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Abstract

This thesis aims to extend some of the results of the Graph Minors Project
of Robertson and Seymour to “group-labelled graphs”. Let Γ be a group.
A Γ-labelled graph is an oriented graph with its edges labelled from Γ, and
is thus a generalization of a signed graph.

Our primary result is a generalization of the main result from Graph
Minors XIII. For any finite abelian group Γ, and any fixed Γ-labelled graph
H , we present a polynomial-time algorithm that determines if an input
Γ-labelled graph G has an H-minor. The correctness of our algorithm
relies on much of the machinery developed throughout the graph minors
papers. We therefore hope it can serve as a reasonable introduction to the
subject.

Remarkably, Robertson and Seymour also prove that for any sequence
G1, G2, . . . of graphs, there exist indices i < j such that Gi is isomorphic
to a minor of Gj . Geelen, Gerards and Whittle recently announced a proof
of the analogous result for Γ-labelled graphs, for Γ finite abelian. Together
with the main result of this thesis, this implies that membership in any
minor closed class of Γ-labelled graphs can be decided in polynomial-time.
This also has some implications for well-quasi-ordering certain classes of
matroids, which we discuss.
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Chapter 1

Introduction

1.1 History and Motivation

A graph H is a minor of a graph G if H can be obtained from a subgraph of
G by contracting edges. We say that G has an H-minor, if H is isomorphic
to a minor of G. This induces a natural ordering ≤m on the class of all
graphs. That is, H ≤m G if and only if G has an H-minor. It turns out
that many interesting graph properties are closed under this ordering, the
canonical example being planarity.

The principal aim of this thesis is to extend some of the results of
the Graph Minors Project of Robertson and Seymour to “group-labelled
graphs”.

The Graph Minors Project is widely considered to be the deepest
and most important work in graph theory to date. Beginning in 1983,
the project has spanned 23 papers. The ingenious methods used to
construct and manipulate minors is a tour de force of prescient, creative,
and disciplined reasoning.

The two main results of the project (as far as we are concerned) appear
in Graph Minors XIII [40] and Graph Minors XX [42]. In Graph Minors XX,
Wagner’s Conjecture is positively settled. That is, Robertson and Seymour
prove that (finite) graphs are well-quasi-ordered under taking minors.

Theorem 1.1.1 (Graph Minors Theorem). For any sequence G1, G2, . . . of
graphs, there exist indices i < j such that Gi is isomorphic to a minor of Gj .

Let G be a minor-closed class of graphs. A graph F is a forbidden
minor for G, if F /∈ G, but every proper minor of F is in G. In this
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language, Theorem 1.1.1 asserts that every minor-closed class of graphs
has a finite list of excluded minors. It can thus be viewed as a remarkable
generalization of Kuratowski’s Theorem.

Theorem 1.1.2 (Kuratowski’s Theorem). A graph is planar if and only if it
does not contain a K5- or K3,3-minor.

Let us mention a few other examples of minor-closed families of
graphs.

Example 1.1.3. Let Σ be a surface. Clearly, the class of graphs which
embed in Σ is a minor-closed family.

Therefore, an important corollary of the Graph Minors Theorem is a
generalized Kuratowski theorem for surfaces.

Corollary 1.1.4. For any surface Σ, there is a finite set of graphs, F(Σ), such
that a graph G embeds in Σ if and only if G does not contain an F -minor, for any
F ∈ F(Σ).

Example 1.1.5. A graph G is an apex graph, if there exists v ∈ V (G) such
that G\v is planar. It is easy to check that the class of apex graphs is minor-
closed.

Example 1.1.6. A graph G is knotless if G has an embedding in R3 such that
every cycle of G embeds as the unknot. That is, every cycle of G bounds
a disk in R3. By performing edge contractions of G in R3, it is easy to see
that the class of knotless graph is a minor-closed family.

The main result in Graph Minors XIII is an algorithmic counterpart to
the Graph Minors Theorem. It asserts that for any fixed graph H , we can
test if a graph has an H-minor in polynomial-time.

Theorem 1.1.7. For any graph H , there is a polynomial-time algorithm which
determines if an input graph G contains an H-minor.

We remark that the running time of the algorithm is O(|V (G)|3), but
the constants involved are enormous.

Together, Theorem 1.1.1 and Theorem 1.1.7 imply that there exists an
algorithm to test membership in any minor-closed class of graphs in cubic-
time. In particular, there is a cubic-time algorithm that tests if a graph is
knotless.
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Corollary 1.1.8. There exists a cubic-time algorithm, which given any input
graph G, correctly determines if G is knotless.

This latest corollary aptly illustrates the combined utility of the Graph
Minors Theorem and Theorem 1.1.7. Previously, there was no known
algorithm (let alone a polynomial-time one) for testing knotlessness.

We now introduce group-labelled graphs, but we postpone definitions
until the next section. A Γ-labelled graph is an oriented graph with its edges
labelled from a group Γ. In the literature they are also known as gain graphs
or voltage graphs. A Z2-labelled graph is called a signed graph.

Group-labelled graphs are a useful tool for constructing embeddings
of graphs on surfaces. For example, they were utilized in the solution to
Heawood’s famous map-colouring problem by Ringel and Youngs [34].
Also, Zaslavsky [56, 57] showed that group-labelled graphs are connected
to several interesting classes of matroids. We will discuss this further in
Chapter 2.

In Section 1.3, we define a natural minor relation on the class of Γ-
labelled graphs which reduces to the usual minor relation on graphs when
Γ is trivial. With respect to this ordering, Geelen, Gerards and Whittle [17]
recently announced that Theorem 1.1.1 does indeed extend to Γ-labelled
graphs, for Γ finite abelian.

Theorem 1.1.9. Let Γ be a finite abelian group. For any sequence G1, G2, . . . of
Γ-labelled graphs, there exist indices i < j such that Gi is isomorphic to a minor
of Gj .

The main result of this thesis is the extension of Theorem 1.1.7 to Γ-
labelled graphs, for Γ finite abelian.

Theorem 1.1.10. For any finite abelian group Γ and any fixed Γ-labelled graph
H , there is a polynomial-time algorithm which determines if an input Γ-labelled
graph G contains an H-minor.

The correctness of our algorithm relies on much of the machinery
developed throughout the graph minors papers. Our aim is to present
these results in as clear and unified a manner as possible. Indeed, it is an
ancillary goal of ours that this thesis may serve as a suitable introduction
to the subject.

We end our brief introduction by mentioning that Theorem 1.1.9 and
Theorem 1.1.10 fit nicely into the matroid minors project of Geelen,
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Gerards, and Whittle. It turns out that group-labelled graphs are quite
fundamental in understanding the structure of matroids representable
over a fixed finite field F. See [15] for a survey of this work.

1.2 Group-labelled Graphs

Let Γ be a group. A Γ-labelled graph is an oriented graph together with
edge-labels from Γ. To be precise, a Γ-labelled graph G has a vertex set
V (G) and an edge set E(G). Each e ∈ E(G) is assigned a head in V (G), a tail
in V (G) and a group-label in Γ. We denote these as headG(e), tailG(e) and
γG(e) respectively. The head and tail of an edge are its ends. Let H and G
be Γ-labelled graphs. We say that H is a subgraph of G if V (H) ⊆ V (G),
E(H) ⊆ E(G), and each edge in H has the same head, tail, and group-
value as it does in G. We say that G and H are isomorphic, if there is a
bijection f : V (G) ∪ E(G) → V (H) ∪ E(H) such that for all e ∈ E(G),

• f(headG(e)) = headH(f(e)),

• f(tailG(e)) = tailH(f(e)), and

• γG(e) = γH(f(e)).

We let ~G be the directed graph obtained from G by ignoring the group-
labels, and G̃ be the graph obtained from ~G by ignoring the directions of
edges. Since Γ will almost always be abelian, we use additive notation
for the group operation. A walk in G is a walk in G̃. Let e ∈ E(G) and
v ∈ V (G) be an end of e. Define

γG(e, v) :=

{
γG(e) if v = headG(e) ,

−γG(e) otherwise.

Let W = (v0, e1, v1, e2, v2, e3, . . . , ek, vk) be a walk in G. The vertices of
W are v0, . . . , vk, and the edges of W are e1, . . . , ek. The group-value, or just
value, of W is

γG(W ) := γG(e1, v1) + · · ·+ γG(ek, vk).

The length of W is |W | := k. W is closed if v0 = vk. W is a cycle if W
is closed and e1, . . . , ek, v1, . . . , vk are distinct. W is a path if v0, v1, . . . , vk

are distinct. We abuse notation and call v0 and vk the ends of W , with
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tailG(W ) := v0 and headG(W ) := vk. Two walks are disjoint if they do not
share any vertices. A set of walks W is disjoint if any two members of W
are disjoint.

Let P be a path and let a and b be vertices of P with a occurring before
b. We let aP denote the maximal subpath of P starting from a. We let Pb
denote the maximal subpath of P ending at b. Finally, we let aPb denote
the subpath of P starting at a and ending at b.

Let e ∈ E(G). We say that G′ is obtained from G by flipping e if
G′ = (G\e) ∪ f , where headG′(f) = tailG(e), tailG′(f) = headG(e), and
γG′(f) = −γG(e). Note that flipping an edge does not change the group-
value of any walk.

A Z2-labelled graph will be called a signed-graph. Note that the group-
value of any path in a signed-graph only depends on the labels of the
edges in the path and not on the orientation of those edges.

Next we define an equivalence relation on the class of Γ-labelled
graphs. Let v ∈ V (G) and α ∈ Γ. Let G′ be the Γ-labelled graph obtained
from G by adding α to the label of every edge with head v and subtracting
α from the label of every edge with tail v. Note that this operation does
not change the group-value of any cycle. We say that G′ is obtained from
G by shifting by α at v. A Γ-labelled graph is shifting-equivalent to G if it can
be obtained from G via any sequence of shifting operations.

We will need the following elementary lemma.

Lemma 1.2.1. If G is a Γ-labelled graph and H̃ is an acyclic subgraph of G̃, then
we can perform shifts so that all edges of H become zero-labelled.

Proof. It suffices to prove the result when H is a tree. It is helpful to regard
H as a rooted tree with root vertex r. We first shift at the neighbours of r in
H so that all the edges in H incident to r are zero-labelled. We then regard
the neighbours of r in H as new roots and proceed up the tree.

Let Γ′ be a subgroup of Γ. We say that a Γ-labelled graph G is Γ’-
balanced if γG(C) ∈ Γ′, for all cycles C of G.

Lemma 1.2.2. If a Γ-labelled graph is Γ′-balanced, then we may perform shifts so
that every edge has its group-label in Γ′.
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Proof. According to Lemma 1.2.1, we can shift so that a spanning forest of
G is zero-labelled. Since G is Γ′-balanced, it follows that each non-forest
edge has its group-label in Γ′.

Example 1.2.3. Let Γ be a finite group and let n ∈ N. We define K(Γ, n) to
be the Γ-labelled graph with vertex set [n] and edge set

{(i, j, γ) : i, j ∈ [n], i 6= j, γ ∈ Γ}.

The tail, head, and group-label of (i, j, γ) are i, j, and γ respectively. We
call K(Γ, n) a Γ-labelled clique. Note that K(Γ, n) has 2|Γ|

(
n
2

)
edges.

1.3 Group-labelled Minors

Let G be a Γ-labelled graph and let e ∈ E(G). The graph G\e, is the
subgraph of G with vertex set V (G) and edge set E(G)\{e}. We say that
G\e is obtained from G by deleting e. If γG(e) = 0, we define the operation
of contracting e as follows. Let e have ends u and v. The Γ-labelled graph
G/e has edge set E(G)\{e} and vertex set (V (G)\{u, v}) ∪ {xe}. For all
f ∈ E(G/e) we define γG/e(f) := γG(f). Lastly, we set

headG/e(f) :=

{
headG(f) if headG(f) /∈ {u, v} ,

xe otherwise,

and similarly for tailG/e(f). We say that G/e is obtained from G by
contracting e.

Let H and G be Γ-labelled graphs. We say H is a minor of G, if H can be
obtained from G via any sequence of the following operations:

• Shifting at a vertex,

• Deleting an edge,

• Contracting a zero-labelled edge,

• Deleting an isolated vertex.
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We also say G has H as a minor in such a case. On the other hand, G has
an H-minor if G has H ′ as a minor, where H ′ is isomorphic to H . We write
H ≤m G, if G has an H-minor.

Problem 1.3.1. Let H be a Γ-labelled graph. The H-minor testing problem is
to determine if an input Γ-labelled graph G has an H-minor.

The next easy lemma provides a more global view of minors. We omit
the proof.

Lemma 1.3.2. Let H and G be Γ-labelled graphs with H a minor of G. Then
there is a Γ-labelled graph G′ (shifting-equivalent to G), and vertex-disjoint trees
{Tv : v ∈ V (H)} of G′ such that

• γG′(e) = 0 for all v ∈ V (H) and e ∈ E(Tv),

• headG′(e) ∈ V (TheadH(e)) and tailG′(e) ∈ V (TtailH(e)) for each e ∈ E(H),
and

• γG′(e) = γH(e), for each e ∈ E(H).

Remark 1.3.3. Let H and G be Γ-labelled graphs, with H a minor of G.
Lemma 1.3.2 implies that G is shifting equivalent to a graph G′ such that
H can be obtained from G′ just by deleting edges, contracting zero-labelled
edges, and deleting isolated vertices. Furthermore, the order in which we
delete or contract edges in G′ is irrelevant.

Definition 1.3.4. Let H and G be Γ-labelled graphs with H a minor of
G. Let G′ and {Tv : v ∈ V (H)} be as given in the previous lemma. For
X ⊆ V (G), we say that we can contract H onto X if |X| = |V (H)|, and
X ∩ V (Tv) 6= ∅, for each v ∈ V (H).

Let H and G be Γ-labelled graphs. We say that G has a topological
H-minor if there is an injective map f : V (H) → V (G) and a family
P := {Pe : e ∈ E(H)} of internally disjoint paths in G such that for each
e ∈ E(H) there exists a path Pe in G such that headG(Pe) = f(headH(e)),
tailG(Pe) = f(tailH(e)), and γG(Pe) = γH(e) for all e ∈ E(H). We call the
pair (f,P) a model of H in G. If G has a topological H-minor, we write
H ≤t G. Note that if H ≤t G, then H ≤t G′, where G′ is any Γ-labelled
graph obtained from G by shifting at vertices of G that are not in f(V (H)).
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Problem 1.3.5. Let H be a Γ-labelled graph. The topological H-minor testing
problem is to determine if an input Γ-labelled graph G has a topological
H-minor.

We omit the easy proof of the following lemma.

Lemma 1.3.6. For any Γ-labelled graph H , there is a finite set FH of Γ-labelled
graphs, such that H ≤m G if and only if F ≤t G for some F ∈ FH .

We remark that for a fixed Γ-labelled graph H , it is straightforward to
construct FH .

1.4 Linkages

We now describe the fundamental problem we are interested in. Let G
be a graph. A pattern Π in G is a collection of disjoint 2-sets of V (G).
Let Π := {{si, ti} : i ∈ [k]} be a pattern in G. A Π-linkage in G is a
collection P := {P1, . . . , Pk} of disjoint paths in G, such that for all i ∈ [k],
ends(Pi) = {si, ti}. We refer to P as a realization of Π. The size of a pattern
Π is simply |Π|. We call Π a k-pattern if it has size at most k.

Problem 1.4.1. The k-linkage problem is given a graph G and a k-pattern Π
of G, to determine whether G has a Π-linkage.

Knuth (cf. Karp [24]) showed that if k is part of the input then the k-
linkage problem is NP-complete.

We mention that for directed graphs, the natural corresponding
problem is NP-complete, even if k is fixed. In fact, Even, Itai, and
Shamir [12, 13] showed that the 2-linkage problem for directed graphs is
NP-complete. Henceforth, we cease mentioning directed graphs.

A graph G is k-linked if every k-pattern in G has a realization. Evidently,
if G is k-linked, then G is k-connected. On the other hand, Larman and
Mani [27] and Jung [22] were the first to show that all graphs of sufficiently
high connectivity are k-linked.

Theorem 1.4.2. For each k ∈ N, there exists f(k) ∈ N such that every f(k)-
connected graph is k-linked.

This function has since been substantially improved. Currently, the
best bound is due to Thomas and Wollan [53].
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Theorem 1.4.3. If G is a 2k-connected graph with at least 5k|V (G)| edges, then
G is k-linked.

In particular, this implies that every 10k-connected graph is k-linked.
The first value of k for which the k-linkage problem is interesting

is k = 2. In fact, there is a beautiful characterization of the 2-linkage
problem for graphs, that we would be remiss not to mention. It asserts
that in 4-connected graphs, the only obstruction to a 2-linkage problem is
topological.

Theorem 1.4.4 (Seymour [48], Shiloach [49], Thomassen [54]). Let G be a
4-connected graph and let Π := {{s1, t1}, {s2, t2}} be a 2-pattern in G. Then G
does not have a Π-linkage, if and only if G has an embedding in the plane such
that s1, s2, t1, t2 all appear on the boundary of the outer face of G (in that clockwise
order).

Using any planarity testing algorithm as a subroutine, for example
Boyer and Myrvold [3], it is easy to obtain a polynomial-time algorithm
that decides the 2-linkage problem.

Amazingly, Robertson and Seymour generalize this result to any fixed
k. The main result of Graph Minors XIII [40] is that there is a polynomial-
time algorithm that solves the k-linkage problem.

Theorem 1.4.5. Fix k ∈ N. For any graph G and any k-pattern Π in G, there is
a polynomial-time algorithm that determines if G has a Π-linkage.

As previously noted, the proof of Theorem 1.4.5 relies on much of
the theory developed throughout the graph minors papers. Indeed, the
correctness of the algorithm hinges upon a lemma whose proof is deferred
until Graph Minors XXI [43] and Graph Minors XXII [44].

