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Abstract

For modeling some practical problems, graphs play very important roles.
Since many modeled problems can be NP-hard in general, some restrictions
for inputs are required. Bounding a graph parameter of the inputs is one of
the successful approaches. We study this approach in this thesis. More pre-
cisely, we study two graph parameters, spanning tree congestion and security
number, that are related to treewidth.

Let G be a connected graph afidbe a spanning tree &. Fore € E(T),
the congestiorof e is the number of edges @ connecting two components
of T — e. Theedge congestion of G in iB the maximum congestion over all
edges inT. Thespanning tree congestion of i the minimum congestion
of G in its spanning trees. In this thesis, we show the spanning tree conges-
tion for the complet&-partite graphs, the two-dimensional tori, and the two-
dimensional Hamming graphs. We also address lower bounds of spanning
tree congestion for the multi-dimensional hypercubes, the multi-dimensional
grids, and the multi-dimensional Hamming graphs.

The security number of a graph is the cardinality of a smallest vertex subset
of the graph such that any “attack” on the subset is “defendable.” In this the-
sis, we determine the security number of two-dimensional cylinders and tori.
This result settles a conjecture of Brigham, Dutton and Hedetniemi [Discrete
Appl. Math. 155 (2007) 1708-1714]. We also show that every outerplanar
graph has security number at most three. Additionally, we present lower and
upper bounds for some classes of graphs.
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Chapter 1

Introduction

Recently, graphs are used for modeling several practical problems such
as VLSI design problems, network routing problems, and flight scheduling
problems. Although the problems can be modeled without any lack of in-
formation by graphs, the modeled problems can be very hard, that is, NP-
hard [24]. To cope with NP-hard problems, several approaches are intro-
duced: approximation algorithms [54], randomized algorithms [40], expo-
nential time exact algorithms [56], fixed parameter algorithms [20], and so
on. On the other hand, it is known that some NP-hard problems can be solved
in polynomial time if the inputs have some natural restrictions. For example,
if the input graphs have bounded treewidth then many problems can be solved
in polynomial time [7]. In this thesis, we concentrate on this approach, that
IS, the restrictions of the inputs. More precisely, we investigate the following
guestion: “For which graphs, are useful graph parameters bounded?”

Graph parameters are properties of graphs representable by numbers such
as: diameter, radius, maximum (or, minimum) degree, chromatic number.
Among graph parameters, the treewidth has been studied intensively because
of its usefulness. The notion of treewidth was introduced by Robertson and
Seymour in their Graph Minor project. Roughly speaking, the treewidth is
a graph parameter that indicates whether the graph has a tree-like structure
of small width. It is known that if the treewidth of the graph is bounded by
a constant then problems that can be expressible by Monadic Second Order
Logic are solvable in linear time [17]. However, the problem to determine
the treewidth of the input graph is NP-hard. Thus, to utilize treewidth, it is
necessary to develop approximation algorithms for treewidth or to determine
the treewidth of some natural graph classes.
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Since treewidth and related graph parameters have been studied inten-
sively, it is known that for some graph classes, such as outerplanar graphs,
series parallel graphs, and chordal graphs, the treewidth and some related
parameters can be determined in polynomial time. In this thesis, we study
treewidth and related parameters for some important graph classes. We ob-
tain lower and upper bounds, or exact bounds for those classes. We study
treewidth related parameters, the spanning tree congestion and the secu-
rity number, for graph classes complé&tpartite graphs, outerplanar graphs,
grids, cylinders, tori, hypercubes, Hamming graphs, and so on. These graph
classes play important roles in the algorithmic graph theory or the graph mi-
nor theory.

In the following, we give an overview of the present thesis. For more
precise definitions, see the corresponding chapters and sections.

Since a spanning tree of a graph has no cycle, a deletion of any edge in
the tree derives a partition of the vertex set into two parts. The congestion
of the deleted edge is the number of edges in the original graph between the
two parts. The congestion of a spanning tree is the maximum congestion
over all edges in the tree. The spanning tree congestion of a graph is the
minimum congestion over all its spanning trees. In Chapter 2, we determine
the spanning tree congestion of complefeartite graphs, two-dimensional
tori, and two-dimensional Hamming graphs. We also give lower and upper
bounds on the spanning tree congestion of Hypercubes, Hamming graphs,
and multi-dimensional grids. Additionally, we show that the treewidth of a
graphs is at most the product of its spanning tree congestion and its maximum
degree.

A secure set in a graph is a subset of the vertex set of the graph such that
any “attack” on the subset from its outer boundaries is “defensible.” In other
words, for any subset of a secure set, the number of its inner closed bound-
aries are at least the number of its outer boundaries. The security number of
a graph is the cardinality of the smallest secure set in the graph. The notion
of security number is introduced by Brigham, Dutton, and Hedetniemi [11]
in 2007. They have shown lower and upper bounds on the security number
of two-dimensional grids, cylinders, and tori. They conjectured that their up-
per bounds for cylinders and tori is the best possible. In Chapter 3, we settle
this conjecture firmatively. We also study the security number of outerpla-
nar graphs, and show that any outerplanar graph has the security number at
most three. We present lower and upper bounds on the security number of
hypercubes as well.
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1.1 Definitions

In this section, we give some definitions that will be used in this thesis.

1.1.1 Graph

A graph Gis a pair of the vertex s&t(G) and the edge s&i(G). A vertex
v € V(G) is an object, and ardge ee E(G) is an unordered pair of two
distinct vertices. Fou,v € V(G), if {u,v} € E(G) then we say that and v
are adjacent In figures, we represent a vertex by a dot (or a circle) and an
edge by a line. For example, W(G) = {u,v,w} andE(G) = {{u, v}, {v, w}}
then the grapl® is represented by Fig. 1.1.

[

A

Fig. 1.1 An example of a graph.

In this thesis, all graphs ammpleandfinite, that is, there is at most one
edge between a pair of vertices and the vertex set is a finite set.

Two graphsG andH areisomorphicif there is a bijectiony : V(G) —
V(H) such thafu, v} € E(G) if and only if {¢(u), #(v)} € E(H). For example,
it is easy to see that the graphs in Fig. 1.2 are isomorghie (w, b — X,
crH Yy, andd - 2).

Fig. 1.2 Graph$ andH are isomorphic.
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A walk in a graph Gis a sequence of verticepy(..., px) such that
{pi, piz1} € E(G) for each 1< i < k. For two verticesu, v € V(G), au-v path
inGisawalk (..., px) such thatp; = u, px = v, andp; # p; if i # j. We
define thadistance between u and denoted bydists(u, v), as the number of
edges in a shortestv path inG. Two pathsP; and P, are edge-disjointf
they do not share any edge. A set of pathsdge-disjoinif the paths in the
set are pairwise edge-disjoint. é&ycle in a graph Gs a walk (o1, ..., pk)
such thatp; = p; if and only if eitheri = jor {i, j} = {1,k}. A graphG is
connectedf for every pairu, v of vertices,G has au-v path. A graphF is a
forestif F contains no cycle. A foredt is atreeif T is connected. A tre&
Is astar if S contains at most one vertex of degree greater than one.

A graphH is asubgraphof a graphG if V(H) € V(G) andE(H) € E(G).
A subgraphH of G is aspanning subgrapit V(H) = V(G). If a spanning
subgraphl of G is tree thenT is aspanning treeof G. A subgraphH of
a graphG is aninduced subgraplf u,v € V(H) and{u,v} € E(G) imply
{u,v} € E(H). For example, see Fig. 1.3. We denote®)5] the induced
subgraph ofG with the vertex se6 c V(G), that is,V(G[S]) = S. We
call G[S] a subgraph of G induced by.9f S € V(G) induces a connected
subgraph of5, we say thaft is connected

a a a

e ‘k b e b e b
f f

d c c d c
G Hy Hy

Fig. 1.3 A subgraplid,; and an induced subgrapty of G.

The open neighborhooof a vertexv in a graphG, denoted byNg(v), is
the set of vertices such that for anye Ng(V) there exists the edde, v} €
E(G). We define theclosed neighborhooaf a vertexv in a graphG as
Nc[v] = {v} U Ng(v). Thedegreeof a vertexv in a graphG, denoted by
deg;(v), is the number of neighbors @fin G, that is,deg;(v) = [Ng(Vv)|. We
denote thenaximum degreand theminimum degreef G by A(G) andé(G),
respectively, thatis\(G) = maxev ) deg;(v) andsé(G) = minyey ) degs(v).
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We can extend the notion of the neighborhood of a vertex to the neighborhood
of a vertex set. FoB C V(G), let Ng[S] denote theclosed neighborhoodf
S, that is,Ng[S] = S U Uyes Na(V).
Fore € E(G), we denote bys — ethe graph obtained by deletimgrom G;
that is,V(G — €) = V(G) andE(G - e) = E(G) \ {¢}. Similarly, forF C E(G)
let G — F be the graph obtained by deletion of all edgeF iftom G.

1.1.2 Boundaries of a vertex set

We define the vertex boundary and edge boundary of a vertex set. These
notions play very important roles in this thesis. For a vertexSset V(G),
we define thdoundary edge sék(S) as

0:(S) = {{u, v} € E(G) | exactly one ofu, vis in S}.

We define the functio® also on positive integers < [V(G)| asfs(s) =
MiNnscv(g), 1si=s10c(S)|. For a vertex seb C V(G), we denote theertex edge
setds(S) as

0c(S) ={v¢ S|vis aneighbor of soma e S in G}.

Clearly,0c(S) = Ng[S]\S. We also define the functiahon positive integers
s< [V(G)| asds(s) = Minscy (), s=s19c(S)I.

For example, see Fig. 1.4. In Fig. 14 ,= {a,d, €}, 9(S) = {b,c}, 6(S) =
{{a, b}, {b,d}, {b, €}, {c,d}, {c, e}}.

Fig. 1.4 AselS = {a, e d}, its vertex boundary(S) = {b, c}, and its edge
boundan®(S) = {{a, b}, {b, d}, {b, €}, {c, d}, {c, e}}.
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1.1.3 Cartesian product

For graph<s andH, theCartesian producof G andH, denoted by o H,
Is the graph whose vertex setM$¢G) x V(H) and in which @, h) is joined to
(g, ) if and only if eitherg = g and{h,h’} € E(H) orh = " and{g, g’} €
E(G) (see Fig. 1.5). Note that for arty e V(H), the induced subgraph of
G o H induced by the sdi(g,h) | g € V(G)} is isomorphic tdG. Ford > 1,
thedth Cartesian poweof a graphG, denoted byGY, is defined as follows:
G!=GandGY=GoG%!ford> 2.

K J
w x Yy z
] ®
¢ bzl
i® o (g g
(d,w) d, x) (d, z)
G GOH

Fig. 1.5 The Cartesian produGto H of graphsG andH.

1.1.4 Graph classes

In this subsection, we define several important graph classes.

Thecomplete graph Kis a graph with the vertex s@d,...,n— 1} and in
which there is an edge between every pair of vertices.MogVs, . .., Vi be
the disjoint vertex sets ang = |V;| for 1 < i < k. Thecomplete k-partite
an edggu, v} for u € V; andv € V; if and only ifi # j. We call a complete
2-partite graph @omplete bipartite graphNote that ifn; = 1 for everyi,

.....

complete grapliKy. See examples in Fig. 1.6.
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K5 K33

Fig. 1.6 A complete graph, a complete bipartite graph, and a complete
4-partite graph.

