66 research outputs found

    Oriented trees and paths in digraphs

    Full text link
    Which conditions ensure that a digraph contains all oriented paths of some given length, or even a all oriented trees of some given size, as a subgraph? One possible condition could be that the host digraph is a tournament of a certain order. In arbitrary digraphs and oriented graphs, conditions on the chromatic number, on the edge density, on the minimum outdegree and on the minimum semidegree have been proposed. In this survey, we review the known results, and highlight some open questions in the area

    Complete directed minors and chromatic number

    Get PDF
    The dichromatic number χ→(D) of a digraph D is the smallest k for which it admits a k-coloring where every color class induces an acyclic subgraph. Inspired by Hadwiger's conjecture for undirected graphs, several groups of authors have recently studied the containment of complete directed minors in digraphs with a given dichromatic number. In this note we exhibit a relation of these problems to Hadwiger's conjecture. Exploiting this relation, we show that every directed graph excluding the complete digraph K↔t of order t as a strong minor or as a butterfly minor is O(t(log log t)6)-colorable. This answers a question by Axenovich, Girão, Snyder, and Weber, who proved an upper bound of t4t for the same problem. A further consequence of our results is that every digraph of dichromatic number 22n contains a subdivision of every n-vertex subcubic digraph, which makes progress on a set of problems raised by Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé

    Homomorphism complexes, reconfiguration, and homotopy for directed graphs

    Full text link
    The neighborhood complex of a graph was introduced by Lov\'asz to provide topological lower bounds on chromatic number. More general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes' are also related to mixings of graph colorings and other reconfiguration problems, as well as a notion of discrete homotopy for graphs. Here we initiate the detailed study of Hom complexes for directed graphs (digraphs). For any pair of digraphs graphs GG and HH, we consider the polyhedral complex Hom(G,H)\text{Hom}(G,H) that parametrizes the directed graph homomorphisms f:G→Hf: G \rightarrow H. Hom complexes of digraphs have applications in the study of chains in graded posets and cellular resolutions of monomial ideals. We study examples of directed Hom complexes and relate their topological properties to certain graph operations including products, adjunctions, and foldings. We introduce a notion of a neighborhood complex for a digraph and prove that its homotopy type is recovered as the Hom complex of homomorphisms from a directed edge. We establish a number of results regarding the topology of directed neighborhood complexes, including the dependence on directed bipartite subgraphs, a digraph version of the Mycielski construction, as well as vanishing theorems for higher homology. The Hom complexes of digraphs provide a natural framework for reconfiguration of homomorphisms of digraphs. Inspired by notions of directed graph colorings we study the connectivity of Hom(G,Tn)\text{Hom}(G,T_n) for TnT_n a tournament. Finally, we use paths in the internal hom objects of digraphs to define various notions of homotopy, and discuss connections to the topology of Hom complexes.Comment: 34 pages, 10 figures; V2: some changes in notation, clarified statements and proofs, other corrections and minor revisions incorporating comments from referee

    Finding an induced subdivision of a digraph

    Get PDF
    We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) GG, does it contain an induced subdivision of a prescribed digraph DD? The complexity of this problem depends on DD and on whether GG must be an oriented graph or is allowed to contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-completeness proofs

    Immersion of complete digraphs in Eulerian digraphs

    Get PDF
    A digraph GG \emph{immerses} a digraph HH if there is an injection f:V(H)→V(G)f : V(H) \to V(G) and a collection of pairwise edge-disjoint directed paths PuvP_{uv}, for uv∈E(H)uv \in E(H), such that PuvP_{uv} starts at uu and ends at vv. We prove that every Eulerian digraph with minimum out-degree tt immerses a complete digraph on Ω(t)\Omega(t) vertices, thus answering a question of DeVos, Mcdonald, Mohar, and Scheide.Comment: 17 pages; fixed typo
    • …
    corecore