31 research outputs found

    Infinite Matroids and Determinacy of Games

    Full text link
    Solving a problem of Diestel and Pott, we construct a large class of infinite matroids. These can be used to provide counterexamples against the natural extension of the Well-quasi-ordering-Conjecture to infinite matroids and to show that the class of planar infinite matroids does not have a universal matroid. The existence of these matroids has a connection to Set Theory in that it corresponds to the Determinacy of certain games. To show that our construction gives matroids, we introduce a new very simple axiomatization of the class of countable tame matroids

    Fixing numbers for matroids

    Full text link
    Motivated by work in graph theory, we define the fixing number for a matroid. We give upper and lower bounds for fixing numbers for a general matroid in terms of the size and maximum orbit size (under the action of the matroid automorphism group). We prove the fixing numbers for the cycle matroid and bicircular matroid associated with 3-connected graphs are identical. Many of these results have interpretations through permutation groups, and we make this connection explicit.Comment: This is a major revision of a previous versio

    Totally free expansions of matroids

    Get PDF
    The aim of this paper is to give insight into the behaviour of inequivalent representations of 3-connected matroids. An element x of a matroid M is fixed if there is no extension M′ of M by an element x′ such that {x, x′} is independent and M′ is unaltered by swapping the labels on x and x′. When x is fixed, a representation of M.\x extends in at most one way to a representation of M. A 3-connected matroid N is totally free if neither N nor its dual has a fixed element whose deletion is a series extension of a 3-connected matroid. The significance of such matroids derives from the theorem, established here, that the number of inequivalent representations of a 3-connected matroid M over a finite field F is bounded above by the maximum, over all totally free minors N of M, of the number of inequivalent F-representations of N. It is proved that, within a class of matroids that is closed under minors and duality, the totally free matroids can be found by an inductive search. Such a search is employed to show that, for all r ≥ 4, there are unique and easily described rank-r quaternary and quinternary matroids, the first being the free spike. Finally, Seymour\u27s Splitter Theorem is extended by showing that the sequence of 3-connected matroids from a matroid M to a minor N, whose existence is guaranteed by the theorem, may be chosen so that all deletions and contractions of fixed and cofixed elements occur in the initial segment of the sequence. © 2001 Elsevier Science

    Representative set statements for delta-matroids and the Mader delta-matroid

    Full text link
    We present representative sets-style statements for linear delta-matroids, which are set systems that generalize matroids, with important connections to matching theory and graph embeddings. Furthermore, our proof uses a new approach of sieving polynomial families, which generalizes the linear algebra approach of the representative sets lemma to a setting of bounded-degree polynomials. The representative sets statements for linear delta-matroids then follow by analyzing the Pfaffian of the skew-symmetric matrix representing the delta-matroid. Applying the same framework to the determinant instead of the Pfaffian recovers the representative sets lemma for linear matroids. Altogether, this significantly extends the toolbox available for kernelization. As an application, we show an exact sparsification result for Mader networks: Let G=(V,E)G=(V,E) be a graph and T\mathcal{T} a partition of a set of terminals T⊆V(G)T \subseteq V(G), ∣T∣=k|T|=k. A T\mathcal{T}-path in GG is a path with endpoints in distinct parts of T\mathcal{T} and internal vertices disjoint from TT. In polynomial time, we can derive a graph G′=(V′,E′)G'=(V',E') with T⊆V(G′)T \subseteq V(G'), such that for every subset S⊆TS \subseteq T there is a packing of T\mathcal{T}-paths with endpoints SS in GG if and only if there is one in G′G', and ∣V(G′)∣=O(k3)|V(G')|=O(k^3). This generalizes the (undirected version of the) cut-covering lemma, which corresponds to the case that T\mathcal{T} contains only two blocks. To prove the Mader network sparsification result, we furthermore define the class of Mader delta-matroids, and show that they have linear representations. This should be of independent interest

    Inequivalent Representations of Matroids over Prime Fields

    Full text link
    It is proved that for each prime field GF(p)GF(p), there is an integer f(p)f(p) such that a 4-connected matroid has at most f(p)f(p) inequivalent representations over GF(p)GF(p). We also prove a stronger theorem that obtains the same conclusion for matroids satisfying a connectivity condition, intermediate between 3-connectivity and 4-connectivity that we term "kk-coherence". We obtain a variety of other results on inequivalent representations including the following curious one. For a prime power qq, let R(q){\mathcal R}(q) denote the set of matroids representable over all fields with at least qq elements. Then there are infinitely many Mersenne primes if and only if, for each prime power qq, there is an integer mqm_q such that a 3-connected member of R(q){\mathcal R}(q) has at most mqm_q inequivalent GF(7)-representations. The theorems on inequivalent representations of matroids are consequences of structural results that do not rely on representability. The bulk of this paper is devoted to proving such results

    The Linkage Problem for Group-labelled Graphs

    Get PDF
    This thesis aims to extend some of the results of the Graph Minors Project of Robertson and Seymour to "group-labelled graphs". Let Γ\Gamma be a group. A Γ\Gamma-labelled graph is an oriented graph with its edges labelled from Γ\Gamma, and is thus a generalization of a signed graph. Our primary result is a generalization of the main result from Graph Minors XIII. For any finite abelian group Γ\Gamma, and any fixed Γ\Gamma-labelled graph HH, we present a polynomial-time algorithm that determines if an input Γ\Gamma-labelled graph GG has an HH-minor. The correctness of our algorithm relies on much of the machinery developed throughout the graph minors papers. We therefore hope it can serve as a reasonable introduction to the subject. Remarkably, Robertson and Seymour also prove that for any sequence G1,G2,…G_1, G_2, \dots of graphs, there exist indices i<ji<j such that GiG_i is isomorphic to a minor of GjG_j. Geelen, Gerards and Whittle recently announced a proof of the analogous result for Γ\Gamma-labelled graphs, for Γ\Gamma finite abelian. Together with the main result of this thesis, this implies that membership in any minor closed class of Γ\Gamma-labelled graphs can be decided in polynomial-time. This also has some implications for well-quasi-ordering certain classes of matroids, which we discuss
    corecore