− 1)(d− δ) ≤ (n− 1)nd−1 for δ < d andn ≥ 3. Therefore, the lemma
holds. �

Lemmas 2.39 and 2.40 immediately imply the following theorem.

Theorem 2.41. (nd − 1) logn d/d ≤ stc(Kd
n) ≤ (n− 1)nd−1 for n,d ≥ 3.

2.8 Spanning tree congestion and treewidth
Bienstock [6] has shown some relationships between the carvingwidth and

the treewidth. Thetreewidthof graphs has studied intensively. See Bodlaen-
der’s excellent survey [8]. We show that the treewidth of a graph is bounded
by the product of its maximum degree and its spanning tree congestion.

Theorem 2.42. For a connected graph G, tw(G) < ∆(G)(stc(G) + 1).
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Proof. Let T be a minimum congestion spanning tree ofG. For eachv ∈
V(T), let Ev be the subset ofE(G) such that

Ev = {e ∈ E(G) | the detour fore in T containsv}.

Then letBv be the vertices contained by at least one edge inEv, that is,

Bv =
∪
{u,w}∈Ev

{u,w}.

Obviously,|Bv| ≤ 2|Ev|. We define a treeT as

V(T ) = {Bv | v ∈ V(G)},
E(T ) = {{Bu, Bv} | {u, v} ∈ E(T)}.

It is not difficult to see thatT is a tree decomposition ofG, and so

tw(G) + 1 ≤ max
v∈G
|Bv| ≤ max

v∈G
2|Ev|.

Let ev
1, e

v
2, . . . , e

v
degT (v) be the edges inT that havev ∈ V(G) as one of its

ends. Then clearly,

|Ev| ≤
degT (v)∑

i=1

ec(ev
i ). (2.1)

Observe that exactlydegG(v) edges inEv havev as one of its ends. So, the
remaining|Ev| − degG(v) edges havev as an inner point of its detour. This
means that|Ev| − degG(v) edges are counted twice in the right hand side of
the inequation (2.1). So, we have

2|Ev| ≤
degT (v)∑

i=1

ec(ei) + degG(v) ≤ ∆(G) · stc(G) + ∆(G)

as required. �

Combining Theorem 2.42 and a result of Chandran and Kavitha [14] that
determines the treewidth ofQd, we have a lower bound ofstc(Qd). Unfortu-
nately, this bound is incomparably weaker than the bound in Theorem 2.24.
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2.9 Concluding remarks
We have solved the spanning tree congestion problem for completek-

partite graphs, two-dimensional tori, and two-dimensional Hamming graphs.
We also showed some bounds on the spanning tree congestion for multi-
dimensional grids, hypercubes, and Hamming graphs.

As an analogue of the conjecture for hypercubes, one might conjecture
thatstc(Kd

n) = nd−1 or stc(Kd
n) = (n− 1)nd−1. However, this straightforward

analogue is not true in general. This is because thatstc(K2
n) is approximately

equal to 3n2/4 (see Corollary 2.35).

2.9.1 Additional remarks

Recently, Law [35] have disproved Hruska’s conjecture “stc(Qd) = 2d−1”
by showing that the lower bound in Theorem 2.24 is tight. That is,stc(Qd) =
Θ(2d log2 d/d).

Very recently, the author and Hans L. Bodlaender have proved that the
spanning tree congestion problem is NP-hard [42]. In their forthcoming pa-
per, they will prove some negative complexity results as well as some positive
ones.
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Chapter 3

Security number of graphs

3.1 Introduction
The concept ofsecurity in graphshas been introduced by Brigham, Dut-

ton and Hedetniemi [11] as a generalization of the concept ofalliances in
graphs [29]. Recently, Dutton, Lee, and Brigham [22] have shown some
general lower and upper bounds on the security number.

For a graphG and a subsetS = {s1, s2, . . . , sk} of V(G), let us imagine a
situation in which each vertexsi in S may be under attack from its neighbors
other thanS, andsi can defend itself or one of its neighbors inS. And si fails
to defend if the number of attackers ofsi is more than the number of defend-
ers ofsi . Keeping the image in mind, let us see the following definition:

• An attackon S is anyk mutually disjoint setsA = {A1,A2, . . . ,Ak}
such thatAi ⊆ N[si ] \ S for 1 ≤ i ≤ k.
• A defenseof S is anyk mutually disjoint setsD = {D1,D2, . . . ,Dk}

such thatDi ⊆ N[si ] ∩ S for 1 ≤ i ≤ k.
• An attackA is said to bedefendableif there exists a defenseD such

that |Di | ≥ |Ai | for 1 ≤ i ≤ k, andS is secureif every attack onS is
defendable.

The security number sn(G) of G is the cardinality of a smallest secure set
of G. Clearly, a minimal secure set is connected. Brigham, Dutton and
Hedetniemi [11] presented some characterizations of secure sets. We use the
following characterization as the definition of secure sets.