We will shortly show that Theorem 1.4.5 also yields an algorithm to
test for minors. However, it is possible to attack the minor-testing problem
directly. In fact, Graph Minors XIII [40] solves a generalization of both the
k-linkage problem and the minor-testing problem, that runs in O(|V (G)|3)-
time. Kawarabayashi, Li, and Reed [25] recently announced an improved
O(|V (G)| log |V (G)|)-time algorithm for minor-testing.

Remark 1.4.6. What we are calling the k-linkage problem for graphs is
usually called the k-disjoint paths problem. Typically, the k-linkage problem
refers to the topological H-minor testing problem, where H has at most
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k edges, and maximum degree 2. The two problems are equivalent, but
we prefer to use the term linkage since the generalization to group-labelled
graphs is less verbose.

Let us turn our attention to group-labelled graphs. Let G be a Γ-
labelled graph. We will use much of the same terminology and notation
that we introduced for graphs. For example, a pattern Π in G is any set of
triples of the form (x, y, γ), where x and y are distinct vertices of G, γ ∈ Γ,
and no vertex of G appears in more than one triple of Π.

Let Π = {(si, ti, γi) : i ∈ [k]} be a pattern. The vertex set of Π is the
set V (Π) := {s1, t1, . . . , sk, tk}. The size of Π is k. A Π-linkage in G is a
set P := {Pi : i ∈ [k]} of disjoint paths in G such that for all i ∈ [k],
tailG(Pi) = si, headG(Pi) = ti and γG(Pi) = γi.

Again, we will call P a realization of Π. Conversely, if P is a realization
of Π, we define the pattern of P to be Π(P) := Π. The vertices and edges of
P are defined in the obvious way. Namely,

V (P) := {v ∈ V (G) : v ∈ V (P ) for some P ∈ P},

E(P) := {e ∈ E(G) : e ∈ E(P ) for some P ∈ P}.
The subgraph

⋃
P of G will often just be denoted by P , if no confusion is

likely to arise. If a pattern Π is of size at most k, we call Π a k-pattern.
Let G be a Γ-labelled graph, Π be a pattern in G and α ∈ Γ. Let G′

be the Γ-labelled graph obtained from G by shifting by α at x. Clearly, if
x /∈ V (Π), then G has a Π-linkage if and only if G′ does. Otherwise, define

Π′ :=

{
(Π\{(x, y, γ)}) ∪ {(x, y, γ − α)}, if (x, y, γ) ∈ Π

(Π\{(y, x, γ)}) ∪ {(y, x, γ + α)}, if (y, x, γ) ∈ Π.

Note that G has a Π-linkage if and only if G′ has a Π′-linkage.
We will make a few more rudimentary observations. If e ∈ E(G), and

G\e has a Π-linkage, then obviously G has a Π-linkage. On the other hand,
consider G/e. If e is zero-labelled and at most one end of e is in V (Π),
then we can naturally regard Π as a pattern in G/e. With this convention,
if G/e has a Π-linkage, then G has a Π-linkage. If both ends of e are in
V (Π), then by convention G/e does not have a Π-linkage. Similarly, if we
delete a vertex in V (Π) then the resulting graph does not have a Π-linkage.
Therefore, if Π is a pattern, then the class of Γ-labelled graphs that do not
have a Π-linkage is minor-closed.
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We are interested in the following algorithmic problem. Fix a group Γ,
and k ∈ N.

Problem 1.4.7. The (Γ, k)-linkage problem is given a Γ-labelled graph G and
a k-pattern Π of G, to determine if G has a Π-linkage.

This of course is the natural generalization of Problem 1.4.1. To
avoid complex complexity issues we assume that Γ is given to us via its
multiplication table. Let us consider some examples.

The simplest example is of course the (Γ, 1)-linkage problem. That is,
let G be a Γ-labelled graph and let s, t ∈ V (G), γ ∈ Γ. Does there exist a
path P in G from s to t with γ(P ) = γ? For graphs, this problem is trivial,
but for group-labelled graphs we will show that it is deceptively difficult.
For example, as a special case it includes the 2-linkage problem for graphs.
To see this let G be a graph and let Π := {{s1, t1}, {s2, t2}} be a 2-pattern in
G. Let G′ be any Z3-labelled graph with G̃′ = G and such that γG′(e) = 0 for
all e ∈ E(G′). Add a new edge f to G′ with tailG′(f) = t1, headG′(f) = s2,
and γG′(f) = 1 ∈ Z3. Finally, consider the 1-pattern Π′ := {(s1, t2, 1)} in
G′∪{f}. Clearly, G has a Π-linkage if and only if G′∪{f} has a Π′-linkage.

Bert Gerards observed that we can generalize the previous example as
follows. If we let Γ := Sk, the symmetric group on [k], then it is easy to
show that the (Γ, 1)-linkage problem in Sk-labelled graphs contains the
k-linkage problem in graphs. To see this let G be a graph and Π :=
{{si, ti}, i ∈ [k] } be a k-pattern in G. We let id denote the identity of
Sk, and use the convention that group elements are multiplied from left
to right. Now, let G′ be any Sk-labelled graph such that G̃′ = G and
γG′(e) = id for all e ∈ E(G′). For each i ∈ [k − 1], add a new edge fi

to G′ such that tailG′(fi) = ti, headG′(fi) = si+1 and γG′(fi) = (i i + 1) ∈ Sk.
Let γ := (12 . . . k) ∈ Sk, and consider the 1-pattern Π′ := {(s1, tk, γ)} in
G′ ∪{fi : i ∈ [k]}. Clearly, G has a Π-linkage if and only if G′ ∪{fi : i ∈ [k]}
has a Π′-linkage. Of course, this example crucially exploits the fact that Sk

is non-abelian.
The Π-linkage problem in signed graphs also includes the problem

of finding disjoint paths in graphs with specified parities. Let G be a
graph and let Π := {{si, ti} : i ∈ [k]} be a pattern in G. Further, let
{pi ∈ Z2 : i ∈ [k]}, be a specified set of parities. We may ask if there is
a realization P := {P1, . . . , Pk} of Π in G, with the additional property that
|Pi| ≡ pi (mod 2), for each i ∈ [k]. Let G′ be a Z2-labelled graph such that

11



G̃′ = G and γG′(e) = 1 ∈ Z2 for all e ∈ E(G). Let

Π′ := {(si, ti, pi) : i ∈ [k]},

be the pattern in G′ induced by Π and {pi ∈ Z2 : i ∈ [k]}. Clearly, the
required paths exist in G if and only if G′ has a Π′-linkage.

The main result of this thesis is that for any fixed k ∈ N and any finite
abelian group Γ, there is a polynomial-time algorithm that decides the
(Γ, k)-linkage problem.

Theorem 1.4.8. Fix k ∈ N and Γ a finite abelian group. If Π is a k-pattern of a
Γ-labelled graph G, then there is a polynomial-time algorithm that determines if
G has a Π-linkage.

As promised, we now show that Theorem 1.4.8 also yields polynomial-
time algorithms for both the topological minor-testing problem and the
minor-testing problem for Γ-labelled graphs.

Theorem 1.4.9. For any finite abelian group Γ, and any fixed Γ-labelled graph
H , there is a polynomial-time algorithm that determines if G has a topological
H-minor, for any input Γ-labelled graph G.

Proof. We first define the operation of duplicating vertices. Let G be a Γ-
labelled graph, let v ∈ V (G), and let E(v) be the edges of G incident to
v. Let v′ be a copy of v and E ′(v) := {e′ : e ∈ E(v)} be a copy of E(v).
Let G′ be the Γ-labelled graph with vertex set V (G) ∪ {v′}, and edge set
E(G) ∪ E ′(v), such that G′\v′ = G and G′\v is isomorphic to G in the
natural way. Namely, the function

f : V (G) ∪ E(G) → V (G′\{v}) ∪ E(G′\v), such that

f(α) :=

{
a′, if a ∈ {v} ∪ E(v)

a, otherwise

is an isomorphism from G to G′\v. We say that G′ is obtained from G by
duplicating v.

Now let H be a fixed Γ-labelled graph, and G be an input Γ-labelled
graph. Let f : V (H) → V (G) be an injection and consider x ∈ V (H). If
degH(x) = n, then we duplicate f(x) (n− 1 times) in G. Denote the copies
of x := x1 as x2, . . . , xn. Repeat this for all vertices of H and let G′ be the
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resulting graph. Now for each e = (u, v, γ) ∈ E(H) it is easy to choose
indices i ≤ degH(u) and j ≤ degH(v) such that the pattern

Π′ := {(ui, vj, γ) : (u, v, γ) ∈ E(H)}

has size exactly E(H). Moreover, it is easy to see that there is a model
(f ′,P) of H in G with f ′ = f if and only if G′ has a Π′-linkage. Enumerating
over all possible choices of f , and then applying Theorem 1.4.8 gives the
desired result.

Theorem 1.4.8 also proves Theorem 1.1.10, which was our main result
from the Introduction.

Theorem 1.1.10. Let Γ be a finite abelian group, and let H be a fixed Γ-labelled
graph. There is a polynomial-time algorithm that tests if H ≤m G for any input
Γ-labelled graph G.

Proof. Construct the set FH given in Lemma 1.3.6 and then apply
Theorem 1.4.9.

We thus focus all our efforts in proving Theorem 1.4.8.

Remark 1.4.10. Let H be a Γ-labelled graph, with Γ finite abelian. We
remark that in the proof of Theorem 1.1.10 as a corollary to Theorem 1.4.8,
the complexity for H-minor testing is O(|V (G)|α), where α depends on H .
In a subsequent paper, we will show how to generalize the techniques in
this thesis to directly obtain an algorithm for H-minor testing, that runs in
O(|V (G)|β)-time, where β does not depend on H .

Remark 1.4.11. Let G be a Γ-labelled graph, Π be a pattern in G, and G′ be
a Γ-labelled graph obtained from G by flipping an edge. Note that G has
a Π-linkage if and only if G′ does. So, henceforth we will not distinguish
Γ-labelled graphs that are equivalent up to flipping edges.

13



1.5 Overview of the Algorithm

In this section we give an informal sketch of the algorithm, to better
motivate the reader for some of the technical results that follow.
Definitions of unknown terms will be given later.

Let Γ be a finite abelian group, G be a Γ-labelled graph, and Π be a
k-pattern in G. We wish to determine whether G has a Π-linkage.

We begin by testing if G has small branch-width. If so, then we can solve
the problem directly via a theorem from logic, and Chapter 3 describes
how to do so.

In the case that G has huge branch-width, the interesting idea is that we
do not try to solve the problem directly. Rather, we find a vertex whose
deletion does not affect the output. That is, we say that a vertex v ∈ V (G)
is redundant for Π provided that G has a Π-linkage if and only if G\v has
a Π-linkage. The algorithm finds a redundant vertex, deletes it, and then
recurses. Eventually, we reduce to the small branch-width case, where we
can solve the problem directly.

Much of our work is therefore dedicated to finding redundant vertices
and certifying that they are indeed redundant. This will require various
results from graph structure theory. To begin with, since we are in the case
that G has huge branch-width, the Grid Theorem (Theorem 5.1.2), implies
that the underlying graph G̃ has a large grid-minor. We can find such a
grid J efficiently, and are interested in how the rest of G attaches to J .

We attempt to use the large grid-minor J to find a big clique-minor K

in G̃. We show that we can use such a K to construct a K({0}, m)-minor
in G, where m is still big. We then try to use this K({0}, m)-minor to build
a K(Γ′, m′)-minor, where Γ′ is a subgroup of Γ properly containing {0},
and m′ is still big. We then recurse. If we are lucky, we are able to find a
K(Γ, n)-minor, where n is still big. Big K(Γ, n)-minors play the same role
for Γ-labelled graphs as big clique-minors do for graphs. That is, for Γ-
labelled graphs, it is relatively straightforward to find a redundant vertex
within a big Γ-labelled clique-minor. The details are given in Chapter 6. If
we cannot find a big clique-minor labelled over the full group Γ, then we
use a structure theorem for Γ-labelled graphs to find a redundant vertex.
This is also handled in Chapter 6.

The remaining case is if our large grid-minor J does not control a
big clique-minor K in G̃. In this instance, we use the Graph Minors
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Structure Theorem (Theorem 5.3.1), which asserts that G̃ essentially embeds
in a surface. Chapter 8 describes how to find a redundant vertex when G is
truly embedded in a surface. Chapter 9 sorts out the technical difficulties
associated with the essential embedding, namely the vortices. The idea is to
remove the vortices at the cost of introducing a few more linkage vertices.
We can then apply the results from Chapter 8 to find a suitable redundant
vertex.
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Chapter 2

Matroids

Before delving into the details of our algorithm, we take a brief foray
into matroid theory. The main goal is to show that group-labelled graphs
encode two natural classes of matroids. For further connections between
group-labelled graphs and matroids, see Zaslavsky [56, 57]. Also, many
of our later results will be phrased in terms of matroids, so this chapter
is quite pertinent. However, our treatment of matroids is rather terse,
focusing mainly on their relationship to group-labelled graphs. For a more
thorough introduction to matroid theory, please read Oxley’s excellent
introductory text [30].

2.1 Basics

A matroid M consists of a finite ground set E(M) and a rank function
rM : 2E(M) → Z satisfying

(R0) 0 ≤ rM(X) ≤ |X|, for all X ⊆ E(M)

(R1) rM(X) ≤ rM(Y ), for all X ⊆ Y ⊆ E(M)

(R2) rM(X) + rM(Y ) ≥ rM(X ∩ Y ) + rM(X ∪ Y ), for all X, Y ⊆ E(M).

We now give some examples of matroids.

Example 2.1.1. Let F be a field, let R and E be finite sets, and let A ∈ FR×E .
For X ⊆ E define r(X) to be the rank of the submatrix of A consisting of
the columns indexed by X . It is easy to verify that r is the rank function of
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a matroid on E. This matroid, denoted MF(A), is called the column matroid
of A.

A matroid M is F-representable if M = MF(A) for some A. We say
that M is binary if it is representable over the binary field F2, ternary if
it representable over F3, and regular if it is representable over every field.

Let M be a matroid. A set X ⊆ E(M) is independent if rM(X) = |X|,
and is dependent otherwise. Bases are maximal independent sets. Circuits
are minimal dependent sets. The closure of X is the set

clM(X) := {x ∈ E(M) : rM(X ∪ {x}) = rM(X)}.

A flat is a set which is equal to its closure.

Example 2.1.2. Let G = (V, E) be a graph. It is easy to check that the
collection of edge sets of cycles in G define the circuits of a matroid on
E. This matroid, denoted M(G), is the cycle matroid of G. A matroid M is
graphic if M = M(G) for some graph G.

We remark that it is not too difficult to show that all graphic matroids
are regular.

Example 2.1.3. Let k and n be non-negative integers with k ≤ n. We let
Uk,n be the matroid whose ground set is [n] and whose independent sets
are all subsets of [n] of size at most k. Such a matroid is called a uniform
matroid.

2.2 Matroid Minors

Let M be a matroid. If D and C are disjoint subsets of E(M), then we
define a function rM\D/C on E(M)\(D ∪ C) such that

rM\D/C(X) := rM(X ∪ C)− rM(C)

for X ⊆ E(M)\(D ∪ C).
It is easy to check that rM\D/C is the rank function of a matroid on

E(M)\(C ∪D). We denote this matroid as M\D/C, and say that M\D/C
is a minor of M obtained by deleting D and contracting C. Let M and N be
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matroids. We say that M has an N -minor if N is isomorphic to a minor of
M . We write N ≤m M if M has an N -minor.

A class of matroids M is minor-closed if N ∈M whenever M ∈M and
N ≤m M . Naturally, this definition of minors agrees with the usual minor
relation on graphs.

Lemma 2.2.1. Let G be a graph and let e ∈ E(G). Then M(G)\e = M(G\e)
and M(G)/e = M(G/e).

It follows that the class of graphic matroids is a minor-closed family.
For any (possibly infinite) field F, the class of F-representable matroids is
also a minor-closed family.

Lemma 2.2.2. If M is an F-representable matroid and e ∈ E(M), then both M\e
and M/e are F-representable.

Proof. Suppose M = MF(A). Evidently, M\e = MF(A\e), where A is
the matrix obtained from A by deleting its eth column. Now if e is the
zero column, then M/e = MF(A\e). If e is not the zero column, then
M/e = MF(A/e), where A/e is the matrix obtained by performing row
operations on A until the eth column becomes [1, 0, . . . , 0]T , and then
deleting the first row and eth column.

Let M be a minor-closed class of matroids. A matroid N is an excluded-
minor for M if N /∈ M, but every proper minor of N is in M. We end
this section by mentioning a beautiful result of Tutte [55] that connects
representability and minors.

Theorem 2.2.3. A matroid is binary if and only if it does not have a U2,4-minor.

That is, up to isomorphism, U2,4 is the only excluded-minor for the class
of binary matroids.

2.3 Dowling Matroids

In this section we define an interesting class of matroids first introduced
by Dowling [8]. We begin by providing some motivation.

Let M be a matroid. Recall that a flat of M is a subset of E(M) which is
equal to its closure. The set of flats of a matroid, ordered under inclusion,
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turns out to be a special type of lattice, called a geometric lattice. On the
other hand, every geometric lattice is the lattice of flats of some (simple)
matroid. So, lattices are another way to view matroids. See [50] for the
appropriate definitions and proofs.

An example of a geometric lattice is the set of partitions of [n], ordered
by refinement, which we denote by Pn. For each finite group Γ and n ∈ N,
Dowling defines a geometric lattice Qn(Γ) of rank n which shares many
properties with Pn+1. In fact, Qn(Γ) = Pn+1 when Γ is trivial. Here we are
only interested in the special case when Γ is the multiplicative group of a
finite field F, in which case Qn(Γ) is F-representable.

Let F be a finite field. A matroid M is a Dowling matroid over F if
M := MF(A), for some A, where A has at most two non-zero entries per
column.