A graph isplanar if it can be drawn in the plane with no pair of crossing
edges. Aplanegraph is a planar graph with an embedding that causes no
cross. Afaceof a plane graph is a topologically connected region surrounded
by edges of the plane graph. A planar grapbuterplanarif there is a planar
embedding in which all its vertices are in the outer-boundary. An outerplanar
graphM is maximalif M is no longer outerplanar with the addition of a single
edge. It is known that any maximal outerplanar graphas ZV(M)| — 3
edges, and/l has a unique Hamiltonian cycle (see [27, 18]).

Let [n] denote the sef0, 1,...,n — 1}. Recall that a complete grapdy, is
a graph whose vertex set i3] [and any two vertices are adjacent. A p&h
is a graph whose vertex set i3] and edge set iffi,i + 1} |0 <1 < n-2}.

Forn > 3, a cycleC, is a graph whose vertex set is][and edge set is

{{n-1,0}} U E(P,). See examples in Fig. 1.7.

0 1 2 3 0 1 2 3
o @ @ o Q\‘_‘/.
Py Cy

Fig. 1.7 A path and a cycle.

The graphK? = (K,)¢ is called ad-dimensional Hamming graphThe
graphPd = (P,)" is called ad-dimensional grid If nis even (odd) then we
say thatPd is even(odd, respectively). The grap@? = (C,)? is called ad-
dimensional torusA d-dimensional hypercube’(s thedth Cartesian power
of P, = Ky, thatis,Q% = P§ = KJ. Note that we sometimes call more general
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graphsP,,0P, andC,,oC, two-dimensional gridandtwo-dimensional tori
respectively.

1.1.5 Treewidth

The concept of treewidth was introduced by Robertson and Seymour in
their project of Graph Minor Theory (see [46] for example)iréde decompo-
sitionof a graphG is a pair X, T), whereT is atree andX = {X; | i € V(T)}

Is a collection of subsets &f(G) such that

e Uievm Xi = V(G),

e for each edgégu, v} € E(G), there is anode i€ V(T) such thatu,v €
Xi, and

e for eachv e V(G), the set of node§ | v € X;} forms a subtree of.

The elements iX are calledbags Thewidth of a tree decomposition\(, T)
equals maxy ) IXi| — 1. Thetreewidthof G, denoted byw(G), is the min-
Imum width over all tree decompositions Gf A path decompositionf G
Is a tree decompositionX( T) in which T is a path. Thepathwidthof G,
denoted bypw(G), is the minimum width over all path decompositionsf

For example, see Fig. 1.8. The graph depicted in Fig. 1.8 has treewidth at
most two, since any bag has cardinality at most three. It is easy to see that
the pathwidth of the graph in Fig. 1.8 is also at most two. To see this, remove
the bag{f, g} and insert a new bafy, f, g} between the bagl, e, f} and
{d, f, h}; then marge the bads j} and{i, k} into a new badi, |, k}. Clearly,
the resultant structure is a path decomposition of the graph, and it has width
three, as required. It is known that a graph has treewidth one if and only if
the graph is a forest. Hence, we can conclude that the graph in Fig. 1.8 has
treewidth two (and pathwidth two, also).

Fig. 1.8 A graph and its tree decomposition.
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1.2 The vertex boundary-width of complete trees

In this section, we briefly review results on the vertex boundary-width of
completek-ary trees. Theertex boundary-width problem to determine the
value of

vbow(e) = 1<IE(G) SVIG). sk o)
for a given graphG. The vertex boundary-width is also called thertex
isoperimetric peak The complete&k-ary tree of depthd, denoted byTy g, IS
defined recursively. The st&r  is the completd-ary tree of depth one. Let
d > 2. For each vertex of degree oneTiRy-1, we addk new vertices as
neighbors of the vertex; The resultant tred@g.

The author and Yamazaki [43] proved the following lower and upper
bounds orvbw(Ty g).

Theorem 1.1(Otachi and Yamazaki [43])

lg k
k+2lgd+6

-d—-1<vbw(Tyg) <d.

The above theorem was improved by Bharadwaj and Chandran [5].

Theorem 1.2(Bharadwaj and Chandran [5]Let k > 2 and d > c; logk,
where G Is a suitable chosen constant. Then, for some constant ¢

C
72k -d < vbw(Tyg) < d.

Finally, Vrto [55] has proved an asymptotically tight lower bound.
Theorem 1.3(Vrto [55]). Fork > 4and d> 3,

3 3
20 d- 20 < vbw(Tyg) < d.
The above bound implies a somewhat unexpectedviag{Ty 4) = ©(d),
that is, the branching factdr does not &ect the vertex boundary width of

the complete trees. The exact valuesb?(Ty 4) is still open.
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1.3 Related papers
The results in this thesis are based on the following two published papers.

1. Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki, On spanning tree
congestion of graphf)iscrete Mathematigs/olume 309, Issue 13, 6
July 2009, Pages 4215-4224. (doi:10.1Q#65¢.2008.12.021)

2. Kyohei Kozawa, Yota Otachi, and Koichi Yamazaki, Security number
of grid-like graphsDiscrete Applied Mathematic$¥olume 157, Issue
11, 6 June 2009, Pages 2555-2561. (doi:10.40E6n.2009.03.020)

3. Yota Otachi and Koichi Yamazaki, A lower bound for the vertex
boundary-width of complet&-ary trees Discrete Mathematic¥ol-
ume 308, Issue 12, 28 June 2008, Pages 2389-2395. (doi:10.1016
J.disc.2007.05.014)

The first paper is related to Chapter 2, and the second paper Chapter 3. The
result of the last paper in the above list is mentioned in Section 1.2.

1.4 Other papers by the author

Here, we list the author’s published papers that are not include in the list
of the previous section.

1. Toshiki Saitoh, Yota Otachi, Katsuhisa Yamanaka, and Ryuhei
Uehara, Random generation and enumeration of bipartite permutation
graphs, ISAAC 2009, ecture Notes in Computer Sciencgd78
(2009) 1104-1113.

2. Katsuhisa Yamanaka, Yota Otachi, and Shin-ichi NakarfGciEnt
enumeration of ordered trees wkheaves, WALCOM 2009l ecture
Notes in Computer Sciencg431 (2009) 141-150.

3. Tetsuya Ishizeki, Yota Otachi, and Koichi Yamazaki, An improved
algorithm for longest induced path problemleghordal graphdDis-
crete Applied Mathemati¢cs/olume 156, Issue 15, 6 August 2008,
Pages 3057-3059.

4. Yota Otachi, Yoshio Okamoto, and Koichi Yamazaki, Relationships
between the class of unit grid intersection graphs and other classes
of bipartite graphsDiscrete Applied Mathematicsolume 155, Issue
17, 15 October 2007, Pages 2383-2390.
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Chapter 2

Spanning tree congestion of
graphs

2.1 Introduction

In this chapter, we studithe spanning tree congestion probléon some
classes of graphs. L& be a graph and a tree such tha¥(G) c V(T). We
say thatT is ahostandG is aguest Thedetourfor an edge{u, v} € E(G)
Is the uniqueau-v path inT. We define theongestiorof e € E(T), denoted
by ecs(€), as the number of detours that contairmheedge congestion of G
in T, denoted byedG : T), is the maximum congestion over all edgesin
We define thdree congestioof G, denoted byc(G), and thespanning tree
congestiorof G, denoted bytqG), as

tc(G) = min{edG : T) | T isatree and/(T) = V(G)},
stdG) = min{edG : T) | TisatreeV(T) = V(G), andE(T) C E(G)}.

Several related problems have been studied. If the host graphs are paths,
the problem is well-knowrcutwidth (or minimum cut linear arrangement
problem (see [53]). Liu and Yuan [37] have determined the cutwidth for sev-
eral product graphs including two-dimensional grids and tori. When the host
graphs are restricted to ternary trees, and all vertices of the guest graph are
assigned to the leaves of the host trees, the probleranangwidthprob-
lem [49].

For some applications, host graphs are not restricted to acyclic graphs. For
example, simple cycles [48], grids [4], and so on (see [44]). Note that if
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the host graph has a cycle, then the detour for an edge of the guest graph
cannot be determined uniquely, and so, one should take the best one of the
candidates.

Complexity results are known for several variants of tree congestion prob-
lem. Simonson [50] showed the problem is NP-hard if the host graphs are
trees with bounded degree even when the guest graph is planar. Khuller,
Raghavachari, and Young [32] have shown the NP-hardness for the follow-
Ing GenerAL CongesTioN ProBLEM: The input to the problem is two graphs
G = (V,E) and F = (V,E’). The problem is to find a minimum congestion
tree T of G such that @) C E’. They pointed out that iF is the complete
graph, the problem can be solved in polynomial time [32], by using results of
Gomory and Hu [25], and Gusfield [26]. It follows that the tree congestion
problem is solvable in polynomial time. F = G, the problem is exactly
the spanning tree congestion problem. To the best of our knowledge, it is
not known that whether the problem is NP-hard even wiiea G. So the
complexity of the spanning tree congestion problem is not kridwn.

There are several results for the spanning tree congestion problem. Si-
monson [50] presented an algorithm for the spanning tree congestion prob-
lem on outerplanar graphs that outputs an embedding with the congestion
at most one larger than the maximum degree of the input graph. Ostro-
vskii [41] showed some inequalities for the (spanning) tree congestion prob-
lem and studied the extremal graph problem of the spanning tree conges-
tion. Hruska [31] studied the problem of the spanning tree congestion for the
two-dimensional grids and the complete bipartite graphs. Castejon and Os-
trovskii [12] gave asymptotic estimates for the spanning tree congestion of
three-dimensional grids and tori. Lowenstein, Rautenbach, and Regen [38]
have shown that the spanning tree congestion of a graphventices is at
mostn®?2,

In this chapter, we show the spanning tree congestion for some classes of
graphs. We also show, with some applications, a technique to derive a lower
bound of the spanning tree congestion. The rest of this chapter is organized
as follows. In Section 2.2, we introduce some notations and state a general
lower bound of the spanning tree congestion. In Section 2.3, we show the
spanning tree congestion for the complefgartite graphs. This properly ex-
tends the results of Ostrovskii [41] and Hruska [31] for the complete graphs

*1 Very recently, Hans L. Bodlaender and the author have proved the NP-hardness of the
problem [42]. See Subsection 2.9.1 for more details.
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and the complete bipartite graphs, respectively. In Section 2.4, we show the
spanning tree congestion for the two-dimensional tori. This problem is re-
lated to Hruska’s result for the two-dimensional grids [31]. In Section 2.5,
we show lower bounds of the spanning tree congestion for the hypercubes
and the multi-dimensional grids by edge-isoperimetric inequalities. In Sec-
tion 2.6, we show the spanning tree congestion of the two-dimensional Ham-
ming graphs (a.k.a. rook’s graphs). In Section 2.7, we give lower and up-
per bounds on the spanning tree congestion of multi-dimensional Hamming
graphs. In Section 2.8, we show a relationship between the spanning tree
congestion and the treewidth. In the last section, we state the concluding
remarks.

2.2 Preliminaries

Let G be a connected graph.dfe E(G) has a vertex of degree one as one
of its endpointsgis called aleaf edge otherwisee is called annner edge
By using the functior9, the congestiorc;(€) of an edgee € E(T) can be
defined in a dierent form as

e (e) = 16c(Le)l

whereL. is the vertex set of one of the two component3 efe. Note that if
eis a leaf edge of, thenegs(e) = deg;(v) wherev is an endpoint oé such
thatdeg; (v) = 1. We omit the subscript of the functi@ts(e) if the graph is
clear from the context.

From a basic property of trees, we can derive a general lower bound for
the spanning tree congestion.