Theorem 3.1(Brigham, Dutton and Hedetniemi [11]). Set S⊆ V(G) is a
secure set of G if and only if|N[X] ∩ S| ≥ |N[X] \ S| for all X ⊆ S .
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This work was motivated by a conjecture of Brigham, Dutton and Hedet-
niemi [11]. They showed upper bounds on the security number of two-
dimensional cylinders (which will be defined later) and two-dimensional tori,
and conjectured that the bound is the best possible. In Section 3.3, we show
that their conjecture is true for tori. In Section 3.4, as a corollary of the result
for tori, we show that the conjecture is also true for cylinders.

In Section 3.5, we show that any outerplanar graph has security number
at most three. Achord of a maximal outerplanar graphM is an edge other
than the edges on the outer-boundary. (In this thesis, it is enough to define
chords only for maximal outerplanar graphs.) The arc distance of a chord
{u, v} in M is defined as the distance along the outer-boundary (that is, the
unique Hamiltonian cycle) between verticesu andv.

3.2 Notation and related work
Recall that a two-dimensional grid isPm�Pn, and a two-dimensional torus

is Cm�Cn. We define similar graphs, cylinders. Atwo-dimensional cylinder
Pm �Cn is the Cartesian product of a pathPm and a cycleCn. We call these
graphsgrid-like graphs.

Some graph parameters of grid-like graphs are known: pathwidth [23],
cutwidth and bisection width [47], spanning tree congestion [31, 33], power-
ful alliance number [10], and so on. Brigham, Dutton and Hedetniemi [11]
have shown the following exact or upper bounds on the security number of
two-dimensional grid-like graphs.

Proposition 3.2 (Brigham, Dutton and Hedetniemi [11]). For two-
dimensional grid-like graphs,

1. sn(Pm � Pn) = min{m,n,3},
2. sn(Pm �Cn) ≤ min{2m,n,6},
3. sn(C3�C3) = 4 and sn(Cm�Cn) ≤ min{2m,2n,12} for max{m,n} ≥ 4.

Brigham, Dutton and Hedetniemi [11] conjectured that the above upper
bounds are tight. We will show that their conjecture is true.

3.3 Security number of two-dimensional tori
In this section, we show thatsn(Cm � Cn) = min{2m,2n,12} for

max{m,n} ≥ 4. To this end, we need additional notation.
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Recall the definitions ofCol(i) andRow( j) in Section 2.4 (page 20). See
also Fig. 2.4. LetS ⊆ V(Cm � Cn). We denote∂c

i (S) = ∂(S) ∩ Col(i) (the
superscriptc stands for “column”). Clearly,∂c

i1
(S) ∩ ∂c

i2
(S) = ∅ for i1 , i2,

and∂(S) =
∪

i∈{0,...,m−1} ∂
c
i (S). We denote the indices of columns and rows

that intersect withS by

C (S) = {i | Col(i) ∩ S , ∅} and R(S) = { j | Row( j) ∩ S , ∅},

respectively. Fork ≥ 1, we define partitions ofC (S) andR(S), denoted by
Ck(S) andRk(S) respectively, as

Ck(S) = {i | |Col(i) ∩ S| = k} and Rk(S) = { j | |Row( j) ∩ S| = k}.

Obviously,C (S) ⊆ [m] andR(S) ⊆ [n]. From the definitions, it is easy to
see that|C (S)| = ∑n

k=1 |Ck(S)| and|S| = ∑n
k=1 k|Ck(S)|.

3.3.1 Some observations

In this subsection, we present some useful propositions. First, we can
easily derive the following proposition.

Proposition 3.3. If i ∈ C (S) then

|∂c
i (S)| =


0 if i ∈ Cn(S),

1 if i ∈ Cn−1(S),

2 or more otherwise.

We can directly derive the following corollary by the above proposition.

Corollary 3.4. For S ⊆ V(Cm �Cn),
∣∣∣∪i∈C (S) ∂

c
i (S)

∣∣∣ ≥ 2|C (S)| − 2|Cn(S)| −
|Cn−1(S)|.

SinceCm�Cn is 4-regular, if a setS ⊆ V(Cm�Cn) contains a vertexv that
has three neighbors not inS thenS is not secure. (We call such a vertexv a
pendant vertex.) From this property, we can estimate|∂c

i (S)| for i < C (S).

Proposition 3.5. Let S be a secure set of Cm�Cn. If i < C (S) and{i − 1, i +
1} ∩ C (S) , ∅ then|∂c

i (S)| ≥ 2.

Proof. Suppose|∂c
i (S)| = 1. Then|S∩Col(i − 1)| = 1 or |S∩Col(i + 1)| = 1.

Sincei < C (S), there is a vertex inS ∩ Col(i − 1) or S ∩ Col(i + 1) that has
at least three attackers. This contradicts thatS is secure. �



42 Chapter 3 Security number of graphs

Corollary 3.6. Let S be a secure set of Cm�Cn. If |C (S)| ≤ m−1 then there
exists i1 < C (S) such that|∂c

i1
(S)| ≥ 2. Moreover, if|C (S)| ≤ m−2 then there

exists i2 < C (S) such that i1 , i2 and |∂c
i2
(S)| ≥ 2.