Let F∗ be the multiplicative group of F and let G be a F∗-labelled graph.
We will show that there is a natural Dowling matroid associated with G.
Let A ∈ FV (G)×E(G) be defined as follows. If e is a non-loop edge of G
with headG(e) = u, tailG(e) = v, and γG(e) = γ, then the eth column of A
has precisely two non-zero entries av,e = 1 and au,e = −γ. If e is a loop
with headG(e) = tailG(e) = v and γG(e) = γ, then the eth column of A has
exactly one non-zero entry av,e = 1− γ. We call A the F-incidence matrix of
G. The Dowling matroid of G is DF(G) := MF(A).

Lemma 2.3.1. If G and G′ are shifting equivalent F∗-labelled graphs, then
DF(G) = DF(G

′).

Proof. Let G′ be obtained from G by shifting by α ∈ F∗ at v ∈ V (G). It
suffices to show that DF(G) = DF(G

′). Let A and A′ be the F-incidence
matrices of G and G′ respectively. Let T be the set of edges of G with tail
v. We define B1 to be the matrix obtained from A by multiplying the vth
row of A by α. We let B2 be the matrix obtained from B1 by multiplying
each column in T by α−1. We have

DF(G) = MF(A) = MF(B1) = MF(B2) = MF(A
′) = DF(G

′),

as required.

Lemma 2.3.2. If H and G are F∗-labelled graphs with H a minor of G, then
DF(H) is a minor of DF(G).
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Proof. Let G be an F∗-labelled graph, with F-incidence matrix A. If e ∈
E(G), then evidently G\e has F-incidence matrix A\e, where A\e is the
matrix obtained from A by deleting the eth column. Thus, for all e ∈ E(G),
DF(G\e) = DF(G)\e. If e ∈ E(G) is a loop with γG(e) = 1, then observe
that the eth column of A is a zero-column. Thus, G/e also has F-incidence
matrix A\e, when e is a 1-labelled loop. Finally, if e is a non-loop edge with
headG(e) = u, tailG(e) = v, and γG(e) = 1, then note that the eth column
of A has exactly two non-zero entries av,e = 1 and au,e = −1. Let A/e be
the matrix obtained from A by adding the vth row of A to the uth row of
A, and then deleting the eth column and vth row. It is straightforward to
verify that G/e has F-incidence matrix A/e. Thus, if e is a 1-labelled edge
then DF(G/e) = DF(G)/e.

2.4 Lifting Graphic Matroids

Fix m ∈ N. A matroid M is an m-lift of a graphic matroid if

M = MF(

[
A
B

]
),

for some field F, where B is the signed incidence matrix of a graph, and
A has m rows. In this case we say M is an m-lift of the graphic matroid
MF(B).

Let G be a Fm
2 -labelled graph. We now exhibit a binary matroid L(G)

associated with G such that L(G) is an m-lift of M(G̃). Let B ∈ FV (G)×E(G)
2

be the incidence matrix of G̃. Let A ∈ Fm×E(G)
2 be the matrix whose eth

column is the label of e in G. Define

L(G) = MF2(

[
A
B

]
).

We say that
[
A
B

]
is the Fm

2 -incidence matrix of G, and that L(G) is the lift

matroid of G.

Lemma 2.4.1. If G and G′ are shifting equivalent Fm
2 -labelled graphs, then

L(G) = L(G′).
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Proof. Suppose that G′ is obtained from G by shifting by δ ∈ Fm
2 at

v ∈ V (G). By symmetry it will suffice to consider δ = (1, 0, . . . , 0). Let
C and C ′ be the Fm

2 -incidence matrices of G and G′ respectively. Note that
C ′ is obtained from C by adding the vth row of C to the first row of C.

Lemma 2.4.2. If H and G are Fm
2 -labelled graphs with H a minor of G, then

L(H) is a minor of L(G).

Proof. Let G be a Fm
2 -labelled graph with Fm

2 -incidence matrix C.
Evidently, L(G\e) = L(G)\e, for any e ∈ E(G). If e ∈ E(G) is a zero-
labelled loop, then it is also clear that L(G/e) = L(G\e). Finally if e is a
non-loop edge of G with headG(e) = u, tailG(e) = v, and γG(e) = 0, then
let C ′ be the matrix obtained from C by adding vth row to the uth row and
then deleting the eth column and vth row. Clearly, C ′ is the Fm

2 -incidence
matrix of G/e. Thus, L(G/e) = L(G)/e, as required.

2.5 Well-Quasi-Ordering and Rota’s Conjecture

Let ≤ be a relation on a set X . We say that (X,≤) is a quasi-ordering if it
is reflexive and transitive. For example, the minor-relation on the class
of Γ-labelled graphs is clearly a quasi-ordering, as is the minor relation
on matroids. An antichain is a set of pairwise incomparable elements of
X . A quasi-ordering (X,≤) is a well-quasi-ordering if it contains no infinite
strictly decreasing chain x0 > x1 > . . . , and no infinite antichain. Let G
be the class of all finite graphs, and let ≤m be the minor relation on G. In
this language, the main result of Graph Minors XX [42] asserts that finite
graphs are well-quasi-ordered under taking minors.

Theorem 2.5.1. (G,≤m) is a well-quasi-ordering.

As previously alluded to, this has been generalized to Γ-labelled
graphs, for Γ finite abelian by Geelen, Gerards, and Whittle [17].

Theorem 2.5.2. Let Γ be a finite abelian group, GΓ be the class of all Γ-labelled
graphs, and ≤m be the minor relation on GΓ. Then (GΓ,≤m) is a well-quasi-
ordering.
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Theorem 2.5.2 yields some nice corollaries. For example, by combining
Theorem 2.5.2 with the main result of this thesis, there exists (but we do
not know it) an efficient test for membership in any minor-closed class of
Γ-labelled graphs, for Γ finite abelian.

Corollary 2.5.3. Let Γ be a finite abelian group, and let C be any minor-closed
class of Γ-labelled graphs. There is a polynomial-time algorithm that, given a
Γ-labelled graph G as input, decides if G ∈ C.

Proof. Let C be a minor-closed class of Γ-labelled graphs. By
Theorem 2.5.2, C has a finite set F of excluded minors. By Theorem 1.1.10,
for each F ∈ F there is a polynomial-time algorithm to test if G has an
F -minor. This clearly yields a polynomial-time algorithm to test if G ∈ C,
namely just test if F ≤m G for each F ∈ F .

Theorem 2.5.2 also has consequences for well-quasi-ordering matroids.

Corollary 2.5.4. For any finite field F, the class of Dowling matroids over F is
well-quasi-ordered under the minor relation.

Proof. Immediate from Theorem 2.5.2 and Lemma 2.3.2.

Corollary 2.5.5. For any m ∈ N, the class of binary matroids that are an m-lift
of a graphic matroid is well-quasi-ordered under the minor relation.

Proof. Immediate from Theorem 2.5.2 and Lemma 2.4.2.

We finish this section by stating two outstanding problems in matroid
theory.

Conjecture 2.5.6 (Well-quasi-ordering Conjecture). For any finite field F and
any sequence M1, M2, . . . of F-representable matroids, there exist indices i < j
such that Mi is isomorphic to a minor of Mj .

The second conjecture was made by Rota [45], and is a vast
generalization of Theorem 2.2.3.

Conjecture 2.5.7 (Rota’s Conjecture). For any finite field F, there are, up
to isomorphism, only a finite number of excluded-minors for the class of F-
representable matroids.
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2.6 Matroid Intersection

We end our chapter on matroids with the Matroid Intersection Theorem,
which is a beautiful classical result due to Edmonds [10]. It easily implies
several min-max combinatorial relations, including König’s Theorem, for
example.

Let M1 and M2 be two matroids with the same ground set E. A subset
X of E is a common independent set of M1 and M2 if X is independent in M1

and also in M2. Let X be a common independent subset of M1 and M2 and
let A ⊆ E. Observe that

|X| = |X ∩ A|+ |X ∩ (E\A)| ≤ r1(A) + r2(E\A).

Therefore, the maximum size of a common independent set of M1 and M2

is at most minA⊆E{r1(A) + r2(E\A)}. The Matroid Intersection Theorem
asserts that equality is always attained.

Theorem 2.6.1 (Matroid Intersection Theorem). Let M1 and M2 be two
matroids with the same ground set E. The maximum size of a common
independent set of M1 and M2 is

min
A⊆E

{r1(A) + r2(E\A)}.

Proof. See [10] or [30].

We will require this theorem at a later juncture.
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Chapter 3

Branch-width and Logic

The prime objective of this chapter is to solve the Π-linkage problem over
classes of Γ-labelled graphs of bounded “branch-width”. Our approach
is to encode the Π-linkage problem as a model-checking problem in a
certain logic called “monadic second-order logic”. We thank Stephan
Kreutzer for showing us how to do so. We remark that it is also possible to
solve such instances by standard techniques from dynamic programming.
However, we choose the logic approach since many difficult graph
problems (including NP-hard problems) can be encoded in this way. It
is therefore preferable to handle all such problems in a unified manner,
via Courcelle’s Theorem [5].

3.1 Branch-width

Branch-width is a measure of how tree-like a graph is. We choose to
work with branch-width (instead of tree-width), since branch-width can
be defined in a more general framework which includes both graphs and
matroids as special cases.

Let E be a finite set. A connectivity function on E is a function λ : 2E → Z
satisfying

• λ(X) = λ(E −X), for all X ⊆ E. (Symmetry)

• λ(X)+λ(Y ) ≥ λ(X∪Y )+λ(X∩Y ), for all X,Y ⊆ E. (Submodularity)
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A connectivity system is a pair K = (E, λ), where λ is a connectivity
function on E. We now describe the two connectivity functions that we
are principally interested in.

Example 3.1.1. Let M be a matroid with ground set E and rank function
r. Define λM : 2E → Z via

λM(X) = r(X) + r(E −X)− r(E) + 1.

It is readily checked that KM := (E, λM) is a connectivity system.

Example 3.1.2. Let G be a graph. We define a connectivity function λG on
V (G) ∪ E(G) as follows. Let A ⊆ V (G) ∪ E(G). We abuse notation and let
A also denote the minimal subgraph of G whose edge set is A ∩E(G) and
whose vertex set is A ∩ V (G) together with the ends of edges in A ∩E(G).
We define ΛG(A) to be the set of vertices in both A and (V (G) ∪ E(G))\A
(regarded as subgraphs of G). Finally, we define λG(A) := |ΛG(A)|. It is
easy to check that KG := (V (G) ∪ E(G), λG) is also a connectivity system.

Let K = (E, λ) be a connectivity system. A tree is cubic if each of its
vertices has degree 3 or 1. A branch-decomposition of K is a pair (T, f),
where T is a cubic tree, with set of leaves L, and f is an injective map from
E to L. Let e be an edge of T . Let X be one of the two components of T −e.
We define the width of e, denoted w(e), to be λ(f(X ∩ L)). Note that w(e)
is well defined as λ is symmetric. The width of (T, f), denoted w(T, f), is
the maximum width of its edges. The branch-width of K, denoted bw(K),
is the minimum width of all its branch-decompositions.

The branch-width of a matroid or graph is the branch width of their
associated connectivity system. The branch-width of a group-labelled
graph G is the branch-width of G̃.

For completeness, we now include a definition of tree-width. Let G be
a graph. A tree-decomposition of G is a pair (T, W ), where T is a tree, and
W := {Wt : t ∈ V (T )} is a family of subgraphs of G satisfying

•
⋃

t∈V (T ) Wt = G, and

• if t1, t2, t3 ∈ V (T ) and t2 lies on the path of T between t1 and t3, then
Wt1 ∩Wt3 ⊆ Wt2 .
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The width of (T, W ) is max{|V (Wt)|−1 : t ∈ V (T )}, and the tree-width of G,
denoted tw(G), is the minimum width of all its tree-decompositions. The
path-width of G is defined similarly, except that we insist that the tree T is
a path.

We remark that branch-width and tree-width are within a constant
factor of each other.

Theorem 3.1.3. For any graph G,

bw(G) ≤ tw(G) ≤ 3

2
bw(G).

Proof. See Graph Minors X [37, Theorem 5.1] or Richter [33, Lemma
2.7].

Hence, a class of graphs has bounded branch-width if and only if it has
bounded tree-width.

Bodlaender and Thilikos [2] proved that for any constant ω we can test
if a graph has branch with at most w in linear-time.

Theorem 3.1.4. For any fixed ω ∈ N, there is a linear-time algorithm that checks
if a graph has branch-width at most ω, and if so, outputs a branch-decomposition
of minimum width.

3.2 Relational Structures

The next few sections are self-contained but are not intended as a
comprehensive introduction to mathematical logic. For supplementary
details, please see [9].

An r-ary relation on a set A is a subset of Ar. A signature σ :=
{R1, R2, . . . } is a finite set of relation symbols Ri. Each relation symbol R ∈ σ
is assigned an arity, ar(R) ∈ N. A σ-structure

A := (U(A), R1(A), . . . , Rn(A))

is a tuple consisting of a finite set U(A), the universe of A, where each Ri(A)
is an ri-ary relation on U(A), with ri := ar(Ri).

Here are two examples of relational structures.

26



Example 3.2.1 (Graphs). Let G be a simple graph. Let adj be a relation
symbol with arity 2. Consider the {adj}-structure A := A(G) with
universe U(A) := V (G) and adj(A) := {(u, v) : uv ∈ E(G)}. Hence, G
is naturally represented as an {adj}-structure.

Observe that there is more than one way to represent a graph as
a relational structure. For example, we can instead use the universe
V (G) ∪ E(G), and encode incidences between vertices and edges. For
group-labelled graphs, we certainly care about the edge structure and the
group-labels, so we use the following description.

Example 3.2.2 (Γ-labelled Graphs). Let G be a Γ-labelled graph. Let
graph be a relation symbol with arity 4. Consider the {graph}-structure
A := A(G) with universe U(A) := V (G) ∪ E(G) ∪ Γ and

graph(A) := {(u, v, e, γ) : e ∈ E(G), u = tailG(e), v = headG(e), γ = γG(e)}

We can thus regard G as a {graph}-structure.

3.3 Monadic Second-Order Logic

Let σ be a signature. A tuple x̄ := x1, . . . , xn will be denoted by a boldface
letter. We assume a countably infinite set {x, y, . . . } of first-order variables,
and a countably infinite set {X, Y, . . . } of set variables. By convention, first-
order variables are always in lowercase, and set variables in uppercase.
We define the class of formulas of first-order logic over σ, FO[σ], inductively
as follows.

• If a and b are first-order variables, then a = b is in FO[σ].

• If φ and τ are both in FO[σ], then so are (φ ∨ τ), (φ ∧ τ), and ¬φ.

• If R ∈ σ with arity r, and x̄ is an r-tuple, then x̄ ∈ R is in FO[σ].

• If φ is in FO[σ], and x is a first-order variable such that neither ∃x nor
∀x appear in φ, then both ∃xφ and ∀xφ are in FO[σ].

The class of formulas of monadic second-order logic over σ, MSO[σ], is an
extension of FO[σ], with the following additional rules.
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• If x is a first-order variable and X is a set variable, then x ∈ X is in
MSO[σ].

• If X is a set variable and φ is in MSO[σ] such that neither ∃X nor ∀X
appear in φ, then ∃Xφ and ∀Xφ are both in MSO[σ].

Finally, we define the class of formulas of monadic second-order logic,
MSO, as

⋃
MSO[σ], where the union ranges over all signatures. First-order

variables range over elements of σ-structures, and set variables range over
sets of elements.

Loosely speaking, monadic second-order logic is a logic that allows
quantification over elements and sets of elements. Note that it is quite
relevant how we choose to encode a given object as a relational structure.
For example, MSO[adj] formulas only have quantifications over vertices
and subsets of vertices, while MSO[graph] formulas have quantifications
over subsets of edges (and group elements) as well.

3.4 The Model-Checking Problem

Let φ ∈ MSO[σ] and let A be a σ-structure. By interpreting the symbols
=,¬,∨,∧,∃,∀, and ∈ in the usual way, we can inductively ascertain if φ is
true in A. For example, φ1 ∧ φ2 is true in A if and only if both φ1 and φ2 are
true in A. Similarly, let x be a first-order variable and X be a set variable.
We say ∀xφ is true in A, if for all a ∈ U(A), φ is true when we interpret a
for x in φ. Analogously, ∃Xφ is true in A if there exists a set S ⊆ U(A) such
that φ is true when we interpret S for X .

A variable x is free in φ if x occurs in φ but neither ∃x nor ∀x do. We
will write φ(x̄) to indicate that the variables in x̄ occur free in φ. A formula
without a free variable is a sentence. If φ is a sentence and φ is true in A, we
write A |= φ. If φ has free variables x̄, and ā is a tuple of elements from A
of the same length as x̄, we write A |= φ(ā), if φ is true when the variables
in x̄ are interpreted by ā.

Problem 3.4.1. The model-checking problem is: given a sentence φ ∈ MSO
and a σ-structure A, determine if A |= φ.

Similarly, we can define model-checking for MSO formulas that are not
sentences.

28



Problem 3.4.2. The evaluation problem is: given a formula φ(x̄) ∈ MSO, a
σ-structure A, and a tuple ā of elements from A of the same length as x̄,
determine if A |= φ(ā).

3.5 Some MSO Formulas

To keep the length of formulas manageable, we will use obvious
abbreviations such as x 6= y, →,

∧n
i=1 φi, and ∃n

i=1Xi.
We will also make some less obvious, but still natural, substitutions

such as

• Replace ∀x(x /∈ X) by X = ∅.

• Replace ∃x
(
(x ∈ X) ∧ (x ∈ Y )

)
by ∃x ∈ X ∩ Y .

• Replace ∀z
(
(z ∈ X) → (z ∈ Y )

)
by X ⊆ Y .

• Replace ∀x
(
(x ∈ X) → φ(x)

)
by (∀x ∈ X)φ(x).

• Replace ∃x
(
φ(x) ∧ ∀y

(
φ(y) → (x = y)

))
by ∃=1xφ(x).