Lemma 2.1 (Ostrovskii [41]) For any tree T, there is an edge e E(T)
such that the number of vertices of the smaller componentoé s at least
(IV(T)I = 1)/A(T).

inlV(G)I/2]
Corollary 2.2. For a connected graph G, 6) > MING/v(G)-1)/AG)] 0(s).

Proof. Let T be a spanning tree @&, e € E(T) be an edge in Lemma 2.1,
andL andR. be the vertex sets of the componentg of e. Without loss of
generality, we may assuniiey| < |Rg|. SinceV(T) = V(G), we have that

ILel < LIV(T)I/2] = LIV(G)I/2].
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SinceV(T) = V(G) andA(T) < A(G), we have that

ILel > T(IV(G)| - 1)/A(G)1.

Hence,
dG:T) 2100l > o) > min . o(s)
edG: T) > > > min S).
e T srvG)-1)/aG)
The lemma holds. -

2.3 Spanning tree congestion of complete
k-partite graphs

In this section, we consider the spanning tree congestion of the complete

.....
.....
..........

...............

following two subsections, we will show the following theorem.
Theorem2.3. Fork>2,1<n; <--- <ng and n= Y 1 Ni,

n-—no ifny =1,
2n—ng — np — 2 otherwise.

231 Casen;=1

First, we consider the casge = 1. We use Ostrovskii's result [41]. For
each two distinct vertices,v € V(G), by m(u, v) we denote the maximum
number of edge-disjoint paths betwaeandv in G.

Lemma 2.4(Ostrovskii [41]) Let G be a graph and,w € V(G) be distinct
vertices. Then (&) > m(u, v).

Lemma2.5. Letk>2andn <--- <n. Ifnp = 1then

.....
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Proof. Let V1 = {v;}. We define a spanning tr8eas a stak; ,_1 with the
centervy. Since all edges of are leaf edges,

.....

v € Vi ={uv1}

.....

.....

for anyv, € V,. Clearly, there are — n, — 1 disjoint paths of length two
betweenv; and vy, that is, the path$(vi,u,v2) @ u € N(w) \ {v1}}, and
furthermore there is the edde;, vo}. Thus,m(vy,v,) = dedv,) = n— ny.
From Lemma 2.4sta Ky, .. n) = tc(Kn,...n) = N—nNo. O

..........

.....

alll1<i<k

2.3.2 Casen;>?2

Next, we consider the remaining case> 2. Recall thain; < --- < ng
andn = Y 1< - The following two known lemmas can be integrated into
Corollary 2.8.

Lemma 2.6 (Ostrovskii [41]) If k > 2and n = 2for1 < i < k then

.....

Lemma 2.7(Hruska [31]) For2 < n; < np, stdKp, n,) =N—-2.
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Corollary 2.8. Letk>2and2<n; <--- <n. Ifeithernc=2o0rk = 2,

.....

.....

andk > 3. This properly extends the above lemmas.
First we show the upper bound.

Lemma2.9.1f2<n; <--- <ng ng > 3, and k> 3then

.....

.....

Fig. 2.2):

.....

E(T) = EV U Ecm,
where

Ev = {{u,v} | u € Ng(V)},
E.n = a complete matching froid,_; \ {v} to Vx.

.....

an inner edge off. Thenede,) = |60({X,¥y})| for somex € Vi 1 \ {v} and
y € Vi such that the edggx,y} € Ecm. It is easy to see tha#({x,y})| =
degx)+dedy)—2=(n-n_1)+(n—=n) —2=2n—-ng—Ng_1 — 2. Suppose
2Nn—-nk—Ne_1—2<n-n;. Then,we have < ng+nN_1+2—-n1 < N+ N1,
a contradiction. Thus,®— n, — n._1 — 2 > n—ny, and so,

eqKn,,..n i T) =2n—N— Ny — 2.

Hence, the lemma follows. O
Next we show the lower bound.

Lemma2.10.1f2<n; <--- < ng, g > 3, and k> 3then

.....
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00000 0V |\ (v

CXCEEX XX RSN

NS Vk,1

.....

.....

.....

inner edge. Lee be an inner edge of. We shall show that the edgehas
congestion at leastr2- ny — nk_; — 2. We denote the vertex sets of the two
components off — e by L, andR.. Sinceeis an inner edge, we have that

..........

we call it ane-detour We divide the proof into following three cases:

1. nc<n/2;
2. g >n/2 and eitheyNLe =0 0orVeNRe = 0;
3.k >n/2,VkNLe # 0, andVx N Re # 0.

[Case 1] nc < n/2: Without loss of generality, we may assuthg < n/2.
For each verteX € L, the number oé-detours connectingto its neighbors
is at leastded?) — (|Le| — 1), sincef has at mosiLe| — 1 neighbors inLe.
Therefore, we have

eqe) > ) (dedt) - (ILel - 1)) = > ded(?) - ILel(ILel - 1).

lele tele
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.....

.....

.....

.....

..........

.....

[Case 2] ik = n/2 and eithey N Le = 0 or Vx N Re = 0: Without loss
of generality, we may assum& N Re = 0. This impliesVy C Le, hence, we
eqe) > 3ng = 4ng — ng > 2n —ny, si’ﬁ’cenk > n/2. OtherwisdRe| = 2. Let
Re = {r1,r2}. Then{ry,r,} € E(T), sory andr, belong to diferentV;’s. Thus,

ede) = dedry) + dedry) — 2

..........

=2Nn—nNg— N1 — 2.

[Case 3] nc = n/2,Vk N Le # 0, andVx N Re # 0: First, note that we do
not use the assumptian, > n/2. This assumption is added here only for
guaranteeing that the case analysis covers all cases exactly.

Without loss of generality, we may assufeNLe| > [ng/2]. Sinceny > 3,
IVkNLel > 2. Then there are three vertidésk?, k. € Vi such thak?, k2 € L
i # k. Similarly, Le contains a vertex, € V; such thatj # k. We call the
verticeskjf, k?, ke, i,, andj, initial verticesand denote them hiy(see Fig. 2.3).
Observe that we can selagtand j, so thati # j. Otherwise, every vertex
except for vertices iV is in V. This contradict& > 3. We will estimate the
number ofe-detours starting from one of the initial vertices. More precisely,
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Fig. 2.3 Initial verticed = {k!, k2, k., iy, j/.

we estimate the number efdetours froml to (1)1, (2) Vi \ {k}, k2, k }, (3)
Vh (h ¢ {Ia j’ k})1 and (4)VI U VJ \ {il’a Jf}

(1) From | to I: Since there are four edgés, j.}, {ir,k7}, {ir,k?}, and
{Je, ke } betweerl andRg, there are foue-detours.

(2) From | to Vi \ {k}, K2 k;}: We will show that there existy, — 3 e
detours. Recall thavy| = nk > 3. If ng = 3 there is noe-detour since
Vie\ {3, K2,k } = 0. Otherwise, for eacht € Vi \ {k}, k2, k }, there is a detour,
fromi, or j, tov. Thus, the number afdetours igVi \ {k}, k2, k}| = nc — 3.

(3) From| to V (h ¢ {i, j,k}): For eachv € V,, there exist at least two
e-detours; from{i,, Kk} or {j[,kg;, k?} to v. Hence, the number addetours
from | to V,, is at least P/y| = 2ny,.

(4) FromlI to V; U Vj \ {iy, j¢}: For eachu € V; \ {i;}, there exists at least
onee-detour; fromk, or { j., k}, k?} to u. For eachv € V; \ {j.}, there are two
e-detours; from{i,, k. } or {k{%, k?} tov. So the number of-detours froml to
Vi UVj\ {ir, Je} is at leastV; \ {ic}| + 2Vj \ {je}l = ni + 2n; - 3.

From the above observations (1-4),

=N+ 2= —Nj—ng) + N +2nj — 2
=2n—-Ng—nj — 2.

Sincei #k,ede)>2n-nc—-n—2>2n—-ng — ng_1 — 2. O

Corollary 2.8, Lemma 2.9, and Lemma 2.10 imply Theorem 2.3 for the
casen > 2.
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2.4 Spanning tree congestion of two-dimensional
tori

Recently, Hruska [31] has determined the spanning tree congestion of the
two-dimensional grid®,, 0 Pp.

Theorem 2.11(Hruska [31]) For m< n,

m if m=n or modd
m+ 1 otherwise

In this section, we consider a related problem. We will show the spanning
tree congestion of the two-dimensional tori.two-dimensional toruss the
Cartesian product of two cycles, that @, o C,, for some integere, n > 3.

The following result can be shown by Lemma 2.15 and Lemma 2.18 derived
later.

Theorem 2.12. stqC, 0 Cp) = 2 min{m, n}.

Note that Castejon and Ostrovskii [12] showed the spanning tree conges-
tion of square torC,, o0 C,, independently. Clearly, our result is more general
than theirs.

A vertex of C,,o C,, is represented as, () for some integers& i <m-1
and 0< j < n-1. C,,oC, has an edg{, j),(i’, }’)} if and only if either
Il =1"andj = ((} +1) modn), or j = j” andi = ((i” + 1) modm). We
say thatith copy ofC, in C, o0 C, is theith column and jth copy ofC,,
in Cy, 0 C,, is the jth row. We denote theth column and theth row by
Col(i) andRow( ), respectively. Note that there arecolumns anah rows in
CnoC, (see Fig. 2.4).

The following lemma follows immediately from the definition of the func-
tion 6 (see [3]).

Lemma 2.13. For an r-regular graph G and a set & V(G),
0c(S)| = rIS| — 2[E(G[S])I.

Since C, o C, is 4-regular, we have the following corollary from
Lemma 2.13.
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(0,0) : : (m —1,0)
| T
Roull) @0 et e el ey
o o o \\
e o e
SRSROR B
Row(n=2) ; e7—@/—@—@/— @/ —@/—0
(0,m—1) 4 m—1m—1)

Col(2) Col(m — 2)

Fig. 2.4 A two-dimensional toruS,, o C,,.

Corollary 2.14. Let T be a spanning tree of&1C,,, e E(T), and L be the
vertex set of a component of-Te. Then e®) = 4|L¢| — 2 E((Cry 0 C,)[Le)) I

Now, we show the upper bound.
Lemma 2.15. stqC,,, o0 C,)) < 2min{m, n}.

Proof. Without loss of generality, we may assume> n. Our spanning tree
T is defined as follows (see Fig. 2.5):

E(T) = Etop U Evert,

where

Eiop = {{(i,0),(i+1,0)} |0O<i<m-2},
Evert = {{(i, ), (i, j+1)}|0<i<m-10<j<n-2}.

Lete € Ep ande = {(i,0), (i + 1,0)} for some 0< i < m- 2. LetlLq be
a vertex set of the component ®f— g that containsi(0). Then it is easy to
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see thaflg| = (i + 1)nand|E((C O C)[Le])| = (2i + 1)n (see Fig. 2.5). So,
from Corollary 2.14,

eqe)=4@1+1)n-2(2 +1)n=2n.

Lete, € Everrande, = {(i, j),(i,j + 1)} forsome O<i <m-1land 0< j <
n—2. We denote by, the vertex set of a component®f- e, that contains
(i, j +1). Then clearlyLe| = n— j— 1 and|E((Cno Cy)[Le]) = n—j -2
(see Fig. 2.5). So, from Corollary 2.14,

ede)=4n-j-1)-2nh-j-2)=2n-2j < 2n.