Since any minimal secure set is connected, we can derive a lower bound of
its size.

Proposition 3.7. Let S be a connected subset of V(Cm �Cn). Then,

|S| ≥ |C (S)| + |R(S)| − 1.

Proof. We prove the proposition by induction on|S|. If |S| = 1, trivially the
proposition holds. Let us assume|S| ≥ 2 and for any connected set of size
|S| − 1, the proposition holds. SinceS is connected and|S|, there is a vertex
(i, j) ∈ S such thatS\{(i, j)} is also connected (for example, a leaf vertex of a
spanning tree of (Cm�Cn)[S]). Let S′ denoteS\{(i, j)}. Clearly,|S| = |S′|+1.
Then, from the inductive assumption,|S′| ≥ |C (S′)| + |R(S′)| − 1. Hence,

|S| ≥ |C (S′)| + |R(S′)|. (3.1)

SinceS is connected, there is a vertex (i′, j′) ∈ S′ such that{(i, j), (i′, j′)} ∈
E(Cm � Cn). From the definition ofCm � Cn, either i = i′ or j = j′. This
implies i ∈ C (S′) or j ∈ R(S′). Thus,

|C (S)| + |R(S)| ≤ |C (S′)| + |R(S′)| + 1. (3.2)

Combining the inequalities (3.1) and (3.2), we have

|S| ≥ |C (S)| + |R(S)| − 1,

as required. �

Corollary 3.8. Let S be a minimal secure set of Cm �Cn. Then,

|S| ≥ |C (S)| + |R(S)| − 1.

The restriction on size ofS bounds the size ofCn(S) andCn−1(S).

Proposition 3.9. |Cn(S)| ≤
⌊ |S|

n

⌋
and |Cn−1(S)| ≤

⌊ |S|−|C (S)|−(n−1)|Cn(S)|
n−2

⌋
.
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Proof. Trivially, the first inequality holds. Since|C (S)| = ∑n
k=1 |Ck(S)|, |S| =∑n

k=1 k|Ck(S)|, andn ≥ 3, we have

|S| − |C (S)| =
n∑

k=1

(k− 1)|Ck(S)| ≥ (n− 1)|Cn(S)| + (n− 2)|Cn−1(S)|.

Therefore, by simplifying the above inequality, we have

|Cn−1(S)| ≤ |S| − |C (S)| − (n− 1)|Cn(S)|
n− 2

.

Since|Cn−1(S)| is integral, the second inequality in the proposition holds.�

As the last observation of this subsection, we present a property of adjacent
columns.

Proposition 3.10. Let S ⊆ V(Cm �Cn), i ∈ Ck(S) and i′ ∈ Ck′ (S) for some
k, k′. If |i − i′| = 1 then|∂c

i′(S)| ≥ k− k′.

Proof. Each vertexv ∈ Col(i) ∩ S has a unique neighboru ∈ Col(i′). The
number of such neighbors is|Col(i) ∩ S| = k, and at mostk′ of them can be
in S. Thus, the lemma holds. �

3.3.2 Solution

We divide the problem into the following three cases.

1. |C (S)| ≤ m− 2 or |R(S)| ≤ n− 2 (Lemma 3.12),
2. m, n, |C (S)| ≥ m− 1, and|R(S)| ≥ n− 1 (Lemma 3.13),
3. m= n, |C (S)| ≥ m− 1, and|R(S)| ≥ n− 1 (Lemma 3.14).

From Proposition 3.2, and Lemmas 3.12, 3.13, and 3.14, we can conclude
that the following theorem holds.

Theorem 3.11. sn(C3 �C3) = 4, and formax{m,n} ≥ 4,

sn(Cm �Cn) = min{2m,2n,12}.

The 1st case: |C (S)| ≤ m− 2 or |R(S)| ≤ n− 2
This case is the easiest case.
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Lemma 3.12. Let S be a secure set of Cm �Cn such that|C (S)| ≤ m− 2 or
|R(S)| ≤ n− 2. Then|S| ≥ min{2m, 2n,12}.
Proof. Observe that|S| ≤ |C (S)||R(S)|, since each row contains at most
|C (S)| vertices ofS. We claim that max{|C (S)|, |R(S)|} ≥

√
|S|, which im-

plies max{|C (S)|, |R(S)|} ≥
⌈√
|S|

⌉
. Suppose max{|C (S)|, |R(S)|} <

√
|S|.