Finally we make some abbreviations that are particular to formulas in
MSO[{graph}] such as

• Replace ∃u∃v∃γ
(
(u, v, e, γ) ∈ graph

)
by e ∈ edg.

• Replace ∃v∃γ
(
(u, v, e, γ) ∈ graph

)
by (u, e) ∈ inc.

• Replace ∃u∃γ
(
(u, v, e, γ) ∈ graph

)
by (e, v) ∈ inc.

• Replace ∃γ
(
(u, v, e, γ) ∈ graph

)
by (u, v) = ends(e).

• Replace ∃u∃v
(
(u, v, e, γ) ∈ graph

)
by γ = lab(e).

• Replace (∃e ∈ F ⊆ edg)
(
(e, x) ∈ inc ∨ (x, e) ∈ inc

)
by x ∈ V (F ).

We now proceed to describe some MSO formulas. All of the formulas
we describe are actually MSO[graph] formulas. Let φ ∈ MSO[graph]
with free variables x̄. Let G be a Γ-labelled graph, and let ā be a tuple
of elements from V (G)∪E(G)∪Γ of the same length as x̄. By regarding G
as a {graph}-structure, it makes sense to ask whether G |= φ(ā). If so, we
say that G models φ(ā), or that φ(ā) is true in G.
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Formula 1 (Connectedness). The following formula C(F ) is true in G if
and only if F is a subset of edges of G which induce a connected subgraph
of G.

(F ⊆ edg) ∧ ∀X∀Y
(
((X 6= ∅ 6= Y ) ∧ (X ∪ Y = F )) → ∃x ∈ V (X) ∩ V (Y )

)
Note that we regard the empty set of edges as connected.

Formula 2 (Degree 1 Vertices). The following formula d1(F, x) is true in G
if and only if F ⊆ E(G), x ∈ V (G), and x is a vertex of degree one in the
subgraph of G induced by F .

(F ⊆ edg) ∧ ∃=1e
(
e ∈ F ∧ ((x, e) ∈ inc ∨ (e, x) ∈ inc)

)

Formula 3 (Leaf Edges). The following formula l(F, e) is true in G if and
only if F ⊆ E(G) and e is a leaf edge in the subgraph of G induced by F .

(e ∈ F ⊆ edg) ∧ ∃x
(
((x, e) ∈ inc ∨ (e, x) ∈ inc) ∧ d1(F, x)

)

Formula 4 (Trees). The following formula T (F ) is true in G if and only if
F ⊆ E(G) and the subgraph of G induced by F is a tree.

C(F ) ∧ (∀e ∈ F )
(
C(F\e) → l(F, e)

)

Formula 5 (Paths). The following formula P (F ) is true in G if and only if
F is the set of edges of a path in G.

T (F ) ∧ ¬
(
∃x1∃x2∃x3(

∧
1≤i<j≤3

(xi 6= xj) ∧
3∧

i=1

l(F, xi)
)

We remark that we regard the empty set of edges as a path.
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Formula 6 (Paths with Distinct Ends). The following formula P (F, x, y) is
true in G if and only if F is the set of edges of a path in G with distinct
ends x and y.

P (F ) ∧ x 6= y ∧ d1(F, x) ∧ d1(F, y).

Formula 7 (Paths with Group-Values). There is a formula P (F, x, y, γ)
which is true in G if and only if F is the set of edges of a path with ends x
and y and with group-value γ.

This is the only formula which we do not fully write out, since it
is too lengthy to do so. However, we will describe how P (F, x, y, γ) is
constructed. Recall that we have already encoded paths with ends via the
formula P (F, x, y). Thus, P (F, x, y, γ) consists of P (F, x, y) ∧ τ , where τ is
some MSO formula forcing the path F from x to y to assume the group-
value γ. It remains to describe τ . The key idea is that F induces a partition
P(F ) := {Vα : α ∈ Γ} of V (F ), where u ∈ Vα if and only if the subpath of F
from x to u has group-value α. Note that some members of P(F ) may be
empty and by convention x ∈ V0. With respect to P(F ), observe that F has
group-value γ if and only if y ∈ Vγ . Therefore, it suffices to describe how
to construct P(F ), given F . We can do this by quantifying over F and Γ.
For each α ∈ Γ, and each e ∈ F we proceed as follows. If the tail, head and
group-value of e are u, v, and β respectively, we require u ∈ Xα if and only
if v ∈ Xα+β .

Lemma 3.5.1. Let G be a Γ-labelled graph regarded as a {graph}-structure.
There is an MSO formula φ(s1, t1, γ1, . . . , sk, tk, γk) that is true in G if and only
if G has a Π-linkage where Π := {(si, ti, γi) : i ∈ [k]}.

Proof. This is easy given the formulas we have already constructed.
Let P (F, x, y, γ) be as in Formula 7. Then the required formula
φ(s1, t1, γ1, . . . , sk, tk, γk) is

∃k
i=1Fi

( k∧
i=1

P (Fi, si, ti, γi) ∧
∧

1≤i<j≤k

V (Fi) ∩ V (Fj) = ∅
)

31



3.6 Courcelle’s Theorem

We are now near the goal we set for ourselves at the beginning of this
chapter. That is, we will promptly show that we can efficiently solve
linkage problems over any class of Γ-labelled graphs of bounded branch-
width. We do this by exploiting a powerful theorem of Courcelle [5],
which asserts that for any fixed formula φ ∈ MSO, the model-checking
problem for φ can be solved in linear-time over any class of graphs
of bounded branch-width. Actually, we require a mild extension of
Courcelle’s Theorem.

Theorem 3.6.1 (Arnborg, Stefan, Seese [1]). Fix n ∈ N and φ(x̄) ∈ MSO.
If G is a Γ-labelled graph of branch-width at most n, and ā is a tuple from
V (G) ∪ E(G) ∪ Γ of the same length as x̄ then there is a linear-time algorithm
that determines if G |= φ(ā).

Corollary 3.6.2. Fix w, k ∈ N and Γ a finite abelian group. Then for any Γ-
labelled graph G of branch-width at most w, and any k-pattern Π in G, there is a
linear-time algorithm that determines if G has a Π-linkage.

Proof. Immediate from Lemma 3.5.1 and Theorem 3.6.1.

32



Chapter 4

Tangles

Tangles were first introduced by Robertson and Seymour in Graph Minors
X [37]. Roughly speaking, a tangle corresponds to a highly connected
portion of a graph. Tangles can also be viewed as a dual notion to branch-
width, introduced in Chapter 3. They turn out to be a remarkably effectual
idea, and we use them as a unifying framework throughout.

4.1 Basics

Let G be a graph, and let A and B be subgraphs of G. We define A∪B to be
the subgraph of G with vertex set V (A)∪ V (B) and edge set E(A)∪E(B).
We define A ∩ B analogously. A separation of G is an ordered pair (A, B)
of edge-disjoint subgraphs of G with A ∪B = G. The order of a separation
(A, B), denoted ord(A, B), is |V (A ∩B)|. The (vertex) boundary of (A, B) is
V (A ∩B), which we denote bd(A, B). If X ⊆ V (G), we occasionally abuse
notation and let X also denote the subgraph of G with vertex set X and no
edges. In contrast, G[X] denotes the subgraph of G with vertex X and all
edges of G with both ends in X . We say G[X] is the subgraph of G induced
by X . Lastly, for each subgraph A of G, G 	 A denotes the subgraph of G
with edge set E(G)\E(A) and with vertex set

(V (G)\V (A)) ∪ {v ∈ V (G) : v is an end of an edge in E(G)\E(A)}.

Thus, (A, G	 A) is a separation of G.
A tangle of order n ≥ 1 is a set T of separations of G, such that
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(T1) ord(A, B) < n, for each (A, B) ∈ T ;

(T2) if ord(A, B) < n, then either (A, B) ∈ T or (B, A) ∈ T ;

(T3) if (A, B) ∈ T , then V (A) 6= V (G);

(T4) if (Ai, Bi) ∈ T for each i ∈ [3], then A1 ∪ A2 ∪ A3 6= G.

A tangle in a group-labelled graph is simply a tangle in the underlying
graph. Let T be a tangle of order n in G. We write ord(T ) = n. A subgraph
A of G is T -small if (A, B) ∈ T , for some B. On the other hand, A is T -big
if (B, A) ∈ T , for some B.

As alluded to earlier, tangles are a dual notion to branch-width. We
have the following exact min-max relation [37, Theorem 4.3].

Theorem 4.1.1. Let G be a graph. The maximum order of a tangle in G is equal
to the branch-width of G.

We now describe a matroid that is naturally associated to a tangle T
of order n in G. For X ⊆ V (G), we let rT (X) denote the minimum order
amongst all separations (A, B) ∈ T , with X ⊆ A. If no such separation
exists, we define rT (X) = n. It was first shown in [37] that rT is indeed the
rank function of a matroid on V (G).

Lemma 4.1.2. Let G be a graph and let T be a tangle of order n in G. MT :=
(V (G), rT ) is a matroid.

Proof. Let X, Y ⊆ V (G). Obviously, 0 ≤ rT (X) ≤ rT (Y ), for X ⊆ Y . If
|X| ≥ n, then evidently rT (X) ≤ |X|. Otherwise, consider the separation
(X, G). As ord(X, G) = |X|, (T2) and (T3) imply that (X,G) ∈ T .
Therefore, rT (X) ≤ |X| in this case as well. Finally, let us show that rT
is submodular. If rT (X) = n, then

rT (X) + rT (Y ) = n + rT (Y )

≥ rT (X ∪ Y ) + rT (X ∩ Y ).

By symmetry, we may now assume that rT (X) < n and rT (Y ) < n. Choose
(A, B) ∈ T with X ⊆ A and rT (X) = ord(A, B). Choose (C, D) ∈ T with
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Y ⊆ C and rT (Y ) = ord(C, D). We have

rT (X) + rT (Y ) = ord(A, B) + ord(C, D)

≥ ord(A ∪ C, B ∩D) + ord(A ∩ C, B ∪D)

≥ rT (X ∪ Y ) + rT (X ∩ Y ).

We call MT the tangle matroid of G associated to T . A subset X of
V (G) is T -independent, if it is independent in MT . We abuse terminology
and say that a separation (A, B) is T -independent, if (A, B) ∈ T and
rT (V (A)) = ord(A, B). Since MT is a matroid, it follows that for each
X ⊆ V (G) there is a unique maximal Y ⊆ V (G) such that rT (X) = rT (Y ).
The set Y is of course, simply the matroid closure of X . Hence, we call Y
the T -closure of X . A set which is equal to its T -closure, is T -closed.

Lemma 4.1.3. If T is a tangle in G and X,Y ⊆ V (G) are both T -independent,
then there are n := min{|X|, |Y |} vertex disjoint paths between X and Y .

Proof. Suppose not. Then by Menger’s theorem, there is a separation
(A, B) of G where X ⊆ V (A), Y ⊆ V (B), and ord(A, B) < n. So, either
(A, B) ∈ T or (B, A) ∈ T . If (A, B) ∈ T , then X is not T -independent. If
(B, A) ∈ T , then Y is not T -independent.

Lemma 4.1.4. If T is a tangle in G and (A, B) ∈ T is T -independent, then the
boundary of (A, B) is T -independent.

Proof. Let Y be the boundary of (A, B) and assume the lemma is false.
Then there is a separation (C, D) ∈ T such that Y ⊆ C and ord(C, D) <
|Y | = rT (V (A)). Therefore,

2|Y | > ord(A, B) + ord(C, D)

≥ ord(A ∪ C, B ∩D) + ord(A ∩ C, B ∪D)

≥ ord(A ∪ C, B ∩D) + |Y |,

where the last inequality follows since Y ⊆ V ((A ∩ C) ∩ (B ∪ D)).
Subtracting |Y | gives

|Y | > ord(A ∪ C, B ∩D).

35



Thus, either (A∪C, B∩D) ∈ T or (B∩D, A∪C) ∈ T . If (B∩D, A∪C) ∈ T ,
then G = A ∪ C ∪ (B ∩ D), contradicting (T4). So, (A ∪ C, B ∩ D) ∈ T .
However, this contradicts rT (V (A)) = |Y |.

4.2 Tangle Constructions

Let T be a tangle of order θ in a graph G. Let 1 ≤ θ′ ≤ θ. Define

T ′ := {(A, B) ∈ T : ord(A, B) < θ′}

It follows readily that T ′ is a tangle of order θ′ in G. We say that T ′ is the
truncation of T to order θ′.

Let H be a subgraph of G, and let TH be a tangle of order θ in H . Let TG

be the set of all separations (A, B) of G, with ord(A, B) < θ and such that
(A ∩H, B ∩H) ∈ TH . It is easy to check that TG is a tangle of order θ in G.

Let H be a minor of G and let TH be a tangle of order θ in H . Define
TG to be the set of all separations (A, B) of G, with ord(A, B) < θ and such
that E(A) ∩ E(H) = E(A′) from some (A′, B′) ∈ TH . Again, it is readily
checked that TG is a tangle of order θ in G.

If H is a subgraph or minor of G, and TH is a tangle in H of order θ,
we say that TG is the tangle induced by TH in G. If T is a tangle of order
θ ≥ θ′ in G, we say that T controls TH if the tangle induced by TH in G is a
truncation of T .

4.3 Some Tangle Lemmas

Lemma 4.3.1. Let G be a graph and let T be a tangle of order θ > θ′ in G. If X
is a subset of V (G) of size θ′, then T controls a tangle T ′ of order θ− θ′ in G\X .

Proof. For disjoint subsets U and W of V (G), we define G[U,W ] to be
the maximal bipartite subgraph of G with bipartition (U,W ). Now for
each subgraph A of G\X , we define A+ to be A ∪ G[X] ∪ G[V (A), X].
We let T ′ denote the collection of all separations (A, B) of G\X with
ord(A, B) < θ − θ′ and such that (A+, B+) ∈ T . It is easy to check that
T ′ is a tangle of order θ − θ′ in G\X and that T controls T ′.
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The next lemma is a modest generalization of Lemma 4.3.1.

Lemma 4.3.2. Let G be a graph and let T be a tangle of order θ > θ′ in G. If X
is a subset of V (G) with rT (X) = θ′, then T controls a tangle T ′ of order θ − θ′

in G\X .

Proof. Let (A, B) ∈ T be a separation in G of order θ′ with X ⊆ V (A). Let
Y be the boundary of (A, B). By Lemma 4.3.1, T controls a tangle T1 of
order θ − θ′ in G\Y . Since (A\Y, B\Y ) is a separation of order 0 in T1, it
follows that T1 controls a tangle T2 of order θ − θ′ in B\Y . Let T ′ be the
tangle of order θ − θ′ in G\X induced by T2. It is easy to check that T
controls T ′.

Lemma 4.3.3. Let G be a graph and let T be a tangle of order θ in G. Let (A, B)
be a T -independent separation of order θ′. If T ′ is a tangle in B of order ≥ θ′ that
is controlled by T , then the boundary of (A, B) is T ′-independent.

Proof. Let Y be the boundary of (A, B). If Y is not T ′-independent, then
there is a separation (C, D) ∈ T ′ of B such that Y ⊆ C and ord(C, D) <
|Y | = θ′. But then, since T controls T ′ we have (A ∪ C, D) ∈ T , which
contradicts the fact that (A, B) is T -independent.

4.4 A Tangle in a Grid

The n× n grid, denoted Gn, is the graph with vertex set

V (Gn) := {(i, j) : i ∈ [n], j ∈ [n]},

where two vertices (i, j) and (i′, j′) are adjacent if and only if

|i− i′|+ |j − j′| = 1.

The aim of this section is to define a natural tangle Tn of order n in Gn.
For i ∈ [n], let Pi be the path in Gn with vertex set {(i, j) : j ∈ [n]}, and let
Qi be the path in Gn with vertex set {(j, i) : j ∈ [n]}.

We let Tn consists of all separations (A, B) of Gn of order less than n
such that E(A) does not contain E(Pi) for any i ∈ [n]. Kleitman and Saks
showed Tn is indeed a tangle; see Graph Minors X [37, Theorem 7.2].
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Theorem 4.4.1. Tn is a tangle of order n in Gn.

In the next easy lemma we exhibit an archetypal Tn-independent subset
of V (Gn)

Lemma 4.4.2. Let Gn be the n×n grid and let Tn be the tangle of order n defined
above. Then the set {(i, i) : i ∈ [n]} is independent in MTn .

Proof. We call {(i, i) : i ∈ [n]} the diagonal of Gn. As above we let Pi be
the path in Gn with vertex set {(i, j) : j ∈ [n]}. Towards a contradiction
assume that the diagonal of Gn is not Tn-independent. That is, there is
a separation (A, B) ∈ Tn such that V (A) contains the diagonal of Gn.
Observe that, for any i ∈ [n], the diagonal of Gn contains a vertex of Pi,
and that E(A) does not contain E(Pi). It follows that the boundary of
(A, B) must contain a vertex of Pi for each i ∈ [n]. Thus, ord(A, B) ≥ n, a
contradiction since ord(Tn) = n.

4.5 A Tangle in a Clique

Let Kn be the complete graph on n vertices. In this section, we show that
there is a natural tangle T of order

⌈
2n
3

⌉
in Kn, first shown in [37, Theorem

4.4]. We then prove some basic lemmas concerning T .
We define T such that (A, B) ∈ T if and only if ord(A, B) <

⌈
2n
3

⌉
and

|V (A)| < n.

Lemma 4.5.1. T is a tangle of order
⌈

2n
3

⌉
in Kn.

Proof. Evidently, T satifies (T1), (T2), and (T3). For (T4), let (Ai, Bi) ∈ T
for i ∈ [3] with Kn = A1 ∪ A2 ∪ A3. Observe that

|V (A1)|+ |V (A2)|+ |V (A3)| ≤ 3

⌈
2n

3

⌉
− 3 ≤ 2n− 1.