From the above observations, we haeC,0C, : T) = 2nasrequired. O

(0,0) —¢—0—0—0— —0—@ (n—1,0)
o o e o o o o

trr v

SR
z z z EL%

Fig. 2.5 An optimum spanning tréefor C,, o0 C, in Lemma 2.151h > n).

Next we show the lower bound. To this end, we need some definitions and
a corollary. LetS be a subset o¥ (C,,0 C,,). We say tha spans ith column
if S contains all vertices o€ol(i). Similarly, we say tha6 spans jth row
If S contains all vertices odRow(j). We say thaS touches ith columii S
contains some vertex @ol(i) andS does not spacol(i), and similarly,S
touches jth rowif S contains some vertex dkow(j) andS does not span
Row()). If an edgee € E(C,u C,) is contained by some column then we say
thateis vertical;, otherwisee is horizontal

Obviously, the following proposition holds.



2.4 Spanning tree congestion of two-dimensional tori 23

Proposition 2.16. If S ¢ V(Cy, 0 C,) touches ith column (jth row) then the
ith column (jth row) contains at least two vertical (horizontal, respectively)
boundary edges.

Since the set of vertical boundary edges and the set of horizontal boundary
edges are disjoint for arfy c V(C,,0C,), the following corollary holds from
Proposition 2.16.

Corollary 2.17. Let S C V(C,,oC,). If S touches c columns and r rows
then|6(S)| > 2(c +r).

Now, we are ready to show the lower bound $ta(C,,, 0 C,,).
Lemma 2.18. stdC, 0 Cp) > 2 min{m, n}.

Proof. Let T be an arbitrarily spanning tree 6f,o C,. Letee E(C,a C,)

be an edge in Lemma 2.1, ahdbe the vertex set of the smaller component
of T —e Then[(mn-1)/4] < |L¢| < Lmn/2] sincelV(C, o C))] = mnand
A(T) < A(C,o Cp) = 4. By estimatingd(Le)|, we will show thateqe) is
large enough. Note thdd(Le)| = ede) here. We divide the proof into the
following three cases:

1. Le spans some columns and some rows;
2. Le spans some columns but no row, or some rows but no column;
3. Le spans neither columns nor rows.

[Case 1] L spans some columns and some rows: Without loss of gener-
ality, we may assumm > n. We denote by andr the number of spanned
columns and rows, respectively. Since each column is a cofdy; ahd each
row is a copy ofC,,

|ILel > max{cn, rm}.

Sincele spans a column and a roly intersects all columns and rows. So,
Le touchesm — ¢ columns andh — r rows. (Recall thaC,, o C,, containsm
columns anah rows.) Hence, from Corollary 2.17,

0(Le)l = 2(M—Cc+Nn—r).

Supposéd(Le)| < 2n. Then, we have that B(—c+n-r) < 2n, which implies
m < ¢+ r. Therefore,

mn< (C+r)n<cn+rm< 2maxXcn rm} < 2|Lg|.
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This implies|L¢| > mry2 that contradictf_¢| < [mn/2]. Thus,|6(Le)| > 2n.

[Case 2] L spans some columns but no row, or some rows but no col-
umn: If Le spans a row thehe touches all columns. S¢(Le)| > 2m from
Corollary 2.17. The opposite case can be proved by the symmetry argument.

[Case 3] L spans neither columns nor rows: Lretndc be the number
of touched rows and touched columns, respectively. From Corollary 2.17,
16(Le)| > 2(r + ¢). Clearly,rc > |L¢|. It is well known that € + c)/2 > +/rc.

Thus,

6(Le)| > 2(r + C) > 4+/rc > 4+/|Lgl.

Now we have the following three subcases:
[Case 3-a] m# n: If m> n, thenm > n+ 1, and so,

0(Le)l > 4+/ILel = 44/(Mn=1)/4> 2V + n—1> 2n.

Otherwise, that is, ih > m, we can derivdd(Le)| > 2m by the symmetry
argument.
[Case 3-b] m= n = 2¢ for some positive integet:

10(Le)l > 4+/|Lel > 4+/[(mn— 1)/4] = 4/[£2 — 1/4] = 4 = 2n.

[Case 3-c] m=n = 2¢ + 1 for some positive integet

10(Le)| > 4+/|Lel = 4+/(Mn—1)/4 = 4V{2 + ¢.
Clearly, 4V¢2 + ¢ > 4¢+ 1 for ¢ > 1. Thus, we hav@®(Le)| > 46+1 = 2n—1,
which implies|é(Le)| > 2n. This completes the proof. O

The method used in the above proof is not essentially new. For example,
Rolim, Sykora, and Vrto used a similar method to show the cutwidth of
cylindersP, 0 C, [47, Theorem 1].

2.5 Lower bounds for two classes of graphs

In this section, we show lower bounds of spanning tree congestion for two
classes of graphs. We use Corollary 2.2 to derive the lower bounds.
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2.5.1 Multi-dimensional grids

Recall that ad-dimensional grid P is thedth Cartesian power of a path
Py, that is,P} = P, andP9 = P, o P41 ford > 1.

Lemma 2.19(Bollobas and Leader [9])For 1 < s < n,
4s/n if s < nd/4,

Opa(s) > 4nd-? ifnd/4 < s< 3n/4,
4nd —s)/n if s> 3nd/4.

Theorem 2.20. stq(PY) > [Z(nOI - 1)/(dn)1 ford > 2.

Proof. Obviously,A(P%) = 2d and|V(P9)| = nd. So, from Corollary 2.2 and
Lemma 2.19,

|n?/2] [nd/z}]—l 43}

stqPY) >  min _6(9) > min{nd‘l, min

s=[(n9-1)/(2d)] s=[(ni-1)/2)] N
d_
> min {nd‘l, M} .
dn
Sinced > 2,n%! > 2(n? — 1)/(dn). Thus, the theorem follows. O

The above theorem has two applications. First, from Theorem 2.20,
stPy 0 Ppy) > [2(n - 1)/(2n)| = [n-1/n] =n.

This lower bound is the best possible (Hruska [31] has shei(R, O Py,) =
n). Second, we can derive a lower bound for Hypercube @ = PJ. From
Theorem 2.20,

stQ”) = sta(P§) > [2(2 - 1)/(2d)| = [(2* - 1)/d].

This bound, however, is not so good. In the following subsection, we will
show a better lower bound for the hypercubes.
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2.5.2 Hypercubes

Hruska [31] conjectured thatq Q%) = 29-1.*2 |n this subsection, we show
thatstq Q") = Q(29 log, d/d) andstqQ?) < 29-1,
By the following lemma, we have an edge isoperimetric inequalityQfar

Lemma 2.21(Chung, Furedi, Graham, and Seymour [1d]et G be a sub-
graph of a hypercube anglbe the average degree of G. TH#¥G)| > 2°.

Corollary 2.22 (See e.g. [3]) 6q:(s) > S(d - log, s) for 1 < s < 24,
Proof. Let S ¢ V(Q) and 5 the average degree d®?[S]. Then
2E(QU[S]) = 4IS|. SinceQ? is d-regular,/§(S)| = IS|(d - ) from Lemma

2.13. By Lemma 2.21, we havé Z |S|. It follows thats < log, |S|. From
the above observation§(S)| > |S|(d —-10g,|S|). Hence, the corollary
follows. O

Chandran and Kavitha [13] have shown that the carvingwidt%# 241,
To show this, they showed the following lemma.

Lemma 2.23(Chandran and Kavitha [13]q(s) > 29-1 for 292 < s <
2d-1,

We will show a lower bound fostq(Q?) by analyzing the functiofig.
Theorem 2.24. stqQ") > (29 - 1)log, d/d.

Proof. Let f(s) = s(d - log, s) and f’(s) be the derived function of (s).
Then

i 1
f'(s)=d (Iogzs+ Inz)'

Thus, f’(s) > 0 for 1 < s < 292, |t follows that f(s) is a monotonically
increasing function os for 1 < s < 292, Hence, we have

2d—2

' f(s) > f
L min 6@z

2d—1) 2d 1 20'—1) 2d 1

d d (d_'ogz d d

*2 Recently, this conjecture has been disproved by Law [35]. See Subsection 2.9.1 for more
detail.



2.5 Lower bounds for two classes of graphs 27

Therefore, from Corollary 2.2, Corollary 2.22, and Lemma 2.23,

d-2 d_
stqQY) > min{zdl, min f(s)} > min{zd‘l, -1 Iogzd}.
s=[(29-1)/d] d

It is easy to see that {2- 1) log,d/d < 291 for d > 1. Hence, the theorem
follows. O

The above bound for the hypercubes is not so strong to settle the conjec-
ture. To show the upper bound2, we use binomial trees. Binomial trees
are introduced in the studies of thenimum average distance spanning tree
of the hypercubes [19, 52]. A-level binomial tree Bis a spanning tree of
QY: B, is an edgeQ! rooted at 0;By4 consists of twod — 1)-level binomial
trees and an edge between roots of the two trees; The rdjytisfone of the
roots of twoBgy_1’s. See Fig. 2.6 for example, and see references [19, 52] for
formal definitions. From the construction B§, it is easy to see that for any
edgee € By, the smaller compone@ of By — e induces a subcub@’ for
somes < d. SinceQ? is d-regular andy’ is §-regular, we have

0 (C)l = IV(Q)I(d - 6) = 2°(d - 5).

It is easy to verify that Ad — §) < 29-1 for 6 < d. Therefore, we have the
upper bound.

00

10
01

11

000

001

111
B By Bs

Fig. 2.6 Binomial trees.
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2.6 Spanning tree congestion of rook’s graphs

In this section, we exactly determine the spanning tree congestion of gen-
eralized two-dimensional Hamming grapKs, o K,. These graphs have
several natural characterizations. réok’s graphhas the vertex s€(i, j) |
I € [m], j € [n]} which corresponds to the cells of tihex n chessboard;

A vertex (, j) in a rook’s graph is adjacent td’,(j’) if and only if a rook

at the cell (, j)) can move to the celli’} j’) (see Fig. 2.7). In other words,

(i, j) is adjacent toi(, j’) if and only if eitheri = i andj # j’, ori # 1’

andj = j’. Thus, the rook’s graph on thma x n chessboard coincides with

Km O Kp. Itis also known thak,, o K, is the line grapt? of the complete
bipartite grapKn, . Line graphs of bipartite graphs are used in the proof of
the Strong Perfect Graph Theorem [15]. Several properties of rook’s graphs
were studied [39, 30, 34, 1, 2].

(3,0) (3,1)

Fig. 2.7 Arook’s grapK, o Ks.

Lindsey [36] has solved the edge-isoperimetric problem for general-
ized d-dimensional Hamming graphs. In tHexicographic order<je,
(a1,...,aq) <iex (b1,...,bg) if and only if there exists (1 < i < d) such that

*3 Theline graph L(G) of a graphG is a graph such that(L(G)) = E(G) and in which two
verticeses, e, € V(L(G)) are adjacent if and only &, N ey # 0.
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a; < by anda; = by for eachi’ < i.

Lemma 2.25([36]). Let pp < p2 < -+ < pg. Then for each s1 < s <
[1%, pi, the collection of the first s vertices ofa Kp, 0 - -- 0 K, taken in
the lexicographic ordek ex provides minimum for the functiah

In the rest of this section, we assume without loss of generality that 2
m < n. In this sectionp = 6k ok, We call the vertice$(i, j) | j € [n]} the
row i, and the vertice{, j) | i € [m]} thecolumn j The following lemma is
our main tool.

Lemma 2.26. Let m< n, and s= gn+r < mn for nonnegative integers q
andr<n. Theng(s) = (m-qg)gn+ (M+n—-2q—r — 1)r.