Then, we have|C (S)||R(S)| < |S|, which is a contradiction.
Without loss of generality, we assume that|R(S)| ≤ n− 2. ThenCn(S) =

Cn−1(S) = ∅. It follows
∣∣∣∪i∈C (S) ∂

c
i (S)

∣∣∣ ≥ 2|C (S)| from Corollary 3.4. So, if
|C (S)| = m, then|∂(S)| ≥ 2m. If |C (S)| = m− 1, then from Corollary 3.6,
there is an indexi1 < C (S) such that|∂c

i1
(S)| ≥ 2. So,|∂(S)| ≥ 2|C (S)| + 2 =

2m.
If |C (S)| ≤ m− 2, then from Corollary 3.6, there are two distinct indices

i1, i2 < C (S) such that|∂c
i1
(S)| ≥ 2 and|∂c

i2
(S)| ≥ 2. It follows that|∂(S)| ≥

2|C (S)| + 4. From the symmetry argument, we can also derive|∂(S)| ≥
2|R(S)| + 4. Thus,

|∂(S)| ≥ 2 max{|C (S)|, |R(S)|} + 4 ≥ 2
⌈ √
|S|

⌉
+ 4.

It is routine to verify that for|S| ≤ 11, |S| < 2
⌈√
|S|

⌉
+4. Thus,|S| ≥ 12. �

The 2nd case: m, n, |C (S)| ≥ m− 1, and |R(S)| ≥ n− 1
Lemma 3.13. Let S be a minimal secure set of Cm �Cn such that|C (S)| ≥
m− 1 and |R(S)| ≥ n− 1. If m , n then|S| ≥ min{2m,2n,12}.

Proof. Without loss of generality, we assumem≥ n+1. Suppose|S| ≤ 2n−1.
We divide the proof into two cases.

[Case 1] |C (S)| = m: If |R(S)| = n, then |S| ≥ |C (S)| + |R(S)| − 1 =
m+n−1 ≥ 2n from Corollary 3.8. Thus,|R(S)| = n−1, and so,|Cn(S)| = 0.
From Corollary 3.8 and|S| ≤ 2n− 1, m = n+ 1. Hence, from Corollary 3.4
and Proposition 3.9, we have

|∂(S)| ≥ 2|C (S)| − |Cn−1(S)| ≥ 2(n+ 1)−
⌊
2n− 1− (n+ 1)

n− 2

⌋
= 2n+ 1 > |S|,

which is a contradiction.
[Case 2] |C (S)| = m− 1: From Proposition 3.9 and the assumption|S| ≤

2n− 1, |Cn(S)| ≤ 1. From Corollaries 3.4 and 3.6,

|∂(S)| ≥ 2(m− 1)− 2|Cn(S)| − |Cn−1(S)| + 2 = 2m− 2|Cn(S)| − |Cn−1(S)|.
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Then, from Proposition 3.9 and the assumption|S| ≤ 2n− 1,

|∂(S)| ≥ 2m− 2|Cn(S)| −
⌊
(2n− 1)− (m− 1)− (n− 1)|Cn(S)|

n− 2

⌋
= 2m−

⌊
(n− 3)|Cn(S)| + 2n−m

n− 2

⌋
≥ 2m−

⌊
3n−m− 3

n− 2

⌋
.

From Corollary 3.8 and|S| ≤ 2n− 1, m ∈ {n+ 1,n+ 2}. So,

|∂(S)| ≥
2n+ 2−

⌊
2n−4
n−2

⌋
= 2n if m= n+ 1,

2n+ 4−
⌊

2n−5
n−2

⌋
= 2n+

⌈
2n−3
n−2

⌉
if m= n+ 2.

Sincen ≥ 3, we have|∂(S)| ≥ 2n > |S|, a contradiction. �

The 3rd case: m= n, |C (S)| ≥ m− 1, and |R(S)| ≥ n− 1
Lemma 3.14. Let S be a minimal secure set of Cm �Cn such that|C (S)| ≥
m− 1 and |R(S)| ≥ n− 1. If m = n ≥ 4 then|S| ≥ min{2m, 2n,12}.
Proof. First we consider the smallest casem = n = 4. Riordan [45] has
determined the ordering on the vertices of the multi-dimensional even torus
such that the setS of the initial k vertices in the ordering has the minimum
number of boundaries. By using the ordering, we can verify that|S| < |∂(S)|
for anyS ⊆ V(C4 � C4) such that|S| ≤ 6. Thus,sn(C4 � C4) > 6. So, it is
sufficient to show that there is no secure set ofC4 � C4 with seven vertices,
since 2m= 8. It is routine to verify that there are only three non-isomorphic
connected subsets ofV(C4�C4) that consist of seven vertices with no pendant
vertex. The three subsets are depicted in Fig. 3.1. For each subset in Fig. 3.1,
|S| < |∂(S)|. So the lemma holds in this case.

In what follows, we assumem = n ≥ 5, and by way of contradiction,
assume|S| ≤ 2n−1. Then from Proposition 3.9,|Cn(S)|+|Cn−1(S)| ≤ 1. From
Corollaries 3.4 and 3.6, and|C (S)| ∈ {m− 1,m}, if |Cn(S)| + |Cn−1(S)| = 0
then|∂(S)| ≥ 2m. Hence,|Cn(S)|+ |Cn−1(S)| = 1. We have the following two
cases.