Hence some vertex v ∈ Kn is in exactly one Ai, say A1. Since v is only in
A1 and Kn = A1 ∪A2 ∪A3, it follows that all the neighbours of v must also
be in A1. Thus, |V (A1)| = n, which contradicts (T3).
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Remark 4.5.2. Let MT be the tangle matroid on V (Kn) associated with T .
Clearly, any subset of V (Kn) of size at most

⌈
2n
3

⌉
is independent in MT .

That is, MT is the uniform matroid on V (G) of rank
⌈

2n
3

⌉
.

The proof of Lemma 4.5.1 also shows that K(Γ, n) has a tangle of order⌈
2n
3

⌉
. So, let G be a Γ-labelled graph which has a K(Γ, n)-minor, H . Let TH

be the tangle in H of order θ :=
⌈

2n
3

⌉
described above. For the rest of this

section let T be the tangle in G induced by H . We now prove some lemmas
regarding T . For X ⊆ V (G), we say that we can contract a Γ′-labelled clique
onto X if G has a K(Γ′, |X|)-minor H , such that we can contract H onto X
(recall Definition 1.3.4).

Lemma 4.5.3. Let G be a Γ-labelled graph and with a K(Γ′, n)-minor, H . Let T
be the tangle of order θ in G induced by H . If X ⊆ V (G) is T -independent, with
|X| < θ, then we can contract a Γ′-labelled clique onto X .

Proof. We proceed via induction on |V (G)|. The lemma clearly holds if
|V (G)| = 1. Consider a counterexample (G, H, X) with |V (G)| minimal.
Since G has a K(Γ′, n)-minor, H , we may shift and assume that there exist
vertex disjoint trees {Tv | v ∈ V (H)} in G such that

• γG′(e) = 0 for all v ∈ V (H) and e ∈ E(Tv),

• headG′(e) ∈ V (TheadH(e)) and tailG′(e) ∈ V (TtailH(e)) for each e ∈
E(H), and

• γG′(e) = γH(e), for each e ∈ E(H).

Let T be the tangle induced by H in G. Let Y be the T -closure of X and
consider the separation (A, B) := (G[Y ], G	G[Y ]).

Case 1. For some v ∈ V (H) there exists e = xy ∈ E(Tv) such that e ∈ E(B)
and {x, y} * V (A ∩B).

Let G′ := G/e. Evidently, G′ still has a K(Γ′, n)-minor, H ′. Let T ′ be the
tangle in G′ induced by H ′.

Claim. X is T ′-independent.

SUBPROOF. Towards a contradiction suppose X is not T ′-independent.
Then there is a separation (C ′, D′) in G′ such that
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• (C ′, D′) ∈ T ′.

• X ⊆ V (C ′).

• ordG′(C ′, D′) < |X|

Therefore, by uncontracting e, there is a separation (C, D) in G such that

• (C, D) ∈ T .

• X ⊆ V (C).

• ordG(C, D) ≤ |X|.

Note that in fact ordG(C, D) = |X|, and that we may assume e ∈ E(C). By
submodularity, we have that

2|X| = ordG(A, B) + ordG(C, D)

≥ ordG(A ∩ C, B ∪D) + ordG(A ∪ C, B ∩D)

First suppose ordG(A∪C, B∩D) > |X|. Then ordG(A∩C, B∪D) < |X|.
Thus, (A∩C, B∪D) ∈ T or (B∪D, A∩C) ∈ T . If (B∪D, A∩D) ∈ T , then
G = A ∪ (B ∪D), a contradiction. So, (A ∩C, B ∪D) ∈ T . But X ⊆ A ∩C,
which contradicts the fact that X is T -independent.

Therefore, ordG(A∪C, B∩D) ≤ |X|. It now follows that (A∪C, B∩D) ∈
T , for otherwise, G is the union of A, C, and B ∩ D, each of which is T -
small. However, (A ∪ C, B ∩ D) contradicts the choice of (A, B). So, X is
indeed T ′-independent, proving the claim.

By induction, we can contract a Γ′-labelled clique onto X in G/e and
hence also in G. This completes Case 1.

Case 2. For all v ∈ V (H) and all e = xy ∈ E(Tv ∩B), {x, y} ⊆ V (A ∩B).

In this case we consider a tree Tv to be small if |V (Tv ∩ B)| = 1, and big
otherwise.

Claim. There are at least |X| small trees Tv.
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SUBPROOF. We are assuming that each big tree Tv satisfies V (Tv ∩ B) ⊆
V (A ∩ B). Therefore, there are at most |V (A ∩ B)|/2 = |X|/2 big trees.
Thus, there are at least

n− |X|
2

=

(
3

2

) (
2n

3

)
− |X|

2
≥ 3|X|

2
− |X|

2
= |X|

small trees.

Let
Z =

⋃
Tv is small

V (Tv ∩B)

By construction |Z| ≥ |X| and G[Z] = K(Γ′, |Z|). Also, as X and Z are
both T -independent, by Lemma 4.1.3 there are |X| vertex-disjoint paths in
G between X and Z. By shifting (at vertices not in Z), we may assume that
the edges of these paths are all zero-labelled. Thus, we can clearly contract
a Γ′-labelled clique onto X , as claimed. This completes the second case and
hence the proof.

4.6 Tangles in Connectivity Systems

In this section we define tangles for arbitrary connectivity systems. Let
K = (E, λ) be a connectivity system. A separation is an ordered partition
(A, B) of E. The order of (A, B) is defined to be λ(A) (which is equal to
λ(B)). A tangle T of order n is a collection of subsets of E satisfying

(T1) λ(A) < n for all A ∈ T ;

(T2) if λ(A) < n, then either A ∈ T or E\A ∈ T ;

(T3) E\{e} /∈ T , for all e ∈ E;

(T4) if Ai ∈ T for i ∈ [3], then A1 ∪ A2 ∪ A3 6= E.

In [16], it is proved that Theorem 4.1.1 extends to arbitrary connectivity
systems, although this is implicit in [37].

Theorem 4.6.1. Let K be a connectivity system. The maximum order of a tangle
in K is equal to the branch-width of K.
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Let K = (E, λ) be a connectivity system and let T be a tangle of
order n in K. For X ⊆ E, we let rT (X) denote the minimum order
amongst all separations (A, B) ∈ T , with X ⊆ A. If no such separation
exists, we define rT (X) = n. The following lemma has the same proof as
Lemma 4.1.2.

Lemma 4.6.2. MT := (E, rT ) is a matroid.

We also call M the tangle matroid of K associated with T .

Remark 4.6.3. Lemma 4.6.2 can be viewed as a generalization of
Lemma 4.1.2 as follows. Let G be a graph and let K = (V (G) ∪ E(G), λG)
be the connectivity function described in Example 3.1.2. Let T be a tangle
of order n in K. Then the restriction of MT to V (G) is the usual tangle
matroid given in Lemma 4.1.2.

Let K = (E, λK) and K ′ = (E, λK′) be connectivity systems. We say
that K ′ is a tie-breaker for K if for all X, Y ⊆ E,

1. λK′(X) 6= λK′(Y ), unless X = Y or X = E\Y .

2. If λK(X) < λK(Y ), then λK′(X) < λK′(Y ).

The following was proved in [16, Lemma 9.2].

Lemma 4.6.4. Every connectivity system K = (E, λK) has a tie-breaker.

Proof. We may assume E = [n]. We first define λL : 2E → N as

λL(X) :=

{∑
x∈X 2x if X ⊆ [n− 1],

λL(E\X) if n ∈ X.

We claim that λL is a connectivity function on E. It is trivially symmetric
from its definition. Let X,Y ⊆ E. We must show

λL(X) + λL(Y ) ≥ λL(X ∪ Y ) + λL(X ∩ Y ).

This clearly holds with equality if both X,Y ⊆ [n−1]. Let us now consider
the case n ∈ X\Y . By definition,

λL(X) + λL(Y ) =
∑

i∈Y \X

2i+1 +
∑

i∈X∩Y

2i +
∑

i∈E\(X∪Y )

2i

≥
∑

i∈X∩Y

2i +
∑

i∈E\(X∪Y )

2i

= λL(X ∪ Y ) + λL(X ∩ Y ).
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The remaining case n ∈ X ∩ Y is even easier, so we omit it.
We now define λK′(X) := λL(X) + 2nλK(X), for all X ⊆ E. Since

λK′ is the sum of two connectivity functions, it is a connectivity function.
Moreover, it is easy to verify that it is indeed a tie-breaker for K.

We remark that if T is a tangle in a connectivity function K, then T is
also a tangle in any tie-breaker K ′ for K.

4.7 Tree-decompositions and Laminar Families

Let E be a finite set. A separation of E is an ordered partition (A, B) of
E. Two separations (A1, B1) and (A2, B2) cross, if Ai ∩ Bj 6= ∅ for all
i, j ∈ [2]. A laminar family is a collection L of separations of E such that
no two separations in L cross.

A tree-decomposition of E is a pair (T,S), where T is a tree and S := {Sv :
v ∈ V (T )} is a partition of E. For X ⊆ E we define S(X) :=

⋃
x∈X Sx. For

all e ∈ E(T ), notice that T\e has two components T1 and T2. The separation
of E displayed by e is defined to be (S(V (T1)),S(V (T2))).

The next two lemmas are due to Edmonds and Giles [11].

Lemma 4.7.1. If (T,S) is a tree-decomposition of E, then the collection of all
separations of E displayed by (T,S) is a laminar family.

Conversely, every laminar family arises from a tree-decomposition.

Lemma 4.7.2. Let L be a laminar family with ground set E. Then there is a tree-
decomposition (T,S) of E such that the collection of all separations of E displayed
by T is precisely L.

Let K = (E, λ) be a connectivity system. A subset A ⊆ E is robust
if for every separation (A1, A2) of A, λ(A1) > λ(A) or λ(A2) > λ(A). A
separation (A, B) of E is robust if both A and B are robust. It turns out that
the collection of all robust separations of E is a laminar family.

Lemma 4.7.3. Let K = (E, λ) be a connectivity system. The collection of all
robust separations of E is a laminar family.

Proof. See [16, Lemma 8.3].
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4.8 The Tree of Tangles

Let K = (E, λ) be a connectivity system and let T1 and T2 be tangles in
K. We say that a separation (A, B) distinguishes T1 and T2, if A ∈ T1 and
B ∈ T2. Tie-breakers are a convenient way to choose canonical separations
that distinguish tangles. Recall that T1 is a truncation of T2, if T1 ⊆ T2.

Lemma 4.8.1. Let K = (E, λ) be a connectivity system, and let T1 and T2 be
tangles of K that are incomparable by truncation. Let K ′ = (E, λ′) be a tie-
breaker for K. Among all separations which distinguish T1 and T2, let (A, B) be
the separation of minimum K ′-order. Then (A, B) is robust.

Proof. See [16, Lemma 9.3].

From here, it is not too difficult to show that every connectivity system
has a canonical tree-decomposition which we call its “tree of tangles”.

Theorem 4.8.2. Let K = (E, λ) be a connectivity system and let {T1, . . . , Tn} be
a collection of tangles of K, which is pairwise incomparable by truncation. Then
there is a tree decomposition (T,S) of E such that

• V (T ) = [n],

• for each i ∈ V (T ), and e ∈ E(T ), if T ′ is the component of T\e containing
i, then S(V (T ′)) /∈ Ti, and

• For all distinct i, j ∈ [n], there is a minimum order separation
distinguishing Ti and Tj that is displayed by T .

A tangle that corresponds to a leaf in the tree of tangles will be called
a peripheral tangle. We will see that when applying structure theory
results, it is more advantageous to work with peripheral tangles, rather
than arbitrary ones. Therefore, a key subroutine of the algorithm will be
dedicated to finding peripheral tangles.

A very attractive feature of tangles, as opposed to other certificates
of high branch-width such as brambles (see Reed [32]), is that every
connectivity system only has a few maximal tangles.

Corollary 4.8.3. Let K = (E, λ) be a connectivity system. Then K has at most
(|E| − 2)/2 maximal tangles.

Proof. See [16, Corollary 9.4].
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4.9 Algorithms and Tangles

In this section we discuss algorithmic questions related to tangles. Let T
be a tangle in a graph G. The first observation is that |T | may be too large,
thus rendering any complexity questions meaningless. If however, we
only wish to decide if (A, B) ∈ T , when ord(A, B) is low (in comparison
to ord(T )), then there is an elementary procedure we can follow.

Lemma 4.9.1. Let G be a graph, T be a tangle in G, and Y be a T -independent
subset of V (G). If (A, B) is a separation of G of order at most |Y |/2, then
(A, B) ∈ T if and only if |Y ∩ A| < |Y |/2.

Proof. Let (A, B) be a separation of G of order at most |Y |/2. First suppose
that |Y ∩A| < |Y |/2. If (A, B) /∈ T , then (B, A) ∈ T . Let H be the subgraph
of G with no edges and only those vertices in Y ∩ A. Then (B ∪ H, A) is
a separation of G of order < |Y |. Since Y is T -independent, this implies
that (A, B ∪H) ∈ T . But then G = A ∪ B, and both A and B are T -small,
a contradiction. The converse is similar.

We will need to solve the following algorithmic problem.

Problem 4.9.2. Let K = (E, λ) be a connectivity system and let s and t be
distinct elements of E. The minimum s-t cut problem is to find a subset A of
E such that s ∈ A, t /∈ A, and λ(A) is minimum.

We remark that the global minimum of λ is always assumed by ∅ since
for any X ⊆ E we have

2λ(X) = λ(X) + λ(E\X) ≥ λ(∅) + λ(E) = 2λ(∅).

Queyranne [31] shows that the minimum s-t cut problem for symmetric
submodular functions is polynomially equivalent to the problem of
minimizing a submodular (but not necessarily symmetric) function.
Grötschel, Lovász, and Schrijver [19] exhibited the first polynomial-
time algorithm for minimizing a submodular function, via the ellipsoid
method. Later, combinatorial strongly polynomial algorithms were
developed independently by Schrijver [46] and by Iwata, Fleischer, and
Fujishige [21]. Therefore, there is a strongly polynomial algorithm that
finds a minimum s-t cut problem for any symmetric submodular function.
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Theorem 4.9.3. Let λ be a symmetric submodular function on a finite set E, and
let s and t be distinct members of E. There is a strongly polynomial algorithm
that outputs a subset A of E such that s ∈ A, t /∈ A, and λ(A) is minimum.

Using Theorem 4.9.3, we now show how to compute the rank of a set
in the tangle matroid of a graph.

Theorem 4.9.4. Let G be a graph, KG = (V (G)∪E(G), λG) be its connectivity
system, and T be a tangle in KG. Let Y be an independent subset of vertices in
the tangle matroid MT . Then for any X ⊆ V (G) of rank at most |Y |/2 in MT ,
we can compute rT (X) in polynomial-time.

Proof. We will need the following operation on connectivity systems.

Definition 4.9.5. Let K = (E, λ) be a connectivity system and let X ⊆ E.
Define K ◦X := ((E\X) ∪ eX , λK◦X), where

λK◦X(A) :=

{
λ(A), if A ⊆ E\X
λ((A\{eX}) ∪X), if eX ∈ A.

It is easy to verify that K ◦ X is a connectivity system. Now let X be
a subset of V (G) of rank at most |Y |/2 in MT . Let Y ′ be a subset of Y \X
of size d|Y |/2e. Consider the connectivity system K ′ := (KG ◦X) ◦ Y ′. Let
s := eX ∈ E(K ′) and t := eY ′ ∈ E(K ′). By Theorem 4.9.3, we can find a
minimum s-t cut A′ of K ′ in polynomial-time. Letting A := A′\{eX} ∪X ,
we note that Lemma 4.9.1 implies that A is T -small. By letting Y ′ range
over all subsets of Y \X of size d|Y |/2e, we will find the minimum order
separation (C, D) ∈ T , with X ⊆ V (C), as required.

Let T1 and T2 be distinct tangles of order n in a graph G. Using the same
idea, we can compute a minimum order separation (A, B) distinguishing
T1 from T2 provided that we know that ord(A, B) is low in comparison to
n.

Theorem 4.9.6. Let G be a graph and let T1, . . . , Tm be distinct tangles of
order ≥ 2n + 1 in KG. Let Y1, . . . , Ym be independent subsets of vertices in
MT1 , . . . ,MT2 respectively, each of size 2n + 1. Let K ′ be a tie-breaker for KG.
If for all distinct i, j ∈ [m], Ti and Tj are distinguished by a separation of order
at most n in K, then we can construct the tree of tangles for T1, . . . , Tm (with
respect to K ′) in polynomial-time.
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Proof. It suffices to show that we can compute minimum K ′-order
distinguishing separations between tangles in polynomial-time. Let (A, B)
be the unique separation distinguishing Ti and Tj with minimum order in
K ′. By Lemma 4.9.1, we have that |V (A)∩Yi| ≤ n and |V (B)∩Yj| ≤ n. This
implies |Yi ∩ Yj| ≤ n, since ordK(A, B) ≤ n. Let Zi ⊆ (V (B) ∩ Yi)\V (A)
and Zj ⊆ (V (A) ∩ Yj)\V (B) each be of size n + 1. Note that Zi and Zj

are disjoint, and that (A, B) is simply the minimum order separation in K ′

with Zi ⊆ V (B) and Zj ⊆ V (A). Therefore, given Zi and Zj we can find
(A, B) by considering the connectivity system (K ′ ◦Zi) ◦Zj , and applying
Theorem 4.9.3. We can find Zi and Zj by enumerating over all pairs of
subsets of size n + 1 of Yi\Yj and Yj\Yi, respectively.

Remark 4.9.7. In our algorithm, it will not actually be necessary to
construct the tree of tangles. Rather, it will suffice to find a peripheral
tangle, which we can do much quicker, since we can avoid using
submodular function minimization.
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Chapter 5

Structure Theory

5.1 The Grid Theorem

Recall that the n× n grid is the graph Gn with vertex set

V (Gn) = {(i, j) : i, j ∈ [n]}

where (i, j) and (i′, j′) are adjacent if and only if

|i− i′|+ |j − j′| = 1.