Proof. Let S € V(K O K,) be the firsts vertices taken in the ordefiey.
From Lemma 2.2560(S)| = 6(9). It is easy to see th& consists ofg rows
andr vertices contained by another row. LlRRtenote the vertices R may

be empty). There ar@) edges in each row, andedges between each two
rows. There arté;) edges iR, andr edges betweeR and another row. So,

we have thatE((Km 0 K)[S])| = q(g) + (g)n + (;) + gr. SinceK,, 0 K, is
(m+ n - 2)-regular, we have, from Lemma 2.13, that

10(S)] = (M+n-2)@n+r) — 2/E((Km O Kn)[S])|
=(Mm-g)gn+(M+n-2g-r —121)r,
as required. O

Using Lemma 2.26 and Corollary 2.2, we derive a lower bound for
stadKy, O K). We divide the rangé(mn—1)/(m+n-2)] < s < [mn/2],
in Corollary 2.2, into two range§(mn-1)/(m+n-2)] < s < n and
n < s< |mr/2]. This is possible since > [(mn- 1)/(m+ n - 2)].

Lemma 2.27.6(s) = min{o(n), 0 ([ 2=L )} for m< n and[ 2L < s<n.

Proof. From Lemma 2.264(s) = —s(s— m—-n+ 1) for s< n. Since-s(s—
m-—n+ 1) is a quadratic convex upward function grthe lemma holds. O

Lemma 2.28. 6(s) = 6(n) form< nand n< s< | mn/2].

Proof. Let g andr be two integers in Lemma 2.26. Clearly,<lg < m/2.
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From Lemma 2.26, we haw#n) = (m - 1)n and

0(s) = (Mm-g)gn+ (M+n—-2g-r —1)r.
Since 1< g < m/2, we have thatri— g)gq > m- 1. Thus,

(m-qg)gn> (m- 1)n.
Sinceq < m/2 andr < n, we have thain+ n—2g-r —1 > 0, and hence,
(m+n-2qg-r—-21r >0.
Therefore, we have
0(s) = (m-g)gn+ (M+n—-2g—r — 1) > (m-1)n=6(n),

as required. |

Corollary 2.29. For m< n, stdKy, 0 Kp) > min{a(n),e([ mn-1 ])}

m+n-2

Next, We show the upper bounds.
Lemma 2.30. stqK,, 0 K,) < 4(n).
Proof. The spanning tre€ is defined as follows (see Fig. 2.8):

1. For each row, construct a staK; ,_; with the centeri(0);
2. For the column 0O, construct a st&f ,,_1 with the center (00);
3. The union of the constructed starslis

Each edgee constructed in the first step is a leaf edgelofThus,eqe) =
6(1). If an edgee is constructed in the second stegg(e) = 6(n). Since
mn>2,01)=m+n-2<(m-1)n=46(n). Hence, the lemma holds. O

Lemma 2.31. For m < n, st¢K, 0 K;) < 9([ mn-1 ])

m+n-2

Proof. For simplicity, letx = [nz‘]f;_lz]. The spanning tre€ is constructed as
follows (see Fig. 2.9):

1. Construct a stakK; mn—2 With the center (00);

2. Foreach column, 1 < j < n—1, construct a staf; x_1 with the center
(0, j) and the leavegnh(ij), j), (h(i;+1), j), ..., (h(ij+x=2), j)}, where
ij = (] —1)(x-1) andh(i) = (i modm- 1) + 1 (see Fig. 2.9(a));
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(0,0) Ii\h (0,1) (0,2) (0,3) (0,4)

A

wo®TTen®  w2®  wy®
e

0% Jen®  22® ©3® ey

B\

)

(3,0) ' (3,1) (3,2) (3,3) (3,4)

Fig. 2.8 The spanning tree &% 0 Ks in Lemma 2.30.

3. Foreach row, 1 <i < m- 1, construct a star with the centerQ)
whose leaves are the vertices of the row that are not contained any
other star;

4. The union of the constructed starsligsee Fig. 2.9(b)).

From the following claim, it sffices to show that for any edgein T, the
smaller component of — e has at mosk vertices.

Claim 2.32. 6(s) < 6(x) for s< x.

Proof. First, we show thak < [””2‘1 < n. Clearly, the second inequality is
holds sincem < n. Supposex = [nﬂr;_lz] > ["”g‘l]. This implies-2=L; >
m2-1 - Simplifying this inequation, we have tha¢ 1)(m-2)+(n-1)(n-2) <

0, which contradict® > m > 2. Thus, we have < [””2‘1] <n.

Lemma 2.26 implie®)(s) = —s(s—-m-n+ 1) for s < n. Clearly,
o(|™3=t]) = o(|™5=2|) is the peak of the function. Thus, the function
Is nondecreasing fa < x. Hence, the claim holds. O

Without loss of generality, we assume tfats rooted at the vertex (0).
If an edgeein T is not incident to the vertex (0), theneis a leaf edge, and
e has congestiofi(1) < 6(x). Suppose that is connected to the root (0).
Then, eithee = {(0,0), (0, )} ore = {(0,0), (i, 0)} holds.
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(@) Consecutive property of (b) The union of the stars.
leaves of stars in the second
step & = 4).

Fig. 2.9 The spanning tree & 0 K; in Lemma 2.31

[Case 1] e= {(0,0), (0, j)}: Thenede) = [6(V(T(o,j))l, whereT ) is the
subtree ofT rooted at (0j). Clearly,T(o ) is a star in the second step of the
above construction. Thup/(T j)I = xandV(T( ) is included in a clique.
So,ede) = 9(X).

[Case 2] e= {(0,0),(i,0)}: Thenede) = |6(V(T,0))l, WwhereT o) is the
subtree ofT rooted at {, 0). Clearly, T o is a star in the third step, and thus,
10V (Ta.o))l = 0(IV(Ti.0)l)- So, it sifices to show tha/(T( o))l < x. Since
the vertices are consecutively taken in the second step, the numbers of the
remaining vertices in any two rows carffér by at most one. For the root
and the stars in the second step; (n — 1) vertices are used. So, the sum
of the number of the remaining verticesms— 1 — x(n — 1), and so, each
row contains at mos{mn— 1 — x(n — 1))/(m— 1)] unused vertices. Suppose
thatx < [(mn—1- x(n-1))/(m- 1)]. Then clearlyx < (mn—-1 - x(n -
1))/(m— 1) also holds. This implies that< (mn— 1)/(m+ n— 2), which is
a contradiction. O

Corollary 2.33. For m< n, stqKp 0 Kq) < min{e(n), o (| 22 ])\.

m+n-2
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Corollaries 2.29 and 2.33 together imply

stqKy 0 Ky) = min {e(n),e({L_lD}

m+n-2
for m < n. We give the main theorem in a more transparent form.
Theorem 2.34. Form < n,

(m-1)n ifm? - 3m+3<n,

(m+n-1-[meL])[mel] otherwise

staKm o Kp) = {

m+n-2
s<n. Letf(s) = -s(s—m-n+1). Thenf(s) is a quadratic convex upward
function, and its peak is taken at= m+£1—1. Thus, f(n) = f(m- 1) = 4(n).
Sincem < n, it holds thatm -1 < %‘1 < n. Itis easy to see that < n.
Hencefg(n) = f(m—-1) < f(x) = 9(x) if and only if m—1 < x(see Fig. 2.10).

Sincem - 1 is an integerm— 1 < %L1 if and only ifm— 1 < =L,

Simplifying this inequation, we have thaf — 3m+ 3 < n. O

Proof. Let x = [ mn-1 ] From Lemma 2.269(s) = (m+ n—-1- s)sfor x <

O I T T S
m—1 mtn-l1 n m—H’l\vl

2
Fig. 2.10 The functiorf(s) in Theorem 2.34.

For readers’ convenience, we explicitly state the spanning tree congestion
of the square rook’s grapK, o K, = K2, which is a direct corollary of
Theorem 2.34.
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Corollary 2.35. Forn > 2,

st((Kﬁ) _ (Bn-4)(n+2)/4 ?f n ?s even
3n-1)(n+1)/4 ifnisodd

Proof. It is easy to see thaItc(K%) = stqC4) = 2, whereCy is a simple

cycle on four vertices. Obviously? — 3n+ 3 < nimpliesn = 2, and

[nr:f:_lz] =[(n+ 1)/2] sincem = n. Theorem 2.34 implies fan > 3 that

staK?) = (2n - 1-[(n+1)/2]) [(n + 1)/2]
= [3(n- 1)/2/T(n + 1)/2].

It is routine to verify that the corollary holds from the above equation.c

2.7 Multi-dimensional case

In this section, we study the spanning tree congestion of multi-dimensional
Hamming graphs. More precisely, we show upper and lower bounds on
stgKY) for n,d > 3. For hypercube®, we have already shown that

(2% - 1)log, d/d < stqK) < 29,

We extend the above bounds to the case3.

First, we show a lower bound. In the previous section, Lemma 2.26 was the
main tool. If we had such an exact closed formula for the multi-dimensional
case, it would be easy to estimate boundssttK?). However, since the
graph in this section may have arbitrary high dimension, it is not easy to
derive such a formula. So, we should use an asymptotic estimation. Fortu-
nately, such an estimation is known.

Lemma 2.36 (Squier, Torrence, and Vogt [51]Let G be a graph with s
vertices and t edges that is a subgraph & Where n> 2. Then,

2t < (n-1)slog, s

SinceK? is d(n — 1)-regular, Lemmas 2.13 and 2.36 imply the following
corollary.

Corollary 2.37. 6¢a(s) = (n - 1)s(d - log,, 9).
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Fornd-! < s < nd/2, the following simple estimation is good enough.
Lemma 2.38. gq(s) > (n— 1)n®* for %t < s< nd/2.

Proof. Let S be the firsts vertices ofKﬁ' taken in the ordekex. From
Lemma 2.256(s) = |9(S)|. Lets = n%1qg+ r for some integerg andr
such that 1< g < n/2 and 0< r < n. From the definition ok, S consists
of q copies ofKd-! andr vertices in another copy df¢-X. We call ther
verticesR and the remaining®-* — r verticesT, in the copy ofK¢-1. Note
thatR may be empty.

Each vertex inS has a neighbor in thith copy of K¢, q+2 <i < n.
Similarly, each vertex ifT has a neighbor in any copy &~ included by
S. Thus,

0(S) > (n* g +r)(n-g-1)+ ("t -r)q
=g(n-gn®t+r(n-2q-1).

If q = n/2thenr = 0 sinces = n%1q+r < nd/2. If g < n/2 then 2y < n,
and so, i —2g - 1) > 0. Henced(S) > qn—g)n®2L. Ifgln-q) <n-1
then@-1)(@Q-n+1)>0,and sog < 1orqg > n-1. This contradicts
the assumption. Thus, we have ti#és) > g(n — q)n%* > (n - 1)n%?, as
required. O

Lemma 2.39. stqKY) > (n® - 1) log, d/d for n,d > 3.
Proof. Let f(s) = (n— 1)s(d - log,, s) and f’(s) be the derived function of
f(s). Thenf’(s)=(n-1)d-1/Inn-log,s) > (n—1)d-1-log,s), and

so f’(s) > 0 for s < n4-1, This implies thatf (s) is monotonically increasing
for 1 < s< n%1. Thus, we have that

gmgn%)}f(s)zf(d(n_l))_ 5 (d—lognd(n_l))> . log, d.

Thus, with Corollary 2.2 and Lemma 2.38, we have that

nd—1
stqK?) > min{(n — 1)n-2, . log, d}.