[Case 1] |C (S)| = m and |R(S)| ≥ n − 1: Without loss of generality, we
assumeCn(S) ∪ Cn−1(S) = {i1}. From |C (S)| = m, |S| = ∑n

k=1 k|Ck(S)|, and
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Fig. 3.1 Subsets ofV(C4 �C4) that contain no pendant vertex (• ∈ S).

|S| ≤ 2n − 1, we have|C2(S)| ≤ |Cn−1(S)|, |C1(S)| = m− 1 − |C2(S)|, and
|Ck(S)| = 0 for 3≤ k ≤ n− 2. Then, from Propositions 3.3 and 3.10,

∣∣∣∂c
i1(S)

∣∣∣ + ∣∣∣∂c
i1−1(S)

∣∣∣ + ∣∣∣∂c
i1+1(S)

∣∣∣ ≥ (n− 1)+ (n− 1) if i1 ∈ Cn(S)

1+ (n− 2)+ (n− 3) if i1 ∈ Cn−1(S)

≥ 2n− 4.

From Proposition 3.3,|∂c
i (S)| ≥ 2 for i ∈ {0, . . . ,m− 1} − {i1, i1 − 1, i1 + 1}.

Thus, |∂(S)| ≥ (2n − 4) + 2(m − 3) = 4n − 10. Sincen ≥ 5, we have
|∂(S)| ≥ 4n− 10≥ 2n, a contradiction.

[Case 2] |C (S)| = m − 1 and |R(S)| = n − 1: From |R(S)| = n − 1,
Cn(S) = ∅. Thus,|Cn−1(S)| = 1. LetCn−1(S) = {i1}. We have the following
two subcases.

[Case 2-1] i1 − 1 < C (S) or i1 + 1 < C (S): Without loss of generality, we
assumei1 − 1 < C (S) (hence,i1 + 1 ∈ C (S)). Clearly, |∂c

i1−1(S)| ≥ n − 1.
Since|C (S)| = m− 1, |S| ≤ 2n − 1, and|S| = ∑n

k=1 k|Ck(S)|, it follows that
i1 + 1 ∈ Ck(S) for somek ≤ 3. From Proposition 3.10,|∂c

i1+1(S)| ≥ n − 4.
Then from Proposition 3.3 and Corollary 3.6,

|∂(S)| = |∂c
i1(S)| + |∂c

i1−1(S)| + |∂c
i1+1(S)| +

∣∣∣∣∣∣∣∣
∪

i∈{0,...,m−1}−{i1,i1−1,i1+1}
∂c

i (S)

∣∣∣∣∣∣∣∣
≥ 1+ (n− 1)+ (n− 4)+ 2(m− 3) = 4n− 10.

Sincen ≥ 5, we have|∂(S)| ≥ 2n, a contradiction.
[Case 2-2] i1 − 1, i1 + 1 ∈ C (S): By the symmetry argument, we can

assumeRm(S) = ∅, Rm−1(S) = { j1}, and j1 − 1, j1 + 1 ∈ R(S). Since
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|S| ≤ 2n − 1, there are at most two verticesu, v ∈ S such thatu, v < Col(i1)
andu, v < Row( j1) (not necessarilyu , v). Since|S| is connected,u andv
must be in the masked area of Fig. 3.2. It is easy to see thatS must have a
pendant vertex sincem= n ≥ 5, a contradiction. �

Row (j1)

Col(i1)

Fig. 3.2 Remaining vertices must be in the masked area (• ∈ S).

3.4 Security number of two-dimensional

cylinders
In this section, we show that the remaining part of the conjecture is also

true, that is,sn(Pm � Cn) = min{2m, n,6}. This result can be easily derived
from the result of tori and the following lemma.

Lemma 3.15. sn(C2m �Cn) ≤ 2sn(Pm �Cn).



48 Chapter 3 Security number of graphs

Proof. Let S be an arbitrary secure set ofCm � Pn. Let S′ be thereversed-
shifted copyof S, that is,S′ = {(2m− 1− u, v) | (u, v) ∈ S} (see Fig. 3.3). We
show thatS ∪ S′ is a secure set ofC2m �Cn.

Let F denote the set of edges between the left half and the right half of
C2m �Cn, that is,

F =
{{(m− 1, i), (m, i)}, {(0, i), (2m− 1, i)} | 0 ≤ i ≤ n− 1

}
.

Clearly,S ∪ S′ is a secure set of the graph obtained by deletion ofF from
C2m � Cn. Observe that (m− 1, i) ∈ S if and only if (m, i) ∈ S′. Similarly,
(0, i) ∈ S if and only if (2m− 1, i) ∈ S′. Thus, any edge inF connects two
vertices such that the both are inS ∪ S′, or the both are not inS ∪ S′. This
means thatF cannot contribute to any attack onS ∪ S′. Therefore,S ∪ S′ is
also a secure set ofC2m �Cn. �

The above lemma implies that ifsn(Pm�Cn) < min{2m,n,6} thensn(C2m�
Cn) < min{4m,2n,12}. However, this contradicts Theorem 3.11. So we have,
with Proposition 3.2, the following theorem.