In Theorem 4.4.1, we exhibited a tangle Tn of order n in Gn. It thus
follows by Theorem 4.6.1, that Gn has branch-width at least n. It is also
easy to find a branch-decomposition of Gn of width n. Therefore,

Lemma 5.1.1. The n× n grid has branch-width n.

The grid theorem provides a partial converse to Lemma 5.1.1. It asserts
that graphs with huge branch-width have large grid-minors. It was first
proved by Robertson and Seymour in Graph Minors V [35, Theorem 1.5].
Diestel, Gorbunov, Jensen and Thomassen later found a shorter proof [7].

Theorem 5.1.2. For all n ∈ N, there exists f(n) ∈ N such that every graph with
branch-width at least f(n) has a minor isomorphic to the n× n grid.

Remark 5.1.3. Let f be the function in Theorem 5.1.2. If we are given
a graph G with bw(G) ≥ f(n), then it is quite easy to quickly find an
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n × n grid-minor in G. To do this, we first use Theorem 3.1.4, to test if
bw(G) ≤ f(n). If bw(G) ≤ f(n), then we can use dynamic programming
or algorithms from monadic second-order logic to find an n × n grid-
minor. Otherwise, we arbitrarily choose an edge e1 of G and then test
if bw(G\e1) ≤ f(n). If bw(G\e1) ≤ f(n), then note that bw(G\e1) = f(n),
since bw(G\e1) ≥ bw(G) − 1. Thus, Theorem 5.1.2 guarantees that G\e1

still has an n × n grid-minor and as before we can find this grid-minor
efficiently. If bw(G\e1) > f(n), we choose an edge e2 of G\e1 and recurse.
We thus obtain a sequence of edges e1, . . . , ek, such that G\{e1, . . . , ek} has
branch-width exactly f(n). Therefore, we can efficiently find the required
grid-minor in G\{e1, . . . , ek}.

5.2 Surfaces and Vortices

In this section we define surfaces and vortices, since they are required to
state the Graph Minors Structure Theorem. Surfaces are treated in more
detail in Chapter 7 and vortices are discussed further in Chapter 9. For
more background information on surfaces, please refer to [29] or [6].

A surface Σ is a connected compact 2-manifold with (possibly empty)
boundary. We let bd(Σ) denote the boundary of Σ. The components in
bd(Σ) are the holes of Σ. The genus of Σ, denoted ε(Σ), is 2m + n, where
m and n are the number of handles and crosscaps of Σ, respectively.
We let h(Σ) denote the number of holes of Σ. If X is a subset of Σ,
the (topological) closure, interior, and boundary of X will be denoted
by X, int(X), and bd(X) respectively. The surface obtained from Σ by
capping each hole by a disk will be denoted Σ̂.

Let G be a graph embedded in a surface Σ. We will identify G with
its embedding. Thus, V (G) ⊆ Σ and each edge xy of G is an (open) arc
in Σ connecting x and y. We will always assume that every edge of G is
either contained in bd(Σ) or disjoint from it. To stress the embedding we
sometimes will write (G, Σ) whenever G is embedded in Σ. A face of G
is a (topological) component of Σ\G. Let f be a face of G. The vertices
of f are the vertices of G contained on the boundary of f . The edges of f
are defined similarly. We denote the vertices and edges of f as V (f) and
E(f), respectively. If each face of G is an open disk, then we say that G is
2-cell embedded in Σ. The dual graph G∗ of G is the graph whose vertices are
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the faces of G, where two faces f1 and f2 are adjacent in G∗ if and only if
E(f1) ∩ E(f2) 6= ∅.

A society is a finite set of points S that are cyclically ordered. If S is
a finite subset of a circle, then evidently S can be regarded as a society.
An interval of S is a proper subset of consecutive vertices of S. A halving
of S is a partition of S into two intervals. For u, v ∈ S, we let S(u, v)
denote those vertices that occur after u but before v in S. We define
S[u, v] := S(u, v) ∪ {u, v}. So, if v is not the successor of u, then {S(u, v),
S[v, u]} is a halving of S. If G is a graph and S ⊆ V (G) is a society, we
call the pair (G, S) a vortex. A vortex (G, S) has adhesion at most n if for any
halving of S, there do not exist n vertex disjoint paths in G between the
two halves.

Example 5.2.1. Let G be the graph with vertex set [k], and edge set

{ij : |i− j| = 2 or |i− j| = k − 2}.

Let S be the society in G with vertex set [k] cyclically ordered as
1, 2, . . . , k, 1. It is easily seen that (G, S) has adhesion at most 5.

Let L be a linearly ordered set. We recycle our previous notion for
cyclically ordered sets. For u, v ∈ L, we let L(u, v) denote those vertices
that occur after u but before v in L. We define L[u, v] := L(u, v) ∪ {u, v}. If
the ordering L under question is clear, we will occasionally write [u, v] in
place of L[u, v].

Remark 5.2.2. Let δ be a hole in a surface Σ and let x ∈ δ. Observe that
we can regard δ\{x} as a linearly ordered set since it is order-isomorphic
to the open interval (0, 1). Thus, whenever we regard a hole as a linearly
ordered set, this is the ordering we are referring to. We assume that x has
been chosen a priori, and that if G is embedded in Σ, then G does not
contain x.

Let G be a graph and let L be a linearly ordered subset of V (G). A
vortex decomposition of (G, L) is a collection {Gv : v ∈ L} of subgraphs of G
such that for all x, y ∈ L, with x ≤ y:

(V1) E(Gx ∩Gy) = ∅, and
⋃

v∈L Gv = G;

(V2) Gx ∩Gy ⊆
⋂

z∈L[x,y] Gz;
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(V3) if x ∈ V (Gy), then y = x or u is the successor of x in L.

The depth of such a decomposition is max{|V (Gx ∩ Gy)| : x 6= y}, and
its width is max{|V (Gv)| − 1 : v ∈ S}. The depth of a vortex (G, L) is the
minimum depth taken over all vortex decompositions of (G, L). The width
of a vortex is defined similarly.

Remark 5.2.3. It is also possible to define vortex decompositions with
respect to cyclically ordered sets. However, we prefer to work with linear
vortex decompositions, since the notion coincides more closely with tree-
decompositions (actually path-decompositions).

5.3 The Graph Minors Structure Theorem

The Graph Minors Structure Theorem [41, Theorem 1.3] is the workhorse
of the entire Graph Minors Project. It gives a rough description of the class
of graphs excluding a fixed minor. It has since been successfully applied
to obtain a number of deep and interesting results. See [26] for an excellent
survey.

For any graph K, we let ex(K) denote the class of graphs that do not
contain a K-minor. We are principally interested in ex(Kn), and this is
without loss of generality since every graph is a minor of some clique. Let
us contemplate what a “rough description” of ex(Kn) might look like.

We start by considering a surface Σ that Kn does not embed in. We let
C(Σ) denote the class of graphs that do embed in Σ. Since C(Σ) is minor-
closed, it follows that C(Σ) ⊆ ex(Kn).

Suppose that Kn−l also does not embed in Σ for some l > 0. It follows
that if G is a graph such that G\X ∈ C(Σ), for some X ⊆ V (G) with
|X| ≤ l, then G must also be ex(Kn). It is easy to check that the class of all
such graphs G is minor-closed, called the l-apex of C(Σ).

Let G1 and G2 be graphs on disjoint vertex sets, and for i ∈ [2] let
Hi ⊆ Gi be a clique of order k in Gi. Let G be a graph obtained from G1 and
G2 by identifying H2 with H1 and then removing (a possibly empty) subset
of edges of H1. We say that G is a clique-sum of order k of G1 and G2. Note
that if G1 and G2 are both in ex(H), then so is any clique-sum of G1 and
G2. We remark that tree-width can be defined via clique-sums. Namely,
a graph has tree-width at most w if and only if it can be obtained from
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graphs with at most w + 1 vertices by (repeated) applications of clique-
sums.

Let H be a planar graph, and let C be a cycle of H bounding a face
with k vertices. Label V (C) = {1, . . . , k}, and let (G, V (C)) be the vortex
from Example 5.2.1. Glue H and G together along V (C) and let the
resulting graph be H+. Evidently H has no K5-minor as it is planar.
Seese and Wessel [47] proved that H+ can have a K6-minor, but not a
K7-minor. In general, if G is embedded in a surface Σ, then attaching a
vortex of bounded adhesion to a face of G will not produce arbitrarily
large clique-minors. Furthermore, it is easy to show that such a graph
cannot be produced via the previous three ingredients discussed. Thus, in
any potential structure theorem, vortices will inevitably appear.

It turns out the four ingredients so far discussed, clique-sums, surfaces,
apex vertices, and vortices are indeed sufficient to describe all graphs that do
not have a Kn-minor.

We say that G can be l-near embedded in a surface Σ if there exists A ⊆
V (G) of size at most l, and holes δ1, . . . , δl of Σ such that G\A =

⋃l
i=0 Gi

satisfies

(N1) G0 is embedded in Σ.

(N2) The graphs G1, . . . , Gl are pairwise disjoint (and possibly empty),
and Li := V (G0) ∩ V (Gi) = V (G0) ∩ δi, for each i ∈ [l].

(N3) For each i ∈ [l], if Li is linearly ordered via δi, then (Gi, Li) has a
vortex decomposition of depth at most l.

The vertices in A are called the apex vertices, the graph G0 is the
embedded subgraph and the pairs (Gi, Li) are the vortices of the l-near
embedding. We say that each vortex (Gi, Li) is attached to the hole δi.

We can now state the Graph Minors Structure Theorem.

Theorem 5.3.1. For any n ∈ N there exists l ∈ N such that every graph that does
not contain a Kn-minor can be obtained via clique sums of order at most l from
graphs that can be l-near embedded in a surface in which Kn cannot be embedded.
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5.4 Structure Relative to a Tangle

In this section we present an alternative form [41, Theorem 3.1] of the
Graph Minors Structure Theorem which is more suitable for our purposes.
We wish to describe the structure of G ∈ ex(Kn) relative to a high order
tangle T of G. First we need some definitions.

Let G be a graph and let (A, B) be a separation of G of order t ∈ [3],
such that V (B)\V (A) is non-empty. We define G′ to be the graph derived
from A by placing a clique on the boundary of (A, B). We say that G’ is
obtained from G by an elementary reduction. If t = 3, we call the new set
of edges the reduction triangle. A graph H is a reduction of G, if H can be
obtained from G by any sequence of elementary reductions.

Let Σ be a surface. We say that G can be embedded in Σ (up to 3-
separations), if there exists a graph H that is a reduction of G such that H is
embedded in Σ, and every reduction triangle bounds a face in Σ.

Let G be a graph with no Kn-minor and let T be a high order tangle
that controls a large grid-minor J of G. The structure of G relative to T is
as follows. The entire graph G embeds in a surface Σ (up to 3-separations)
in which Kn does not embed. The grid-minor J is embedded in Σ, and a
large portion of it is embedded in a disk of Σ. There is a bounded number
of vortices of bounded adhesion attached to holes of Σ, and there is a
bounded number of apex vertices that are arbitrarily connected to each
other and the rest of G.

5.5 An Algorithmic Structure Theorem

In this section we present an algorithmic version of the Graph Minors
Structure Theorem. The main idea here is due to Paul Seymour
(communicated to us by Guoli Ding). Again, we present a slightly
different version of the structure theorem here.

Let a, g, h, and d be non-negative integers. Let H0(g, h) be the set of all
pairs (G, Σ) where Σ is a surface of genus g and with h holes and G is a
simple graph embedded in Σ.

Let (G, Σ) ∈ H0(g, h), let δ be a hole of Σ, and let v1, . . . , vk be the
vertices of G on δ (in the natural order). Now let X1, . . . , Xk be disjoint
sets of size d such that Xi ∩ V (G) = {vi} for each i ∈ {1, . . . , n}. Let G′ be
the simple graph obtained from G by adding the vertices X1∪· · ·∪Xk and
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adding all edges internal to each of the sets X1 ∪X2, X2 ∪X3, . . . , Xk−1 ∪
Xk, Xk ∪X1. We say that G′ is obtained from G by adding a complete vortex
of depth d to the hole δ of (G, Σ). LetH1(g, h, d) be the set of graphs obtained
from the embedded graphs in H0(g, h) by adding a complete vortex of
depth d to each hole. Let H2(g, h, d) be the class of graphs obtained by
closing the class H1(g, h, d) under minors.

Let H(g, h, d, a) be the class of all graphs G such that there is a set
X ⊆ V (G) with |X| ≤ a such that G\X ∈ H2(g, h, d). Finally, for a class H
of graphs, we let H⊕ denote the closure of the class H under clique-sums.

The following version of the Graph Minors Structure Theorem is
equivalent to the main result of Graph Minors XVI.

Theorem 5.5.1. There exist functions g, h, d, a : N → N such that, for each
n ∈ N, if G is a graph with no Kn-minor, then

G ∈ H(g(n), h(n), d(n), a(n))⊕.

Using Thereom 1.1.7, in O(|V (G)|3)-time, we can determine whether a
given graph G has an Kn-minor. Suppose that G does not contain a Kn-
minor. Then, by Theorem 5.5.1,

G ∈ H(g(n), h(n), d(n), a(n))⊕.

This theorem shows that G can be constructed from simple pieces via
clique-sums, but it does not give an algorithm to find the construction.
The proof of Theorem 5.5.1 can be adapted into a polynomial-time
algorithm that either finds a Kn-minor or demonstrates that G ∈
H(g(n), h(n), d(n), a(n))⊕. (Here “demonstrating that G is inH(g, h, d, n)⊕”
refers to a description of G as being obtained from embedded graphs
in H0(g, h) by adding vortices, taking minors, adding apex vertices, and
then taking clique-sums.) Due to the length and difficulty of the proof
of Theorem 5.5.1, this algorithm has neither been explicitly described nor
analysed in the literature. In this section we sketch a proof of the following
theorem which (partially) resolves this computational issue (only partially,
since the algorithm is not explicit).

Theorem 5.5.2. For any g, h, d, a ∈ N there exist d′, a′ ∈ N and an algorithm
such that, given a graph G in H(g, h, d, a)⊕, the algorithm will, in O(|V (G)|5)-
time, demonstrate that G is in H(g, h, d′, a′)⊕.
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We will only sketch the proof.
For any class H of graphs and G ∈ H, we call G edge-maximal if, for

each pair (u, v) of non-adjacent vertices in G, the graph G + uv is not in
H. Seymour observed that it is relatively easy to recover the structure of
edge-maximal graphs in H(g, h, d, a)⊕.

Recall that Theorem 1.1.1 and Theorem 1.1.7 together imply the
following theorem.

Theorem 5.5.3. For any minor-closed class H of graphs, there exists an
algorithm that, given a graph G, will, in O(|V (G)|3)-time, determine whether
or not G is contained in H.

We have emphasized the word “exists” in the statement since we do
not know the algorithm explicitly. We would need to be able to compute
a bound on the size of the largest excluded minor of H in order to get an
explicit algorithm.

The following result is an immediate consequence of Theorem 5.5.3.

Lemma 5.5.4. For any minor-closed class H of graphs, there exists an algorithm
that, given a simple graph G ∈ H, constructs, in O(|V (G)|5)-time, an edge-
maximal graph G′ ∈ H that contains G as a spanning subgraph.

The following result is an easy consequence of a theorem of Tarjan [52]
on clique cut-sets and of a theorem of Mader [28] on minor-closed classes
of graphs.

Lemma 5.5.5. For any proper minor-closed class of graphs, there is an algorithm
that, given a simple edge-maximal graph G ∈ H⊕, finds, in O(|V (G)|2)-
time, induced subgraphs H1, . . . , Hk of G such that H1, . . . , Hk are simple
edge-maximal graphs in H, none of H1, . . . , Hk has a clique cut-set, and G is
obtained from H1, . . . , Hk by clique sums. Moreover, |E(H1)|+ . . . + |E(Hk)| is
O(|V (G)|).

By Lemmas 5.5.4 and 5.5.5, to prove Theorem 5.5.2, it suffices to
consider a simple edge-maximal graph G in H(g, h, d, a). We may assume
that d ≥ 4. We will define d′ and a′ implicitly, but we will take a′ ≥ w
where w is the size of the largest complete graph in H(g, h, d, a).

We say that a vertex is universal in a graph if it is adjacent to all other
vertices in the graph. Let X denote the set of universal vertices in H ;
by computing vertex degrees we can find X in linear-time. Note that
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|X| ≤ w ≤ a′ and that G\X is a graph inH2(g, h, d). Thus we have reduced
the problem to that of recovering the structure of graphs in H2(g, h, d).

Let H be a graph in H2(g, h, d). We assume that:

(A1) H is an edge-maximal graph in H2(g, h, d)⊕.

(A2) H has no clique cut-set.

(A3) H is not contained in H(g − 1, h, d, 10).

(A4) H is not contained in H(g, h− 1, d, 2d + 10).

Note that we can test each of these assumptions in O(|V (G)|5)-time and, if
any is violated, we can inductively simplify the problem of recovering the
strucure of H .

Since H ∈ H2(g, h, d), H is a minor of a graph H1 that is obtained
from an embedded graph (H0, Σ) ∈ H0(g, h) by adding complete vortices
of depth d to each hole. Consider such a construction of H such that
|V (H0)| is minimum. By the edge-maximality of H , H is obtained from
H1 by contracting a set C of edges and then suppressing parallel pairs (we
contract any loops created in the process).

By (A1) and (A3), the embedding (H0, Σ) is a triangulation with
“representativity” at least 10. (That is, every non-contractible curve in Σ
and every curve joining two distinct holes must intersect H0 in at least 10
distinct points.) It also follows from (A3) that no edge of H0 connects two
non-consecutive vertices on a hole. By the minimality of |V (H0)|, no edge
of H0 is contained in C. Note that, by (A2), H0 does not contain a subgraph
isomorphic to K4.