We claim that ¢9 — 1) log, d/d < (n— 1)n%-1 for n,d > 3, which implies the
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lemma. Supposef — 1)log,d/d > (n - 1)n%. Then we have

d—l_l
n-1

d _
dr?t < H log, d = (n“"1 o0 )Iogn d,

d—l_l

. N
(d —log, d)ndt < —

log,, d.

Clearly, d — log,d > log,d sincen,d > 3. Thus, we have that®?! <
(n%1 - 1)/(n - 1), which is a contradiction. O

Next, we show an upper bound.
Lemma 2.40. stqKY) < (n— 1)n%* for n,d > 3.

Proof. We recursively construct the required spanning ffgeof K9. For

d > 1, Tq4 is rooted at the vertex (0..,0). If d = 1 then the spanning tree
Ty is the staKy 1. If d > 2 then constructy_; for each copy OKﬂ‘l, and
construct the stalK; 1 with the center (0.. ., 0) and the leaves,(,.. ., 0),

1 <i < n-1 (they are the root vertices afcopies ofT4_1). Note that the
spanning tree in Lemma 2.30 coincides withif m = n.

It is easy to see that for any edgan T4, the smaller componer@ of
T4 — e induces a Hamming grapki¢ for somes < d. SinceK¢ and K¢
are (- 1)d-regular and 1f — 1)s-regular, respectively, we havyeé:(C)| =
ICI(n - 1)(d - 6) = n°(n— 1)(d - ) from Lemma 2.13. It is routine to verify
thatn®(n—1)(d - 6) < (n—1)n* for § < d andn > 3. Therefore, the lemma
holds. |

Lemmas 2.39 and 2.40 immediately imply the following theorem.
Theorem 2.41. (n9 — 1) log, d/d < stqK9) < (n - 1)n% forn,d > 3.

2.8 Spanning tree congestion and treewidth

Bienstock [6] has shown some relationships between the carvingwidth and
the treewidth. Théreewidthof graphs has studied intensively. See Bodlaen-
der’s excellent survey [8]. We show that the treewidth of a graph is bounded
by the product of its maximum degree and its spanning tree congestion.

Theorem 2.42. For a connected graph G, (@) < A(G)(stdG) + 1).
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Proof. Let T be a minimum congestion spanning treeGf For eachv ¢
V(T), letE, be the subset d&(G) such that

E, = {e€ E(G) | the detour forein T containsv}.

Then letB, be the vertices contained by at least one eddg,jithat is,

B.= ) {uwh

{uw}eE,

Obviously,|B,| < 2|E,|. We define a tre@ as

V(T) ={By|VveV(G)},
E(7) = {{Bu, B} | {u,v} € E(T)}.

It is not difficult to see tha? is a tree decomposition &, and so

tw(G) + 1 < max|B,| < max2|E,|.
veG veG
Letel, e}, .. .,e‘éegr(v) be the edges il that havev € V(G) as one of its

ends. Then clearly,
degr (v)

Eds< ), ede)). (2.1)

i=1

Observe that exactlgeg;(v) edges inE, havev as one of its ends. So, the
remaining|E,| — deg;(v) edges have as an inner point of its detour. This
means thalk,| — deg;(v) edges are counted twice in the right hand side of
the inequation (2.1). So, we have

degr (V)
2|E,| < eqe) + deg;(v) < A(G) - stdG) + A(G)
i=1

as required. O

Combining Theorem 2.42 and a result of Chandran and Kavitha [14] that
determines the treewidth 6§, we have a lower bound stqQ%). Unfortu-
nately, this bound is incomparably weaker than the bound in Theorem 2.24.
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2.9 Concluding remarks

We have solved the spanning tree congestion problem for comiplete
partite graphs, two-dimensional tori, and two-dimensional Hamming graphs.
We also showed some bounds on the spanning tree congestion for multi-
dimensional grids, hypercubes, and Hamming graphs.

As an analogue of the conjecture for hypercubes, one might conjecture
thatstqKY) = n%1 or stqK9) = (n - 1)n%-L. However, this straightforward
analogue is not true in general. This is becausedtugit2) is approximately
equal to 3?/4 (see Corollary 2.35).

2.9.1 Additional remarks

Recently, Law [35] have disproved Hruska’s conjectust(QY) = 29-1
by showing that the lower bound in Theorem 2.24 is tight. ThattgQ") =
®(2%1og, d/d).

Very recently, the author and Hans L. Bodlaender have proved that the
spanning tree congestion problem is NP-hard [42]. In their forthcoming pa-
per, they will prove some negative complexity results as well as some positive
ones.
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Chapter 3

Security number of graphs

3.1 Introduction

The concept okecurity in graphdias been introduced by Brigham, Dut-
ton and Hedetniemi [11] as a generalization of the concejatli@nces in
graphs[29]. Recently, Dutton, Lee, and Brigham [22] have shown some
general lower and upper bounds on the security number.

For a graphG and a subseb = {s;,S,..., s} of V(G), let us imagine a
situation in which each vertex in S may be under attack from its neighbors
other thars, ands can defend itself or one of its neighborsSnAnd s fails
to defend if the number of attackers ®fis more than the number of defend-
ers ofs. Keeping the image in mind, let us see the following definition:

e An attackon S is anyk mutually disjoint setszZ' = {Aq, Ay, ..., A}
such thatA; € N[s] \Sforl<i <k

e A defenseof S is anyk mutually disjoint setsZ? = {D1, Do, ..., Dy}
such thaD; € N[s]nSforl1<i <Kk,

e An attack« is said to balefendablef there exists a defensg such
that|Dj| > |Aj for 1 < i < k, andS is secureif every attack orfS is
defendable.

The security number 96&) of G is the cardinality of a smallest secure set

of G. Clearly, a minimal secure set is connected. Brigham, Dutton and
Hedetniemi [11] presented some characterizations of secure sets. We use the
following characterization as the definition of secure sets.

Theorem 3.1 (Brigham, Dutton and Hedetniemi [11]B5et Sc V(G) is a
secure set of G if and onlyiN[X] N S| > IN[X] \ S|forall X C S.



40 Chapter 3 Security number of graphs

This work was motivated by a conjecture of Brigham, Dutton and Hedet-
niemi [11]. They showed upper bounds on the security number of two-
dimensional cylinders (which will be defined later) and two-dimensional tori,
and conjectured that the bound is the best possible. In Section 3.3, we show
that their conjecture is true for tori. In Section 3.4, as a corollary of the result
for tori, we show that the conjecture is also true for cylinders.

In Section 3.5, we show that any outerplanar graph has security number
at most three. Achord of a maximal outerplanar graphl is an edge other
than the edges on the outer-boundary. (In this thesis, it is enough to define
chords only for maximal outerplanar graphs.) The arc distance of a chord
{u,v} in M is defined as the distance along the outer-boundary (that is, the
unique Hamiltonian cycle) between vertiagandv.

3.2 Notation and related work

Recall that a two-dimensional grid %,0 P, and a two-dimensional torus
Is C, 0 C,,. We define similar graphs, cylinders.t&o-dimensional cylinder
Pm 0 C, is the Cartesian product of a pa#h, and a cycleC,. We call these
graphsgrid-like graphs

Some graph parameters of grid-like graphs are known: pathwidth [23],
cutwidth and bisection width [47], spanning tree congestion [31, 33], power-
ful alliance number [10], and so on. Brigham, Dutton and Hedetniemi [11]
have shown the following exact or upper bounds on the security number of
two-dimensional grid-like graphs.

Proposition 3.2 (Brigham, Dutton and Hedetniemi [11])For two-
dimensional grid-like graphs,

1. sn(Py, 0 Py) = min{m, n, 3},

2. snPynoCy,) < min{2m, n, 6},

3. sNC30C3) = 4and srfC,,0Cp) < min{2m, 2n, 12} for maxm, n} > 4.

Brigham, Dutton and Hedetniemi [11] conjectured that the above upper
bounds are tight. We will show that their conjecture is true.

3.3 Security number of two-dimensional tori

In this section, we show thasn(C,, o C,) = min{2m,2n,12} for
maxXm, n} > 4. To this end, we need additional notation.
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Recall the definitions o€ol(i) andRow(j) in Section 2.4 (page 20). See
also Fig. 2.4. LeS c V(Cy,, 0 C). We denoted:(S) = d(S) n Col(i) (the
superscript stands for “column”). Clearlyg; (S) N 4 (S) = 0 for iy # iz,

.....

that intersect witts by
C(S)={i|Coli)nS#0} and Z(S)={]| Rowj)NnS # 0},

respectively. Fok > 1, we define partitions ¢#'(S) andZ(S), denoted by
“(S) andZk(S) respectively, as

2(S)={iICali)nS| =k} and Zi(S) ={]j|IRow(j) N S| =Kk}.

Obviously, % (S) c [m] and Z(S) C [n]. From the definitions, it is easy to
see that?'(S)| = Zi_; [k(S)l and|S| = X_; KI€k(S)I-

3.3.1 Some observations

In this subsection, we present some useful propositions. First, we can
easily derive the following proposition.

Proposition 3.3. If i € ¢(S) then

0 ifi € 61(S),
95(S) =11 ifi € Gna(S),
2 or more otherwise.

We can directly derive the following corollary by the above proposition.

Corollary 3.4. For S € V(Cm 0 Cn), |Uice(s) 95(S)| = 2%(S)| - 26(S)| -
|an—1(s)|-

SinceC,,0C, is 4-reqgular, if a se® C V(C,,o0C,) contains a vertex that
has three neighbors not #8ithenS is not secure. (We call such a vertea
pendant verteX From this property, we can estima&&(S)| for i ¢ €'(S).

Proposition 3.5. Let S be a secure set of @ Cy,. Ifi ¢ €(S) and{i — 1,i +
1} N E(S) # 0 then|o(S)| > 2.

Proof. Supposédf(S)| = 1. ThenSN Col(i — 1)l = Lor|SnCol(i + 1)| = 1.
Sincei ¢ €(S), there is a vertex it5 N Col(i — 1) orS n Col(i + 1) that has
at least three attackers. This contradicts & secure. O
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Corollary 3.6. Let S be a secure set of € C,. If |2(S)| < m-1then there
existsi ¢ % (S) such thanafl(S)l > 2. Moreover, ifig’(S)| < m-2then there
exists 3 ¢ ¢(S) such thati # i and|d; (S)| > 2.

Since any minimal secure set is connected, we can derive a lower bound of
its size.

Proposition 3.7. Let S be a connected subset €y, 0 C,)). Then,
IS| > |€(S)| + |Z(S)| — 1.

Proof. We prove the proposition by induction ¢8. If |S| = 1, trivially the
proposition holds. Let us assun® > 2 and for any connected set of size
|S| — 1, the proposition holds. Sinceis connected anfb|, there is a vertex

(i, j) € SsuchthaS\{(i, j)} is also connected (for example, a leaf vertex of a
spanning tree ofG,,0C,)[S]). Let S’ denoteS\({(i, j)}. Clearly,|S| = |S'|+1.
Then, from the inductive assumptidB;| > |5 (S')| + |Z(S’)| — 1. Hence,

S| > [€(S")] + |%(S)]. (3.1)
SinceS is connected, there is a vertax, (") € S’ such that(i, j), (", j')} €
E(Cy o0 C,). From the definition ofc,, o C,, eitheri =i’ or j = j’. This
impliesi € €(S’) or j € Z(S’). Thus,
|5 (S)| + |Z(S)| < |€(S)| + |Z(S)| + 1. (3.2)
Combining the inequalities (3.1) and (3.2), we have

ISI > [€(S)| + |%(S)| - 1,

as required. O

Corollary 3.8. Let S be a minimal secure set of,@ C,,. Then,
S| > |€(S) + 1%(S) - 1.
The restriction on size d bounds the size ¢f,(S) and%n-1(S).