Theorem 3.16. sn(Pm �Cn) = min{2m,n, 6}.

S

(m − 1, 0)

(m − 1, n − 1)

(m, 0)

(m,n − 1) (2m − 1, n − 1)

(2m − 1, 0)(0, 0)

(0, n − 1)

S′

Fig. 3.3 The reversed-shifted copyS′ of S.
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3.5 Security number of outerplanar graphs
In this section, we show that any outerplanar graph has security number at

most three.*1 To show the existence of such a small secure set, we use the
following four lemmas.

Lemma 3.17. Let {u, v} be a chord of arc distance at least three in a maximal
outerplanar graph M, and P1 and P2 be the set of vertices on two paths
between u and v along the outer-boundary, except the endpoints u and v.
Then, both P1 and P2 are secure sets of M.

Proof. Clearly, the boundary ofPi , ∂(P) is {u, v}, that is, onlyu andv are the
attackers onPi . Since|Pi | ≥ 2 andPi induces a connected subgraph ofM,
each vertex inPi has two “candidates” of its defenders: itself and its neighbor
in Pi . Hence,Pi is secure. �

Lemma 3.18. Any maximal outerplanar graph has a secure set of size at
most three.

Proof. Let M be a maximal outerplanar graph. It is easy to verify that if
|V(M)| ≤ 6 thensn(M) ≤ 3. Thus, we assume|V(M)| ≥ 7.

From Lemma 3.17, it suffices to show that there is a chord of arc distance
three or four. Letn denote|V(M)| andc denote the number of chords with arc
distance two inM. We first show that there is a chord{u, v} of arc distance at
least three. It is easy to check thatc ≤ ⌊n/2⌋. SinceM has (2n−3)−n = n−3
chords andn ≥ 7, we have (n− 3)− c ≥ (n− 3)− ⌊n/2⌋ > 0. This means that
there is a chord{u, v} of arc distance at least three.

Next, we demonstrate that the smallest arc distance among the chords with
arc distance at least three is at most four. Hence, let{u, v} denote a chord with
the smallest arc distance among the chords with arc distance at least three,
andW = {w0,w1, . . . ,wk} denote the vertices on the shortest path along the
outer-boundary betweenu = w0 andv = wk, wherek is the arc distance of the
chord{u, v}. Consider the chords except{u, v} in M whose endpoints are both
in W. Let us denote such chords byC. From the choice of{u, v}, all chords
in C have arc distance two inM. Therefore,C has at most⌊k/2⌋ chords
(not ⌊(k+ 1)/2⌋). On the other hand, the chordsC are exactly the chords in

*1 The same result has been obtained independently by Dutton [21].
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M[W]. SinceM[W] is a maximal outerplanar graph, the number of chords in
M[W] (that is, |C|) is (2(k + 1) − 3) − (k + 1) = k − 2. As a result, we have
k− 2 ≤ ⌊k/2⌋, which impliesk ≤ 4. �

The following lemma is immediate from the definition of secure sets.

Lemma 3.19. Let S be a secure set of a graph G. For an edge set F⊆
E(G) \ E(G[S]), S is also a secure set of the graph G− F.

Lemma 3.20. Let S be a secure set of a maximal outerplanar graph M
obtained by Lemma 3.18. Then, for an edge subset F of E(M[S]), S includes
a secure set of the graph M− F.

Proof. It is easy to see that the secure set obtained by Lemma 3.18 can be
divided into two types depicted in Fig. 3.4. In the both types, the deletion of
any edge inE(M[S]) yields a vertex of degree one (see Fig. 3.4). Thus,S
includes a secure set of the graphM − F. �

vu

S

(a) Arc distance three.

vu

S

(b) Arc distance four.

Fig. 3.4 Secure sets obtained by Lemma 3.18

Theorem 3.21. For any outerplanar graph, its security number is at most
three.

Proof. LetG be an outerplanar graph, andM be a maximal outerplanar graph
that hasG as a spanning subgraph, that is,V(M) = V(G) andE(M) ⊇ E(G).
Let F = E(M)\E(G) denote the additional edges, and letS be a secure set of
M obtained by Lemma 3.18. Then letFin = F ∩E(M[S]) andFout = F \Fin.
SinceFin ⊆ E(M[S]) from Lemma 3.20,S includes a secure set ofM − Fin
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SinceFout ⊆ (E(M − Fin) \ E((M − Fin)[S])), from Lemma 3.19,S includes
a secure set of (M − Fin) − Fout = G. �

The above bound is tight, that is, there are infinitely many outerplanar
graphs of security number three. Forn ≥ 3, letHn be a graph such that

V(Hn) = {v1, v2, . . . , v2n−1, v2n = v0},
E(Hn) = {{vi , vi+1} | 0 ≤ i ≤ 2n− 1} ∪ {{v2i , v2i+2} | 0 ≤ i ≤ n− 1}.

