6 research outputs found

    A note on domination in bipartite graphs

    Get PDF
    DOMINATING SET remains NP-complete even when instances are restricted to bipartite graphs, however, in this case VERTEX COVER is solvable in polynomial time. Consequences to VECTOR DOMINATING SET as a generalization of both are discussed

    Domination in bipartite graphs

    Get PDF
    We prove that the domination number of a graph of order n and minimum degree at least 2 that does not contain cycles of lengths 4, 5, 7, 10 or 13 is at most 3 8n. Furthermore, we derive upper bounds on the domination number of bipartite graphs of given minimum degre

    Über die Dominanzzahl in Graphen unter Nutzung verschiedener Konzepte

    Get PDF
    Die Dominanzzahl in Graphen ist die minimale Mächtigkeit einer Knotenpunktmenge D, für die jeder Knoten entweder in D enthalten ist oder einen Nachbarn in D besitzt. Da das zugehörige Entscheidungsproblem NP-vollständig ist, versucht man obere Schranken für die Dominanzzahl in verschiedenen Graphenklassen zu finden und diese zu realisieren. Ein Ansatz, zu solchen Schranken zu kommen, ist die probabilistische Methode nach Alon und Spencer. Hierbei werden Knoten mit einer Wahrscheinlichkeit zwischen Null und Eins zu der Menge hinzugenommen und diese dann zu einer dominierenden Menge ergänzt.Mit Hilfe sogenannter Abstiegsverfahren kann man dann für die einzelnen Knoten zu den "realisierenden" Wahrscheinlichkeiten Null und Eins übergehen. Die dabei erzielten Verbesserungen werden bestimmt und so neue Schranken für reguläre und allgemeine Graphen gewonnen. Diese hängen jedoch von der Mächtigkeit einer Menge von Knoten (oder Schranken für diese) ab, die paarweise einen gewissen Abstand voneinander haben.Weiter wird ein verallgemeinerter Ansatz für die Bestimmung der Verbesserung von Schranken für die Dominanzzahl durch Abstiegsverfahren entwickelt. Der in diesem Zusammenhang beschriebene Algorithmus für allgemeine bzw. bipartite Graphen kann für viele multilineare Funktionen, die eine obere Schranke für die Dominanzzahl bilden, angewandt werden und liefert in jedem Fall neue, verbesserte Ergebnisse gegenüber der Ausgangsschranke.Durch die Verallgemeinerung der Methode von Alon und Spencer können zudem direkt bessere Schranken für die Dominanzzahl allgemeiner Graphen erreicht werden. Auf bipartiten Graphen, für die bisher nur wenige eigenständige Schranken bekannt sind, werden weitere Verbesserungen erzielt. Die Resultate werden numerisch ausgewertet und bekannten Schranken gegenüber gestellt

    Generalized Domination in Graphs with Applications in Wireless Networks

    Get PDF
    The objective of this research is to study practical generalization of domination in graphs and explore the theoretical and computational aspects of models arising in the design of wireless networks. For the construction of a virtual backbone of a wireless ad-hoc network, two different models are proposed concerning reliability and robustness. This dissertation also considers wireless sensor placement problems with various additional constraints that reflect different real-life scenarios. In wireless ad-hoc network, a connected dominating set (CDS) can be used to serve as a virtual backbone, facilitating communication among the members in the network. Most literature focuses on creating the smallest virtual backbone without considering the distance that a message has to travel from a source until it reaches its desired destination. However, recent research shows that the chance of loss of a message in transmission increases as the distance that the message has to travel increases. We propose CDS with bounded diameter, called dominating s-club (DsC) for s ≥ 1, to model a reliable virtual backbone. An ideal virtual backbone should retain its structure after the failure of a certain number of vertices. The issue of robustness under vertex failure is considered by studying k-connected m-dominating set. We describe several structural properties that hold form ≥ k, but fail when m < k. Three different formulations based on vertex-cut inequalities are shown depending on the value of k and m. The computational results show that the proposed lazy-constraint approach compares favorably with existing methods for the minimum connected dominating set problem (for k = m = 1). The experimental results for k = m = 2, 3, 4 are presented as well. In the wireless sensor placement problem, the objective is often to place a minimum number of sensors while monitoring all sites of interest, and this can be modeled by dominating set. In some practical situations, however, there could be a location where a sensor cannot be placed because of environmental restrictions. Motivated by these practical scenarios, we introduce varieties of dominating set and the corresponding optimization problems. For these new problems, we consider the computational complexity, mathematical programming formulation, and analytical bounds on the size of structures of interest. We solve these problems using a general commercial solver and compare its performance with that of simulated annealing
    corecore