Proposition 3.9. |%,(S)| < ['—ﬁ'J and|%,_1(S)| < [|S|—|<5(s)|;$—1)|<5n(s)|J_
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Proof. Trivially, the first inequality holds. Sind&’(S)| = Xi_; 16k(S)I, IS| =
Y, KI%k(S)l, andn > 3, we have

SI-1€(S) = ) (k= DI(S) = (= VI%(S)| + (N = 2)Gn-1(S)!.
k=1

Therefore, by simplifying the above inequality, we have

S| = € (S)| — (n— 1)En(S)l
n—2 '

|an—l(s)| <

Since|%,-1(S)| is integral, the second inequality in the proposition holds.

As the last observation of this subsection, we present a property of adjacent
columns.

Proposition 3.10. Let SC V(C,o C,), | € 6k(S) and I € % (S) for some
K,K. If i —i’| = 1then|d; (S)l > k- K.

Proof. Each vertex € Col(i) n S has a unique neighbar € Col(i’). The
number of such neighbors [8ol(i) N S| = k, and at mosk’ of them can be
in S. Thus, the lemma holds. O

3.3.2 Solution

We divide the problem into the following three cases.

1. |19(S) <m-2o0r|Z(S) <nh—-2 (Lemma 3.12),
2. m#n,|%(S)=2m-1,andZ(S)| > n—1 (Lemma 3.13),
3. m=n,|%(S) = m-1,andZ(S)| > n— 1 (Lemma 3.14).

From Proposition 3.2, and Lemmas 3.12, 3.13, and 3.14, we can conclude
that the following theorem holds.

Theorem 3.11. sn(C3 0 C3) = 4, and formaxm, n} > 4,

snC, o C,) = min{2m, 2n, 12}.

The 1st case: |(S)|<m-2or |Z(S)|<n-2
This case is the easiest case.
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Lemma 3.12. Let S be a secure set of, €1 C,, such that#(S)| < m-2or
|Z(S)| < n— 2. Then|S| > min{2m, 2n, 12}.

Proof. Observe thatS| < |%(S)|IZ(S)|, since each row contains at most
|6°(S)| vertices ofS. We claim that may%’(S)|, |2 (S)|} > VS|, which im-
plies max/(S)L.|%(S)l} > | VISI|. Suppose malks ()| IZ(S)) < VIS,
Then, we havés’ (S)||Z(S)| < |S|, which is a contradiction.

Without loss of generality, we assume th&(S)| < n— 2. Then%,(S) =
%n-1(S) = 0. It follows |Uic(s) 95(S)| > 21€°(S)| from Corollary 3.4. So, if
|%°(S)| = m, then|d(S)| = 2m. If |%(S)] = m— 1, then from Corollary 3.6,
there is an index ¢ ¢'(S) such thatd; (S)| > 2. So,0(S)| = 2/2(S)| + 2 =
2m.

If 1 (S)] < m- 2, then from Corollary 3.6, there are two distinct indices
1,12 ¢ €(S) such thald? (S)l > 2 and|d; (S)| > 2. It follows that|d(S)| >
2% (S)| + 4. From the symmetry argument, we can also dejiN8)| >
2l%(S)| + 4. Thus,

16(S)| = 2max|€(S),|Z(S)|} + 4 > 2[ |S|] + 4.

It is routine to verify that folfS| < 11,|S| < 2[ |S|W +4.Thus|S| > 12. O

The 2nd case: m# n, |€(S)| > m—-1,and |Z(S)| > n-1
Lemma 3.13. Let S be a minimal secure set of,@ C,, such thai%’(S)| >
m-—1and|Z(S)| > n— 1. If m # n then|S| > min{2m, 2n, 12}.

Proof. Without loss of generality, we assume> n+1. Supposés| < 2n-1.
We divide the proof into two cases.

[Case 1]1%4(S)| = m: If |Z(S)| = n, then|S| > |Z(S)| + |Z(S)| - 1 =
m+n-1 > 2nfrom Corollary 3.8. ThugZ(S)| = n—1, and so|%,(S)| = 0.
From Corollary 3.8 an¢5| < 2n— 1, m = n+ 1. Hence, from Corollary 3.4
and Proposition 3.9, we have

2n—1-(n+1)
n-2

10(S)| = 21%'(S)| — 1%n-1(S)| = 2(n + 1) — { ‘ =2n+1> S|,

which is a contradiction.
[Case 2]|%°(S)| = m— 1: From Proposition 3.9 and the assumptiSn<
2n —1,|%,(S)| < 1. From Corollaries 3.4 and 3.6,

0(S) = 2(M— 1) = 2€n(S)| — [€n-1(S)| + 2 = 2m — 2/En(S)| — [6n-1(S)I.
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Then, from Proposition 3.9 and the assumpt®in< 2n -1,

(2n-1)-(m-1)—(n—1)I%(S)|
n-2

B(S)] > 2m— 2%(S)| - {

— om_ (n=3)|%n(S)| + 2n — m‘
I n-2
> om— M‘
n-2

From Corollary 3.8 angb| < 2n-1,me {n+ 1,n+ 2}. So,

2n+2—{%J:2n ifm=n+1,
|(9(S)| = 2n-5 2n—-3 ;
2n+4—{ﬁJ:2n+[ﬁ] |fm:n+2.
Sincen > 3, we havad(S)| > 2n > |S|, a contradiction. O

The 3rd case: m=n, |%(S)|>m-1, and |Z(S)| > n-1
Lemma 3.14. Let S be a minimal secure set of,@ C,, such tha{#(S)| >
m-1and|Z(S)| > n- 1. If m=n> 4then|S| > min{2m, 2n, 12}.

Proof. First we consider the smallest case= n = 4. Riordan [45] has
determined the ordering on the vertices of the multi-dimensional even torus
such that the se® of the initial k vertices in the ordering has the minimum
number of boundaries. By using the ordering, we can verify|8jat |0(S)|
foranyS C V(C4 0 Cy) such thatS| < 6. Thus,snC,0C4) > 6. So, itis
suficient to show that there is no secure se€gfo C, with seven vertices,
since 2n = 8. Itis routine to verify that there are only three non-isomorphic
connected subsets ¥{C,0C,) that consist of seven vertices with no pendant
vertex. The three subsets are depicted in Fig. 3.1. For each subset in Fig. 3.1,
IS| < |0(S)|. So the lemma holds in this case.

In what follows, we assumen = n > 5, and by way of contradiction,
assuméS| < 2n-1. Then from Proposition 3.96,(S)|+|%n-1(S)| < 1. From
Corollaries 3.4 and 3.6, an@’(S)| € {im— 1, my}, if |%,(S)| + |6n-12(S)| = 0
then|d(S)| = 2m. Hence|%n(S)| + |%n-1(S)| = 1. We have the following two
cases.

[Case 1]|%4(S)| = mand|Z(S)| > n — 1: Without loss of generality, we
assumesn(S) U 6n-1(S) = {i1}. From|€(S)| = m, S| = > ¢_; KI%k(S)l, and
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Fig. 3.1 Subsets of(C, o0 C,) that contain no pendant vertex € S).

ISI < 2n -1, we havg%z(S)| < [%n-1(S)I, [41(S)| = m— 1 - [62(S)|, and
|6x(S)] = 0 for 3< k < n— 2. Then, from Propositions 3.3 and 3.10,

) ] . (n—1)+ (n-1) if i1 € €n(S)
0.8) + (8] + 0.a(9)] = {1 F-2)+(-3) iy e Ga(S)
>2n-4.

From Proposition 3.39°(S)| > 2 fori € {0,...,m— 1} — {iy,iy — 1,iy + 1}.
Thus, |0(S)] = (2n - 4) + 2(m - 3) = 4n — 10. Sincen > 5, we have
|0(S)| = 4n — 10 > 2n, a contradiction.

[Case 2] |12 (S) = m—-1 and|Z(S)] = n—- 1. From|Z(S)| = n- 1,
6n(S) = 0. Thus,|%nh-1(S)| = 1. Let%,-1(S) = {i1}. We have the following
two subcases.

[Case 2-1] L —1¢ F(S) oriy + 1 ¢ €(S): Without loss of generality, we
assume; — 1 ¢ 4(S) (hencej; + 1 € £(S)). Clearly,|d; _,(S)| > n—1.
Since|4(S)l = m-1,|S| < 2n-1, and|S| = Y ;_; KI€k(S)], it follows that
i1 + 1 € %i(S) for somek < 3. From Proposition 3.109f ,,(S)| > n— 4.
Then from Proposition 3.3 and Corollary 3.6,

O(S)I = 165, (S)| +16%_y(S) + 165, 1(S)] + | o%(S)
iE{O ..... m—l}—{il,il—l,i1+1}
>1+(N-1)+(n-4)+2(m-3)=4n-10.

Sincen > 5, we havdd(S)| > 2n, a contradiction.
[Case 2-2] h — 1,i; + 1 € %(S): By the symmetry argument, we can
assumeZm(S) = 0, Zm-1(S) = {j1}, andj1 -1, j1 + 1 € Z(S). Since



3.4 Security number of two-dimensional cylinders 47

IS| < 2n - 1, there are at most two verticasv € S such that, v ¢ Col(i1)
andu,v ¢ Row(j1) (not necessarily # v). Since|S| is connectedy andv
must be in the masked area of Fig. 3.2. It is easy to seeSmatist have a
pendant vertex sina@ = n > 5, a contradiction. O

..................................................

Row(ji) { ¢ @ 0| @ @1 -—¢ =0 |

Col(iq)

Fig. 3.2 Remaining vertices must be in the masked areas).

3.4 Security number of two-dimensional
cylinders

In this section, we show that the remaining part of the conjecture is also
true, that issn(P,, 0 C,) = min{2m,n, 6}. This result can be easily derived
from the result of tori and the following lemma.

Lemma 3.15. snCo, 0 Cp) < 2snNP, 0 C,).
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Proof. Let S be an arbitrary secure setGf, 0 P,,. Let S’ be thereversed-
shifted copyf S, thatis,S’ = {(2m-1-u,V) | (u,Vv) € S} (see Fig. 3.3). We
show thatS U S’ is a secure set @,y O C,,.

Let F denote the set of edges between the left half and the right half of
ConoCy, that s,

F = {{(m- 1), (m.i)}, {(0,i),(@2m-1,i)}|0<i<n-1}.

Clearly,S U S’ is a secure set of the graph obtained by deletioR éfom
Com 0 Ch. Observe thatrh— 1,i) € Sif and only if (m,1) € S’. Similarly,
(0,i) e Sifand only if (2m— 1,1) € S’. Thus, any edge i connects two
vertices such that the both are3u S’, or the both are not i U S’. This
means thaF cannot contribute to any attack &uU S’. ThereforeSU S’ is
also a secure set @by, 0 C,,. O

The above lemma implies thatsh(P,aC,) < min{2m, n, 6} thensn(Co,O
Cn) < min{4m, 2n, 12}. However, this contradicts Theorem 3.11. So we have,
with Proposition 3.2, the following theorem.

Theorem 3.16. sn(Py, o0 C,) = min{2m, n, 6}.