Let δ be a hole of Σ, let v1, . . . , vk be the vertices of H0 on δ (in the natural
order), and let X1, . . . , Xk be vertex sets of size d that define the vortex on
δ in H1. We claim that there is no edge in C that has both of its ends in one
of the sets X1, . . . , Xk. Suppose otherwise. Let e ∈ C and suppose that e
has both of its ends in Xi. Let vi be the unique vertex in Xi ∩ V (H0). Let
H ′

0 be the proper subgraph of H0, obtained by moving the neighbours of vi

in H0 onto the hole δ. Clearly, (H ′
0, Σ) ∈ H0(g, h). Now observe that H1/e

is a minor of a graph that can be obtained from H ′
0 by adding complete

vortices of depth d to each hole. Since H is a minor of H1/e, this contradicts
the minimality of |V (H0)|. This contradiction verifies our claim that there
is no edge in C having both ends in one of the sets X1, . . . , Xk.
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We have shown that each K4-subgraph of H will contain an edge of one
of the vortices. Conversely, since d ≥ 4, each edge in a vortex is contained
in a K4-subgraph. Let Z denote the set of all vertices of G that are in a
K4-subgraph. One can find Z in O(|V (H)|2)-time. Indeed, it suffices to
consider all pairs of edges and the number of edges is O(|V (H)|).

The graph H\Z is a subgraph of H0 obtained by deleting all boundary
vertices as well as some of their neighbours. Since H0 triangulated Σ, it is
straightforward to recover the embedding of H\Z. Each edge in H\Z is
in at most two triangles, each triangle in (H\Z, Σ) bounds a face, and the
only faces of (H\Z, Σ) that are not triangles are the faces containing holes.
Let W be the edges of H\Z that are not in two triangles. These are the
edges that are in the boundaries of the faces containing the holes. Now
that we know the boundaries of each of the faces in (H\Z, Σ) we have the
embedding.

The rest of H attaches to (H\Z, Σ) as vortices of adhesion at most
2(d + 1). Realizing the structure of these vortices is a routine matter of
uncrossing separations and is omitted.

Using the faster minor-testing algorithm in [25] improves the
complexity in Theorem 5.5.2 to O(|V (G)|3 log(|V (G)|)).

5.6 Excluding a Group-labelled Graph

In this section we discuss structure theorems for Γ-labelled graphs. These
results were all proved by Geelen and Gerards in [14].

The first theorem asserts that sufficiently large clique-minors in G̃ force
big {0}-labelled clique minors in G.

Theorem 5.6.1. For each finite abelian group Γ and each n ∈ N there exists
f := f(n, |Γ|) ∈ N such that for all Γ-labelled graphs G, if G̃ has a Kf -minor,
then G has a K({0}, n)-minor.

Proof. This follows straightforwardly from Ramsey’s theorem. See [14,
Theorem 2.8].

A block of a Γ-labelled graph G is a maximal 2-connected subgraph of
G. We regard a single edge (but not a single vertex) as a 2-connected graph.
The next theorem is the main theorem of [14].
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Theorem 5.6.2. Let Γ be a finite abelian group, let Γ′ be a subgroup of Γ, let
m ∈ N, and let t = n|Γ|2. If G is a Γ-labelled graph and G has a minor H which
is isomorphic to K(Γ′, 4t), then either

• there is a set X of at most t vertices of G such that the unique block of G\X
that contains most of E(H) is Γ′-balanced, or

• there is a subgroup Γ′′ of Γ properly containing Γ′ and a minor H ′ of G such
that H ′ is isomorphic to K(Γ′′, m) and E(H ′) ⊆ E(H).

Remark 5.6.3. Using the algorithm of Chudnovsky, Cunningham, and
Geelen [4], the proof of Theorem 5.6.2 is constructive. Regarding m as a
constant, we can either find the set X or the minor H ′ in O(|V (G)|5)-time.

Lemma 5.6.4. Let G be a loopless Γ-labelled graph and T be a tangle of order n
in G. For any X ⊆ V (G) with |X| ≤ n − 2, there is a unique block H of G\X
such that G[V (H) ∪X] is not contained in any T -small subgraph of G.

Proof. For each block H of G\X , define TH to be the collection of
separations (A, B) of G\X , with ord(A, B) < 2 and H ⊆ B. It is readily
checked that TH is a tangle of order 2 in G\X and that every tangle in G\X
of order 2 arises in this way.

If A is a subgraph of G\X , we define A+ to be G[V (A) ∪ X]. Let T ′

be the collection of all separations (A, B) of G\X of order < n− |X|, such
that A+ is T -small. Clearly, T ′ is a tangle in G\X . Let T2 be the truncation
of T ′ to order 2. Thus, there is a unique block H of G\X , with T2 = TH .
Towards a contradiction, suppose H+ is contained in a T -small subgraph
of G. By definition, H ⊆ A, for some (A, B) ∈ T ′. If ord(A, B) ≤ 1, then
(A, B) ∈ T2 = TH , contradicting the definition of TH . Otherwise, we slide
the separation (A, B) towards H to obtain a separation (A′, B′) ∈ T ′, with
ord(A′, B′) ≤ 1 and H ⊆ A′.

We call H the T -large block of G\X . The following is the main theorem
of [14].

Theorem 5.6.5. For all n ∈ N and all finite abelian groups Γ, there exists l, t ∈ N
such that if G is a Γ-labelled graph and T is a tangle of order at least t + 2 in G
then either
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• T controls a K(Γ, n)-minor in G,

• T does not control a Kl minor in G̃, or

• There exists X ⊆ V (G), with |X| ≤ t, such that the T -large block of G\X
is Γ′-balanced for some proper subgroup Γ′ of Γ.

In the case that T does not control a Kl minor in G̃, we can use the
Graph Minors Structure Theorem to describe the structure of G̃.
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Chapter 6

Redundant Vertices in
Clique-minors

Let G be a Γ-labelled graph and let Π be a pattern in G. A vertex v ∈ V (G)
is essential for Π, if Π is realizable and v ∈ V (P) for any realization P of Π
in G. In particular, if Π is realizable, then any vertex v ∈ V (Π) is essential.
A vertex is redundant for Π if it is not essential for Π. This chapter discusses
redundant vertices in clique-minors.

6.1 Big Γ-labelled Cliques

Let G be a Γ-labelled graph and let Π be a pattern in G. We will prove that
a big Γ-labelled clique-minor of G contains redundant vertices for Π. With
respect to finding redundant vertices, big Γ-labelled clique-minors in Γ-
labelled graphs are analogous to big clique minors in (unlabelled) graphs.

Here is our main result.

Theorem 6.1.1. Let G be a Γ-labelled graph and let Π be a pattern in G. Let
X := V (Π) and let H be a minor of G which is isomorphic to K(Γ, n), where
n > 3|X| + 1. Let T be the tangle of order θ := d2n/3e in G induced by H and
let Y := clT (X). Lastly, let (A, B) be the separation (G[Y ], G 	 G[Y ]) in G.
Under these hypotheses, any vertex v ∈ V (B)\V (A) is redundant for Π.

Proof. Note that such a vertex v exists from the definition of T . Let
r := rT (X) and let Z be the boundary of (A, B). By Lemma 4.3.1, T
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controls a tangle T1 of order θ − 1 in G\v. By Lemma 4.3.2, T1 controls
a tangle T2 of order (θ − 1) − r in B\v. Since n > 3|X| + 1, we have that
θ − 1 > 2r. Thus, by Lemma 4.3.3, it follows that Z is T2-independent.
Finally, Lemma 4.5.3 implies that in B\v we can contract a K(Γ, r)-minor
onto Z. It immediately follows that v is indeed redundant for Π.

In the special case that the vertices of Π are T -independent, the
previous proof shows that G actually does have a Π-linkage. Thus, we
have the following sufficient conditions.

Theorem 6.1.2. Let G be a Γ-labelled graph and let Π be a pattern of size k in
G. Let H be a K(Γ, n)-minor in G, where n > 6k + 1. Let T be the tangle in G
induced by H . If V (Π) is T -independent, then G has a Π-linkage.

6.2 Big Γ′-labelled Cliques

Let G be a Γ-labelled graph and let Γ′ be a subgroup of Γ. In this section we
consider instances of Π-linkage problems where G has a large Γ′-labelled
clique-minor. To be precise, we aim to prove the following theorem.

Theorem 6.2.1. Let f(k, |Γ|) = 12k2|Γ|22k|Γ|. Let G be a Γ-labelled graph and
let Π be a pattern in G with |Π| = k. If G\V (Π) is Γ′-balanced for some subgroup
Γ′ of Γ and G\V (Π) has a K(Γ′, f(k, |Γ|))-minor, H , then there exists a vertex v
of H that is redundant for (G, Π).

Proof. Let X = V (Π). By hypothesis, G\X is Γ′-balanced, and G\X has a
minor H which is isomorphic to K(Γ′, f(k, |Γ|)). It is easy to see that we
may perform shifts so that G\X is Γ′-labelled and such that we can obtain
H from G\X without the need to perform further shifts.

By flipping edges, we may assume that all the edges between X and
G\X are directed away from X . Now, the K(Γ′, f(k, |Γ|))-minor, H ,
induces a tangle T in G\X of order

θ := d2f(k, |Γ|)/3e ≥ 2|X|2|Γ|2|X||Γ|.

For each x ∈ X and γ ∈ Γ, we let

Nx,γ := {u ∈ V (G\X) : e = xu ∈ E(G), γe = γ}.
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There are |X||Γ| such sets. We re-index them N1, . . . , N|X||Γ| where

rT (N1) ≤ · · · ≤ rT (N|X||Γ|).

Let j be the minimum index such that rT (Nj) > |X|2|Γ|2j−1. If no such j
exists, we set j := |X||Γ|+ 1.

We choose a separation (A, B) of G\X , such that

•
⋃j−1

i=1 Ni ⊆ A,

• ord(A, B) = rT (
⋃j−1

i=1 Ni), and

• (A, B) is T -independent.

Since (A, B) is T -independent, we have that the boundary Y of (A, B)
is T -independent. Note that T controls a tangle T ′ in B of order at least
θ − |Y |. Since θ ≥ 2|Y |, we conclude that Y is in fact T ′-independent by
Lemma 4.3.3.

Observe that if j 6= |X||Γ|+ 1, then

rT (

j−1⋃
i=1

Ni) ≤
j−1∑
i=1

rT (Ni)

≤
j−1∑
i=1

|X|2|Γ|2i−1

= |X|2|Γ|(2j−1 − 1)

< rT (Nj)− |X|2|Γ|

Let B be the set of indices i such that j ≤ i ≤ |X||Γ|. Note that B = ∅
if j = |X||Γ| + 1. By the above inequality, for each i ∈ B, we can choose a
subset Vi of vertices of G such that

• V := {Vi : i ∈ B} is a disjoint family,

• Vi ⊆ Ni ∩B,

• |Vi| = |X|, and

• Z := Y ∪
⋃

i∈B Vi is T ′-independent.

Let v be a vertex of H so that Z ∪ {v} is T ′-independent. By Lemma 4.5.3,
we can contract a Γ′-labelled clique onto Z ∪{v} in B. It is hence clear that
v is redundant for Π since every edge in B has group-value in Γ′.
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Chapter 7

Surfaces

7.1 Curves in Surfaces

Recall that a surface is a connected compact 2-manifold with (possibly
empty) boundary. Let Σ be a surface. A curve S in Σ is a continuous
function S : [0, 1] → Σ. It is simple if S is injective, and it is closed if
S(0) = S(1). Abusing terminology, we call S(0) the tail of S and S(1)
the head of S, respectively denoted tail(S) and head(S). The head and tail
of S are its ends. An arc is a simple curve. Two curves in Σ are internally
disjoint if they are disjoint except possibly at their ends. Let X and Y be
subsets of Σ. A curve S is an X-curve if ends(S) ⊆ X , and S is otherwise
disjoint from X . It is an X-Y curve if one end of S in on X , the other is on
Y , and S is otherwise disjoint from X ∪ Y . A curve in Σ is normal if it is a
bd(Σ)-curve. Let S1 denote the unit circle in C. A circle in Σ is a subset of Σ
homeomorphic to S1. A circle C is separating if Σ\C is disconnected, and
is non-separating otherwise. A circle is contractible if it bounds a closed disk
in Σ, otherwise it is non-contractible. Certain arcs may also be contractible.
We say that an arc A is contractible if A is a δ-arc for some hole δ of Σ and
A together with some subset of δ bounds a disk in Σ. Otherwise, A is
non-contractible.

We next define various notions of homotopies between curves in Σ.
Two circles C1 and C2 in Σ are freely homotopic if there is a continuous
function H : S1 × [0, 1] → Σ with H(x, 0) = C1(x) and H(x, 1) = C2(x)
for all x ∈ S1. We call H a homotopy which brings C1 to C2.

Similarly, we can define homotopy of curves with fixed base points.
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Let A1 and A2 both be arcs from p to q in Σ (we allow p = q). We say that
A1 is homotopic to A2 (relative to p and q) if there is a continuous function
H : [0, 1] × [0, 1] → Σ with H(x, 0) = A1(x), H(x, 1) = A2(x), H(0, y) = p,
and H(1, y) = q for all x, y ∈ [0, 1].

Finally, we now define homotopy for normal arcs of Σ. We first
consider arcs with both their ends on the same hole. Let δ be a hole of
Σ and let A1 and A2 be δ-arcs in Σ. We say that A1 and A2 are homotopic
(relative to δ) if A1∪A2 and some subset of δ bounds a disk in Σ. Homotopy
for arcs which connect up two holes is defined similarly. Let δ1 and δ2 be
distinct holes of Σ and let A1 and A2 be δ1-δ2 arcs. We say that A1 and A2

are homotopic (relative to δ1 and δ2) if A1 ∪ A2 and some subset of δ1 ∪ δ2

bounds a disk in Σ.
A family C of curves in Σ is called a t-family, if any two distinct curves

in C intersect in at most t points. We require the following two theorems
of Juvan, Malnič, and Mohar [23].

Theorem 7.1.1. For any surface Σ and t ∈ N, there is a constant N(Σ, t) so that
any t-family of pairwise non-homotopic circles in Σ has at most N(Σ, t) members.

Theorem 7.1.2. For any surface Σ and t ∈ N, there is a constant N∗(Σ, t) with
the following property. If A is a t-family of arcs connecting p to q in Σ which are
pairwise non-homotopic (with respect to p and q), then |A| ≤ N∗(Σ, t).

We actually only require the cases t ∈ [2].

Lemma 7.1.3. For any surface Σ, there is a constant ρ1(Σ) such that if δ is a hole
of Σ and A is a family of non-contractible δ-curves in Σ which are pairwise non-
homotopic (with respect to δ) and pairwise internally disjoint, then |A| ≤ ρ1(Σ).

Proof. Let A be such a family. We begin by performing the following
operation on Σ. Cap the hole δ with a disk ∆, and then shrink ∆ to a point
x. Let Σ′ be the resulting surface and C ′ be the resulting family of curves
in Σ′. Observe that C ′ is a 1-family of pairwise non-homotopic circles in Σ′.
Thus, letting N(Σ, t) be the function from Theorem 7.1.1, we have that

|A| = |C ′| ≤ N(Σ′, 1).
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Lemma 7.1.4. For any surface Σ, there is a constant ρ2(Σ) with the following
property. If δ1 and δ2 are distinct holes of Σ and A is a family of normal δ1-δ2 arcs
in Σ, which are pairwise non-homotopic (with respect to δ1 and δ2) and pairwise
internally disjoint, then |A| ≤ ρ2(Σ).

Proof. Let A be such a family. Begin by capping δ1 with a disk ∆1 and δ2

with a disk ∆2, and then shrinking δ1 to a point x1 and δ2 to a point x2.
Let Σ′ be the resulting surface, and A′ be the resulting family of curves in
Σ′. Note that A′ is a family of internally disjoint arcs from x1 to x2 in Σ′

that are pairwise non-homotopic with respect to x1 and x2. Thus, letting
N∗(Σ, t) be the function from Theorem 7.1.2, we have

|A| = |A′| ≤ N∗(Σ′, 2).

7.2 Linkages in Surfaces

Let Σ be a surface. A pattern in Σ is a finite collection Π of disjoint 2-subsets
of Σ. The size of Π is |Π|, and we call Π a k-pattern (in Σ), if it has size at
most k. Let Π = {{si, ti} : i ∈ [k]} be a k-pattern in Σ. A topological linkage
(in Σ) is a collection of pairwise disjoint arcs in Σ. A topological realization of
Π is a topological linkageL := {Li : i ∈ [k]} such that ends(Li) = {si, ti} for
each i ∈ [k]. We call such an L a topological Π-linkage. If Π has a topological
realization we say that Π is realizable in Σ.

Robertson and Seymour made the following observation.

Lemma 7.2.1. For any surface Σ and any k ∈ N, there exists t := t(k, Σ) ∈ N
such that if C is any circle in Σ, and Π is any realizable k-pattern in Σ, then there
exists a Π-linkage in Σ that intersects C in at most t points.

Proof. This follows since up to homeomorphism, there are only a finite
number of k-patterns in Σ.

It turns out that the existence of the function t(k, Σ) is adequate for the
proof of Theorem 1.1.7. However, since the proof of Lemma 7.2.1 is highly
non-constructive, it is unclear whether t(k, Σ) is in fact a computable
function of k and Σ. Geelen and Richter [18] remedied this problem by
showing:

65



Theorem 7.2.2. For any k ∈ N, if Σ is a surface, C is a circle in Σ and Π is
a realizable k-pattern in Σ, then there exists a topological Π-linkage in Σ that
intersects C in at most 2k points.

Thus, we obtain explicit algorithms for both the H-minor testing
problem and k-linkage problem for graphs. Interestingly, note that t(k, Σ)
does not actually depend on the surface Σ.