See Fig. 3.5. It is easy to see that each vertex inHn has at least two neighbors,
and each pair of adjacent vertices has at least three boundary vertices. Thus,
we can conclude thatsn(Hn) = 3 for anyn ≥ 3. Note that{v1, v2, v3} is one
of the minimum secure set ofHn.

v0 = v2n

v2

v4

v1

v3

v5

v6

v7

v8

Fig. 3.5 An outerplanar graph of security number three.

3.6 Upper and lower bounds for hypercubes
In this section, we provide upper and lower bounds for hypercubes.

Lemma 3.22. For any graphs G and H,

sn(G � H) ≤ min{sn(G)|V(H)|, sn(H)|V(G)|}.
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Proof. Let R ⊆ V(G) andS = R× V(H), that is,S = {(r,h) | r ∈ R, h ∈
V(H)}. Obviously,|S| = |R||V(H)|. Observe that edges between two copies of
G cannot contribute any attack onS. Thus,S is secure inG � H if and only
if R is secure inG. ChoosingR as a minimum secure set, we can conclude
thatsn(G � H) ≤ sn(G)|V(H)|. The remaining relation can be shown by the
symmetry argument. �

From the above lemma,sn(G � P2) ≤ 2sn(G). Thus, we have an upper
bound on the security number of hypercubes.

Corollary 3.23. s(Qd) ≤ 2d−1.

Note thatsn(G�P2) can be strictly less than min{2sn(G), |V(G)|} for some
G (see Fig. 3.6).

2 =

sn(G 2 P2) = 32sn(G) = 4|V (G)| = 5,

G P2

Fig. 3.6 sn(G � P2) < min{2sn(G), |V(G)|}

From the definition, it is not difficult to see that if|∂G(S)| > |S| thenS is
not secure. Thus,∂G(k) > k implies there is no secure set of sizek in G.
Hence, we have the following lemma.

Lemma 3.24. If ∂G(k) > k holds for all1 ≤ k ≤ ℓ then sn(G) > ℓ.

Using the above lemma, we present a lower bound for hyper-
cubes. The vertex isoperimetric problem on hypercubes was settled by
Harper [28]. Using his result, we will show that∂Qd(k) > k holds, for all

1 ≤ k ≤ ∑⌊(d−2)/3⌋
i=0

(
d
i

)
. Namely, we show thatsn(Qd) >

∑⌊(d−2)/3⌋
i=0

(
d
i

)
.

First, we show a property of a partial sum over binomial coefficients.

Lemma 3.25. For d ≥ 2,
∑r

i=0

(
d
i

)
<

(
d

r+1

)
for r ≤ ⌊(d − 2)/3⌋.

Proof. We will prove the lemma by induction onr. If r = 0, clearly the
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lemma holds. Let us assume
∑r−1

i=0

(
d
i

)
<

(
d
r

)
for some 1≤ r ≤ ⌊(d − 2)/3⌋.

Fromr ≤ ⌊(d − 2)/3⌋, we can deriver + 1 ≤ d − 2r − 1. Therefore,

r−1∑
i=0

(
d
i

) / (
d
r

)
< 1 ≤ d − 2r − 1

r + 1
=

d − r
r + 1

− 1,

r−1∑
i=0

(
d
i

)
<

(
d
r

) (
d − r
r + 1

− 1

)
=

(
d

r + 1

)
−

(
d
r

)
,

r∑
i=0

(
d
i

)
<

(
d

r + 1

)
.

Thus, the lemma holds. �

Theorem 3.26(Harper [28]). For any integer k (1 ≤ k ≤ |V(Qd)|), there
exist a set S⊆ V(Qd), a vertex u0 ∈ V(Qd), and an integer r, such that
{v | dist(u0, v) ≤ r} ⊆ S ⊂ {v | dist(u0, v) ≤ r + 1}, |S| = k, and |∂(S)| =
minT⊆V(Qd),|T |=k |∂(T)|.

By using Theorem 3.26, we can derive the next result.

Lemma 3.27. If k ≤ ∑⌊(d−2)/3⌋
i=0

(
d
i

)
, then∂Qd(k) > k.

Proof. Let S, u0, andr be the set, the vertex, and the integer in Theorem 3.26,
respectively. Obviouslyr ≤ ⌊(d − 2)/3⌋ sincek ≤ ∑⌊(d−2)/3⌋

i=0

(
d
i

)
. Hence,

from Lemma 3.25, we have
∑r

i=0

(
d
i

)
<

(
d

r+1

)
. If k =

∑r
i=0

(
d
i

)
, thenS = {v |

dist(u0, v) ≤ r} and∂(S) = {v | dist(u0, v) = r + 1}. Thus, the lemma holds in
this case. In the following, we will concentrate to the casek >

∑r
i=0

(
d
i

)
. Note

that in this case,
r ≤ ⌊(d − 2)/3⌋ − 1 ≤ (d − 5)/3.