(0,0)
'

(2m —1,0)

(0,n—1) (m—1,n-1) (myn—1) (2m—1,n—-1)
Fig. 3.3 The reversed-shifted cofy of S.
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3.5 Security number of outerplanar graphs

In this section, we show that any outerplanar graph has security number at
most three! To show the existence of such a small secure set, we use the
following four lemmas.

Lemma 3.17. Let{u, v} be a chord of arc distance at least three in a maximal
outerplanar graph M, and Pand P, be the set of vertices on two paths
between u and v along the outer-boundary, except the endpoints u and v.
Then, both Pand P, are secure sets of M.

Proof. Clearly, the boundary d®;, 9(P) is {u, v}, that is, onlyu andv are the
attackers orP;. Since|P;| > 2 andP; induces a connected subgraphiof
each vertex i?; has two “candidates” of its defenders: itself and its neighbor
in P;. Hence,P; is secure. O

Lemma 3.18. Any maximal outerplanar graph has a secure set of size at
most three.

Proof. Let M be a maximal outerplanar graph. It is easy to verify that if
[V(M)| < 6 thensn(M) < 3. Thus, we assum¥(M)| > 7.

From Lemma 3.17, it dtices to show that there is a chord of arc distance
three or four. Leth denotgV(M)| andc denote the number of chords with arc
distance two inVl. We first show that there is a chopdl v} of arc distance at
least three. Itis easy to check tltat [n/2]. SinceM has (:\—3)-n=n-3
chords anah > 7, we haveii—3)-c > (n—3) - |n/2] > 0. This means that
there is a chordu, v} of arc distance at least three.

Next, we demonstrate that the smallest arc distance among the chords with
arc distance at least three is at most four. Hencgu)&t denote a chord with
the smallest arc distance among the chords with arc distance at least three,
andW = {wp, w1, ...,W} denote the vertices on the shortest path along the
outer-boundary betweean= wp andv = wy, wherek is the arc distance of the
chord{u, v}. Consider the chords except v} in M whose endpoints are both
in W. Let us denote such chords By From the choice ofu, v}, all chords
in C have arc distance two iM. Therefore,C has at mostk/2] chords
(not|(k+ 1)/2]). On the other hand, the chor@sare exactly the chords in

*1 The same result has been obtained independently by Dutton [21].
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M[W]. SinceM[W] is a maximal outerplanar graph, the number of chords in
M[W] (that is,|C|) is 2Kk + 1) - 3) - (k+ 1) = k— 2. As a result, we have
k — 2 < |k/2], which impliesk < 4. O

The following lemma is immediate from the definition of secure sets.

Lemma 3.19. Let S be a secure set of a graph G. For an edge seat F
E(G) \ E(G[S]), S is also a secure set of the graph-G-.

Lemma 3.20. Let S be a secure set of a maximal outerplanar graph M
obtained by Lemma 3.18. Then, for an edge subset KM{§]), S includes
a secure set of the graph MF.

Proof. It is easy to see that the secure set obtained by Lemma 3.18 can be
divided into two types depicted in Fig. 3.4. In the both types, the deletion of
any edge inE(M[S]) yields a vertex of degree one (see Fig. 3.4). Tls,
includes a secure set of the gragh- F. O

(a) Arc distance three. (b) Arc distance four.

Fig. 3.4 Secure sets obtained by Lemma 3.18

Theorem 3.21. For any outerplanar graph, its security number is at most
three.

Proof. LetG be an outerplanar graph, aMibe a maximal outerplanar graph
that hasG as a spanning subgraph, that\gM) = V(G) andE(M) 2 E(G).
Let F = E(M)\ E(G) denote the additional edges, and3dte a secure set of
M obtained by Lemma 3.18. Then e}, = FNE(M[S]) andFqy = F \ Fin.
SinceFi, € E(M[S]) from Lemma 3.20S includes a secure set &f — Fj,
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SinceFoy: € (E(M - Fin) \ E((M = Fin)[S])), from Lemma 3.19S includes
a secure set oM — Fi,) — Fout = G. O

The above bound is tight, that is, there are infinitely many outerplanar
graphs of security number three. For 3, letH,, be a graph such that

V(Hn) = {v1, V2, ..., Van_1, Von = Vo},
E(Hn) = {{Vi,Vir1} 10<i <2n -1} U {{va,Vais2} [O< i <n-1}.

See Fig. 3.5. Itis easy to see that each vertékhas at least two neighbors,

and each pair of adjacent vertices has at least three boundary vertices. Thus,
we can conclude than(H,) = 3 for anyn > 3. Note that{vy, vo, v3} IS one

of the minimum secure set éf,.

v7

vy = V2n

Fig. 3.5 An outerplanar graph of security number three.

3.6 Upper and lower bounds for hypercubes
In this section, we provide upper and lower bounds for hypercubes.

Lemma 3.22. For any graphs G and H,

sn(G o H) < min{sn(G)|V(H)|, sn(H)|V(G)]}.
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Proof. Let R C V(G) andS = Rx V(H), thatis,S = {(r,h) | r e R, h ¢
V(H)}. Obviously,S| = |R||V(H)|. Observe that edges between two copies of
G cannot contribute any attack & Thus,S is secure irG o H if and only
If Ris secure iG. ChoosingR as a minimum secure set, we can conclude
thatsn(G o H) < snG)|V(H)|. The remaining relation can be shown by the
symmetry argument. O

From the above lemman(G o P,) < 2sn(G). Thus, we have an upper
bound on the security number of hypercubes.

Corollary 3.23. s(Q9) < 29-1,

Note thatsn(G o P,) can be strictly less than mizsnG), [V(G)|} for some
G (see Fig. 3.6).

V(G)

\-‘: 5, 2sn(G) =4 sn(G O Py) =3

Fig. 3.6 sn(G o P,) < min(2sn(G), V(G)]}

From the definition, it is not diicult to see that ifog(S)| > |S| thenS is
not secure. Thusjs(k) > k implies there is no secure set of siken G.
Hence, we have the following lemma.

Lemma 3.24. If dg(k) > k holds for all1 < k < £ then siG) > ¢.

Using the above lemma, we present a lower bound for hyper-
cubes. The vertex isoperimetric problem on hypercubes was settled by
Harper [28]. Using his result, we will show thég«(k) > k holds, for all

1< k< ZHTPE (). Namely, we show thatn(Q?) > $HT2/ (%),

|
First, we show a property of a partial sum over binomialfiorents.

Lemma3.25.Ford > 2, Y/_, (f') < (rfl) forr < |(d - 2)/3].

Proof. We will prove the lemma by induction on If r = O, clearly the



3.6 Upper and lower bounds for hypercubes 53

lemma holds. Let us assunj_} (‘f‘) < (‘r’) for some 1< r < [(d - 2)/3].
Fromr < |(d-2)/3], we can derive + 1 < d - 2r — 1. Therefore,

()

i=0

d d-2r-1 d-r
1< = -1
r <S4S r+1 r+1 ’

50-(9(e2-4-(4)-0

Z ? <(rfl)'

i=0

—

=

r_

Ng

= 1
o

Thus, the lemma holds. O

Theorem 3.26(Harper [28]) For any integer k { < k < [V(QY)), there
exist a set SC V(QY), a vertex g € V(QY), and an integer r, such that
(v | dist{ug,v) < r} € S c {v]|dist{up,v) < r + 1}, |S| = k, and|d(S)| =
MinTcy(qe), =k [0(T)I.

By using Theorem 3.26, we can derive the next result.
Lemma 3.27. Ifk < G2 (1), thendge(k) > k.
Proof. LetS, ug, andr be the set, the vertex, and the integer in Theorem 3.26,
respectively. Obviously < |(d-2)/3] sincek < TIT? (). Hence,

from Lemma 3.25, we havg{zo(i) r+1) If k=Y. O(I), thenS = {v |
dist(ug, v) < r} andd(S) = {v| dist(up, V) = r + 1}. Thus, the lemma holds in
this case. In the following, we will concentrate to the casey[_q (§). Note
that in this case,

r<|[(d-2)/3]-1<(d-5)/3.

LetS, ={v|veS, dist(up,V) = £}. Clearly,

" (d d
S| = |Sraal + Z.] (.) < [Sraal + (r . 1).

Itis easy to see th@(S) = d(S,)Ud(S;.1). Thus, to estimate the size @fS),
it is suficient to show the sizes &(S,) andd(S,,1). SinceS; is exactly the
set{v | dist(ug, V) = r}, we have

o=, ) - 15t
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We derive a lower bound fdé(S;.1)|. For anyv € S;,1, N(V) N 9(Sr41) =
d —r — 1. On the other hand, for arnwe 9(Sr.1), N(V) NSy <1 + 2. See
Fig. 3.7 to verify the above observations. It is easy to see|#i&t,1)| is
minimized if for anyv € 9(Sr41), N(V) N Sy,1 =1 + 2. Therefore, we have

|Sr+1|(d - - 1)

>
|a(Sr+1)| = r+2

Fig. 3.7 Inner and outer degrees of verticeSiy ando(S;.1)

From the above observations,

ISral(d =1 - 1)
r+ 2 '

d
O R

Supposés| > |0(S)|. Then,

|Sr+1|(d il 1)

d d
> > —
1Sr4a| + (r + 1) > |S| > |8(S)| 2 (r + l) ISrsa| + —

Simplifying the above inequality, we have- (d —5)/3, a contradiction. O
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From Lemmas 3.24 and 3.27, the following corollary holds.
Corollary 3.28. sn(Q?) > 2 {23 (|)
By combining Corollaries 3.23 and 3.28, we have the next result.

Theorem 3.29. 23 () < sn(QY) < 291,

3.7 Concluding remarks

We have studied the security number of two-dimensional grid-like graphs
and shown the best possible lower bounds for two-dimensional tori and two-
dimensional cylinders. For future work, it is natural to study the security
number of three-dimensional grid-like graphs. We believe that the upper
bounds in the following proposition are the best possible except for small
¢, mn. (Itis easy to see than(C3;0C30C3) < 12, andsn(P,oC30C3) < 8.)

Proposition 3.30. For three-dimensional grid-like graphs,

1. sn(P, 0 Py, O P,) < min{fm, mn n¢, 20},

2. sn(P, 0 Py, 0 Cp) < min{2¢m, mn n¢, 40},

3. sn(P, 0 Cpy 0 Cp) < min{2m, mn, 2n¢, 80},
4. sn(C, 0 Cy, 0 Cp) < min{2fm, 2mn 2n¢, 160}.

Proof. (1) End vertices of the copies B, that lie in a single copy oP, 0 Pp,
clearly form a secure set. Thusm P, o P, o P,) < m. The upper bounds

mn andnf can be obtained by similar arguments. For the constant upper
bound, letS be the set of corner vertices depicted in Fig. 3.8(a). Obviously,
|S] = 20. For any attack 0%, u € S can defend the vertex attacked by

v e d(S)if N(vyn'S € N[u] n'S. Fig. 3.8(b) depicts such relations. White
vertices marked with arcs are repelled by the corresponding black vertices.
In Fig. 3.8(c), the remaining three white vertices can attack the three black
vertices with a common unused defender. It is easy to see that the four black
vertices can repel the three white vertices. TI8s secure.

(2—4) For bounds likeb or 2ab, corresponding secure set can be a single
copy or two consecutive copies Bf o Py, P,0Cy, or C,0Cy. For constant
bounds, corresponding secure sets consist of two, four, or eight copies of the
setS that are reversed and shifted. O
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)
/f Z
(0,0,0)
(8)e €S, 0 €(S). (b) One-to-one marks.
panN
ah
=

(c) Self-defenses with help.

Fig. 3.8 Asecure s& of P, o P, o P,.
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