Let Sℓ = {v | v ∈ S, dist(u0, v) = ℓ}. Clearly,

|S| = |Sr+1| +
r∑

i=0

(
d
i

)
< |Sr+1| +

(
d

r + 1

)
.

It is easy to see that∂(S) = ∂(Sr )∪∂(Sr+1). Thus, to estimate the size of∂(S),
it is sufficient to show the sizes of∂(Sr ) and∂(Sr+1). SinceSr is exactly the
set{v | dist(u0, v) = r}, we have

|∂(Sr )| =
(

d
r + 1

)
− |Sr+1|.



54 Chapter 3 Security number of graphs

We derive a lower bound for|∂(Sr+1)|. For anyv ∈ Sr+1, N(v) ∩ ∂(Sr+1) =
d − r − 1. On the other hand, for anyv ∈ ∂(Sr+1), N(v) ∩ Sr+1 ≤ r + 2. See
Fig. 3.7 to verify the above observations. It is easy to see that|∂(Sr+1)| is
minimized if for anyv ∈ ∂(Sr+1), N(v) ∩ Sr+1 = r + 2. Therefore, we have

|∂(Sr+1)| ≥ |Sr+1|(d − r − 1)
r + 2

.

u0

...

...

...

d− r − 2321

...

1 2 r + 2
Sr+1

...

d− r − 1321

...

1 2 r + 1
Sr

∂(Sr+1)

Sr+1

...

...

∂(Sr)

∂(Sr+1)

∂(Sr)
Sr

Sr+1

∂(Sr+1)

S

Fig. 3.7 Inner and outer degrees of vertices inSr+1 and∂(Sr+1)

From the above observations,

|∂(S)| ≥
(

d
r + 1

)
− |Sr+1| +

|Sr+1|(d − r − 1)
r + 2

.

Suppose|S| ≥ |∂(S)|. Then,

|Sr+1| +
(

d
r + 1

)
> |S| ≥ |∂(S)| ≥

(
d

r + 1

)
− |Sr+1| +

|Sr+1|(d − r − 1)
r + 2

.

Simplifying the above inequality, we haver > (d− 5)/3, a contradiction. �
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From Lemmas 3.24 and 3.27, the following corollary holds.

Corollary 3.28. sn(Qd) >
∑⌊(d−2)/3⌋

i=0

(
d
i

)
.

By combining Corollaries 3.23 and 3.28, we have the next result.

Theorem 3.29.
∑⌊(d−2)/3⌋

i=0

(
d
i

)
< sn(Qd) ≤ 2d−1.

3.7 Concluding remarks
We have studied the security number of two-dimensional grid-like graphs

and shown the best possible lower bounds for two-dimensional tori and two-
dimensional cylinders. For future work, it is natural to study the security
number of three-dimensional grid-like graphs. We believe that the upper
bounds in the following proposition are the best possible except for small
ℓ,m,n. (It is easy to see thatsn(C3�C3�C3) ≤ 12, andsn(P2�C3�C3) ≤ 8.)

Proposition 3.30. For three-dimensional grid-like graphs,

1. sn(Pℓ � Pm � Pn) ≤ min{ℓm,mn,nℓ, 20},
2. sn(Pℓ � Pm �Cn) ≤ min{2ℓm,mn,nℓ, 40},
3. sn(Pℓ �Cm �Cn) ≤ min{2ℓm,mn,2nℓ, 80},
4. sn(Cℓ �Cm �Cn) ≤ min{2ℓm,2mn,2nℓ, 160}.

Proof. (1) End vertices of the copies ofPn that lie in a single copy ofPℓ�Pm

clearly form a secure set. Thus,sn(Pℓ � Pm � Pn) ≤ ℓm. The upper bounds
mn and nℓ can be obtained by similar arguments. For the constant upper
bound, letS be the set of corner vertices depicted in Fig. 3.8(a). Obviously,
|S| = 20. For any attack onS, u ∈ S can defend the vertex attacked by
v ∈ ∂(S) if N(v) ∩ S ⊆ N[u] ∩ S. Fig. 3.8(b) depicts such relations. White
vertices marked with arcs are repelled by the corresponding black vertices.
In Fig. 3.8(c), the remaining three white vertices can attack the three black
vertices with a common unused defender. It is easy to see that the four black
vertices can repel the three white vertices. Thus,S is secure.

(2–4) For bounds likeab or 2ab, corresponding secure set can be a single
copy or two consecutive copies ofPa�Pb, Pa�Cb, orCa�Cb. For constant
bounds, corresponding secure sets consist of two, four, or eight copies of the
setS that are reversed and shifted. �
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(0, 0, 0)

(a)• ∈ S, ◦ ∈ ∂(S). (b) One-to-one marks.

(c) Self-defenses with help.

Fig. 3.8 A secure setS of Pℓ � Pm � Pn.
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