7.3 Representativity

Let G be a graph embedded in a surface Σ, with ε(Σ) ≥ 1 and with no
holes. A curve C in Σ is dual for G if it intersects G only at vertices. The
vertices of C are the vertices of G it contains, and the length of C is its
number of vertices. The representativity of G in Σ is the minimum length of
a non-contractible dual circle in Σ. We remark that if G is embedded in a
surface Σ (possibly with holes), then the representativity of G in Σ is simply
the representativity of G in Σ̂.

7.4 Distance on a Surface

In this section we present two metrics for graphs embedded in a surface.

Definition 7.4.1. Let G be a graph embedded in a surface Σ. For vertices
u, v ∈ V (G) we let dΣ(u, v) be the minimum of |V (P )| − 1 where P ranges
over all dual curves from u to v. It is clear that dΣ is a metric on V (G),
which we call the surface metric.

Example 7.4.2. Let G4n be the 4n × 4n grid embedded in a surface Σ so
that G4n is contained in a disk. Consider the vertices u := (n, n) and
v := (3n, 3n) of G4n. It is easy to see that dΣ(u, v) = 2n.

For many applications, the surface metric is a suitable metric to work
with. On the other hand, it is ultimately inadequate due to the following
shortcoming. Let G be any graph embedded in a surface Σ and let F be a
face of G which bounds a disk ∆. Let G4n be the 4n × 4n grid, when n is
large. Let e be any edge of F and let f be any edge on the outerface of G4n.
Finally, let G′ be the graph obtained from G4n and G by identifying e and f .

66



We may regard G′ as embedded in Σ since we can place G4n inside ∆. By
Example 7.4.2, there are vertices u and v of G4n (regarded as a subgraph
of G′) such that dΣ(u, v) = 2n. However, in some sense, u and v are not
far apart in Σ since there is a dual circle of length 2 which bounds a disk
containing u and v. To overcome this shortcoming, we introduce a second
metric using tangles.

Definition 7.4.3. Let G be a 2-connected graph embedded in a surface Σ
and let T be a tangle of order θ in G. For u, v ∈ V (G), we define dT (u, v) to
be the minimum of rT (V (P )) − 1, where P ranges over all dual curves in
Σ from u to v. We call the dT the tangle metric on V (G).

It was first shown in Graph Minors XI [38, Theorem 9.1] that dT is
indeed a metric on V (G).

Theorem 7.4.4. Let G be a 2-connected graph embedded in a surface Σ, and let
T be a tangle in G. Then dT is a metric on V (G).

Proof. Evidently, dT is symmetric. Since G is 2-connected, it is also clearly
non-negative, and dT (u, v) = 0 if and only if u = v. Let u, v, w ∈ V (G).
Let P be a dual curve from u to v with rT (V (P )) − 1 = dT (u, v), and Q
be a dual curve from v to w with rT (V (Q)) − 1 = dT (u, v). Note that
R := P ∪Q is a dual curve from u to w. Note that since G is connected we
have rT ({v}) = 1. Thus,

dT (u, w) ≤ rT (V (R))− 1

= rT (V (P ) ∪ V (Q))− 1

≤ rT (V (P )) + rT (V (Q))− rT (V (P ) ∩ V (Q))− 1

≤ rT (V (P ))− 1 + rT (V (Q))− 1

= dT (u, v) + dT (v, w)

For the remainder of this section d ∈ {dΣ, dT }. Let X and Y be subsets
of V (G). We define the distance between X and Y (with respect to d) to be

d(X, Y ) := min{d(x, y) : x ∈ X, y ∈ Y }.

As special cases, the distance between two faces F1 and F2 of G is
d(F1, F2) := d(V (F1), V (F2)) and the distance between two holes δ1 and δ2
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is d(δ1, δ2) := d(V (δ1), V (δ2)). The ball of radius r, centred at x (with respect
to d) is the set

Bd[x, r] := {y ∈ V (G) : d(x, y) ≤ r},
and the sphere of radius r, centred at x is the set

Sd[x, r] := {y ∈ V (G) : d(x, y) = r}.

Similarly, we can define balls and spheres which are centred at faces of
G, or holes of Σ.

7.5 Respectful Tangles

Observe that in the sphere, any circle is the boundary of two disks. Thus, a
circle on the sphere does not have a well-defined “inside.” In this sense, the
sphere is peculiar among all surfaces. We overcome this difficulty by using
respectful tangles, which allow us to completely unify graphs embedded on
the sphere with those embedded in other surfaces. Respectful tangles were
first introduced in Graph Minors XI [38]. Now to the definition.

Let G be a graph embedded in a surface Σ without holes, and let T be
a tangle of order n in G. We say that T is respectful if for every dual circle
C of length less than n, there is a disk ∆ in Σ such that bd(∆) = C and

(G ∩∆, G ∩ Σ\∆) ∈ T .

Observe that if G is embedded on the sphere, then every tangle of G is
respectful. If Σ is not the sphere, and T is a respectful tangle of order n,
then clearly the representativity of G is at least n. Conversely, Robertson
and Seymour [38, Theorem 4.1] proved that if G is 2-cell embedded in a
surface Σ and G has representativity at least n, then G has a respectful
tangle of order n.

Theorem 7.5.1. Let G be a graph 2-cell embedded in a surface Σ with no holes
which is not the sphere. If the representativity of G is at least n ≥ 1, then G has
a unique respectful tangle T of order n.

Remark 7.5.2. Let G be a graph embedded in a surface Σ with holes. By
regarding G as embedded in the capped surface Σ̂, we can extend the
definition of respectful tangles to include surfaces with boundary.
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Let T be a respectful tangle of G. Recall that T induces a metric dT on
V (G). We will require [39, Theorem 7.5], which describes the effect on T
and dT if we delete all the vertices of a face of G.

Theorem 7.5.3. Let G be a graph 2-cell embedded in a surface Σ without holes,
and let T be a respectful tangle of G of order n ≥ 3. Let F be a face of G in Σ and
let X := V (F ). Then there is a 2-cell subdrawing G′ of G\X and a face F ′ of G′

containing F such that

• G′ has a respectful tangle T ′ of order n− 2.

• G is a subset of G′ ∪ F ′ (in Σ).

• dT ′(u, v) ≥ dT (u, v)− 4, for all u, v ∈ V (G′).

• dT ′(u, F ′) ≥ dT (u, F )− 2, for all u ∈ V (G′).

• dT (u, v) ≤ 3, for all u, v ∈ V (G) ∩ F ′.

By repeatedly applying Theorem 7.5.3, we get [39, Theorem 7.6].

Theorem 7.5.4. Let n ∈ N, let G be a graph 2-cell embedded in a surface Σ
without holes, and let T be a respectful tangle of G of order m ≥ 2n + 1. Let F
be a face of G and let X ⊆ V (G) be the ball of radius n − 1 (with respect to dΣ)
centred at F . Then there is a 2-cell subdrawing G′ of G\X , and a face F ′ of G′

containing F such that

• G′ has a respectful tangle T ′ of order at least m− 2n.

• G is a subset of G′ ∪ F ′.

• dT ′(u, v) ≥ dT (u, v)− 4n, for all u, v ∈ V (G′).

• dT ′(u, F ′) ≥ dT (u, F )− 2n, for all u ∈ V (G′).

• dT (u, v),≤ 2n + 1, for all u, v ∈ V (G) ∩ F ′.

Theorem 7.5.4 has the following simple, but useful corollary.

Corollary 7.5.5. Let n ∈ N, let G be a graph 2-cell embedded in a surface Σ
without holes, let T be a respectful tangle of G of order m ≥ 2n + 1, and let F be
a face of G. Then for each i ∈ [n], there is a cycle Ci of G, such that
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• Ci bounds a disk in Σ containing F ,

• Ci only passes through vertices at distance exactly i−1 from F (with respect
to dΣ).

The last result of the section asserts that if T is a respectful tangle in G
of high order, then any T -independent subset of vertices of a face F cannot
be separated from G by a low order separation “close to F .”

Lemma 7.5.6. Let n,G, Σ, T , F , and {Ci : i ∈ [n]} be as in Corollary 7.5.5. If
Z is a T -independent subset of V (F ), then there are |Z| vertex-disjoint paths in
G from Z to V (Cn).

Proof. We assume for the moment that Σ is not the sphere. Recall that Cn

bounds a disk ∆n in Σ containing F . If the desired paths do not exist, then
by Menger’s Theorem there is a dual circle D of length less than |Z|, which
separates Z from Cn. That is D bounds a disk ∆ ⊆ ∆n such that Z ⊆ ∆.
Consider the separation (G ∩ ∆, G ∩ Σ\∆). Since Σ is not the sphere and
T is respectful, we must have that (G ∩ ∆, G ∩ Σ\∆) ∈ T . However, this
contradicts the fact that Z is T -independent. If Σ is the sphere, then Σ\∆
is also a disk, so it possible that

(G ∩ Σ\∆, G ∩∆) ∈ T ,

thus avoiding a contradiction.
We now give a proof for when Σ is the sphere. Incidentally, this proof

actually works for all surfaces, rendering the previous paragraph obsolete.
We proceed by induction on n. For each i ∈ [n], recall that each vertex in
Ci is at distance exactly i − 1 from F . The main part of the proof is the
following claim

Claim. There is a collection of |Z| disjoint paths in G from Z to C2.

SUBPROOF. Suppose not. Let ∆2 be the disk bounded by C2 that contains
F . As before, there must be a dual circle D of length less than |Z| which
separates Z from C2. So D bounds a disk ∆ such that ∆ ⊆ ∆2 and Z ⊆ ∆.
We are done unless Σ is the sphere and

(G ∩ Σ\∆, G ∩∆) ∈ T .

In this case we choose a separation (A, B) of G such that
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(1) (A, B) ∈ T , and

(2) subject to (1), B is minimal.

Note that B ⊆ G ∩∆. Furthermore, there exist disks ∆′
1 and ∆′

2 in Σ such
that

• B ⊆ ∆′
1 ∪∆′

2,

• bd(∆i) is a dual curve of length at most |Z| for each i ∈ [2], and

• G ∩∆′
i is a proper subgraph of B, for each i ∈ [2].

By the minimality of B, for each i ∈ [2] we must have

(G ∩∆′
i, (G ∩ Σ\∆′

i)) ∈ T .

But now G is the union of A, G∩∆′
1, and G∩∆′

2, each of which is T -small.
This contradiction proves the claim.

Let P be such a collection of paths with |E(P)| minimal and let Z2 be
the set of ends of P in C2. Let X := V (F ). By Theorem 7.5.3, there is a
2-cell subdrawing G′ of G\X , such that C2 is the boundary of a face F ′ of
G′ containing F . Moreover, G′ has a respectful tangle T ′ of order at least
2(n−1)+1. It is easy to see that Z2 is T ′-independent, else Z would not be
T -independent. By induction, there is a collection Q of |Z2| vertex disjoint
paths in G′ from Z2 to Cn. Combining Q and P appropriately gives the
desired paths.

7.6 A Disk with Strips

This section provides a different way to view surfaces. A strip S is
a surface homeomorphic to [0, 1] × [0, 10]. The tail of S is tail(S) :=
[0, 1] × {0} and the head of S is head(S) := [0, 1] × {10}. The ends of
S are ends(S) := {tail(S), head(S)}. The corners of S are cor(S) :=
{(0, 0), (0, 10), (1, 0), (1, 10)}. A disk with n strips is a surface Σ := ∆ ∪ S1 ∪
· · · ∪ Sn, where ∆ is a disk and for each i, j ∈ [n],

• Si is a strip.
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• Si ∩∆ is precisely the union of the ends of Si.

• Si and Sj are disjoint, except possibly at corners.

For example, both the cylinder and the Möbius band are disks with 1
strip. If Σ = ∆∪S1 ∪ · · · ∪Sn is a disk with n strips, then we say S1, . . . , Sn

are the strips of Σ and that ∆(Σ) := ∆ is the disk of Σ.

7.7 A Disk with Γ-Strips

Let Γ be a finite abelian group. A Γ-strip is a strip S endowed with an
element γ(S) ∈ Γ. We call γ(S) the group-value of S. A disk with n Γ-strips
is a disk with n strips Σ := ∆ ∪ S1 ∪ · · · ∪ Sn, so that each Si is a Γ-strip.

For the remainder of this section Σ := ∆ ∪ S1 ∪ · · · ∪ Sn is a disk with
n Γ-strips. Recall that a ∆-arc in Σ is an arc A with both its ends on ∆ that
is otherwise disjoint from ∆. Evidently, this implies that the ends of A are
on bd(∆), and that the rest of A is contained in a Γ-strip of Σ.

Let Sj := [0, 1] × [0, 10] → Σ be a Γ-strip of Σ and let A be a ∆-arc
of Σ contained in Sj . We define the orientation of Sj to be the orientation
it inherits from [0, 10]. We say that A passes through Sj if the ends of A
are on different ends of Sj . It passes through Sj in the positive direction if
head(A) ∈ head(Sj) and tail(A) ∈ tail(Sj). Conversely, A passes through
Sj in the negative direction if head(A) ∈ tail(Sj) and tail(A) ∈ head(Sj). The
group-value, or just value, of A is defined to be γ(Sj) if A passes through
Sj in the positive direction, -γ(Sj) if A passes through Sj in the negative
direction, and zero otherwise. We let γΣ(A) denote the value of A.

We can extend this notion to arbitrary arcs as follows. Let L be an arc
in Σ. The value of L is

γΣ(L) :=
∑

γΣ(A),

where the sum runs over all A ⊆ L such that A is a ∆-arc.
It now makes sense to introduce group-valued linkage problems in Σ.

A pattern Π in Σ is any set of triples of the form (x, y, γ), where x and y are
distinct points of Σ, no point in Σ occurs in more than one triple of Π, and
γ ∈ Γ. As before, Π is a k-pattern if |Π| ≤ k.

Definition 7.7.1. Let Π := {(si, ti, γi) : i ∈ [k]} be a pattern in a disk with
Γ-strips Σ. A topological realization of Π in Σ is a family {Li : i ∈ [k]} of
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disjoint arcs in Σ such that for each i ∈ [k], the tail of Li is si, the head of Li

is ti, and the value of Li is γi.
A pattern Π in Σ is topologically realizable if it has a topological

realization.

Remark 7.7.2. We mention that a pattern Π now potentially refers to four
disparate objects. That is, we have defined patterns for graphs, Γ-labelled
graphs, surfaces, and disks with Γ-strips. We will make sure to carefully
specify what type of pattern we mean if there is any chance of confusion.

Let L be an arc in Σ, let L be a family of arcs in Σ, and let S be a Γ-
strip of Σ. We define the number of times L uses S to be the number of
∆-subarcs of L contained in S. The number of times L uses S is the sum
over the number of times each member of L uses S.

The following lemma is analogous to Lemma 7.2.1.

Lemma 7.7.3. For all k, n ∈ N and all finite abelian groups Γ, there exists
t := t(k, Γ, n) such that if Σ is a disk with n Γ-strips and Π is a topologically
realizable k-pattern in Σ, then there is a topological realization L of Π in Σ such
that for each strip S of Σ, L uses S at most t times.

Proof. Let Σ := ∆ ∪ S1 ∪ · · · ∪ Sn be a disk with n Γ-strips, and let Π be a
topologically realizable k-pattern in Σ. By shrinking ∆, we may assume
that V (Π)∩∆ is contained on the boundary of ∆. Now by enlarging ∆, we
may assume that V (Π) ⊆ bd(∆). Up to homeomorphism, there are only a
finite number of such patterns, so we are done.

7.8 Disjoint Paths Across a Cylinder

The cylinder is the surface {(x, y) ∈ R2 : 1 ≤ x2 +y2 ≤ 4}. In this section we
let Σ denote the cylinder. Let G be a graph drawn on Σ. Let δ1 and δ2 be
the two holes of Σ. Let Y = V (G)∩δ1 and Z = V (G)∩δ2. For A ⊆ Y , we let
κG(A, Z) be the size of a maximum collection of disjoint A-Z paths. Using
Menger’s Theorem, one can show that κG is the rank function of a matroid
on Y . For paths P and Q that intersect, the product of P with Q is the path
PQ := PxQ, where x is the first vertex of P also in Q. By convention, if
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P and Q are disjoint A-Z paths, the region between P and Q is the (closed)
clockwise region from P to Q. Recall that a society is a cyclically ordered
finite set. Let S be a society. Recall that an interval of S is a proper subset
of consecutive vertices of S. A contiguous partition of S is a collection of
(non-empty) intervals I1, . . . , Im of S such that

•
⋃

j∈[m] Ij = S, and

• for each j ∈ [m] the first element of Ij+1 is the successor of the last
element of Ij (we regard subscripts modulo m).

Note that we can regard Y as a society, ordered clockwise around δ1.
Let I be an interval of Y . We naturally regard I as linearly ordered, and
we call this the clockwise ordering of I . The anti-clockwise ordering on I is
the reverse of the clockwise ordering. If P is a set of I-Z paths in G, then
we can order the paths in P according to their endpoints in I . Thus, we
can order P either clockwise or anti-clockwise.

Theorem 7.8.1. Let A1, B1, A2, B2, . . . , An, Bn be a contiguous partition of Y
(in that clockwise order). If κG(Ai, Z) = |Ai| and κG(Bi, Z) ≥ 2

∑n
j=1 |Aj| for

each i ∈ [n], then κG(
⋃n

i=1 Ai, Z) =
∑n

i=1 |Ai|.

Proof. By hypothesis, for each i ∈ [n], there exists a collection Ai of |Ai|
disjoint Ai-Z paths. If the paths in A :=

⋃n
i=1Ai are disjoint, we are done.

Otherwise, for each i ∈ [n], we will reroute the paths in Ai to obtain a
collection A′

i of disjoint Ai-Z paths, so that
⋃n

i=1A′
i is also a collection of

disjoint paths.
Let B :=

⋃n
i=1 Bi. Since κG is the rank function of a matroid, we can

greedily choose a collection B of disjoint B-Z paths such that

• |B| = 2
∑n

i=1 |Ai|, and

• For each i, B contains exactly |Ai|+ |Ai+1| paths with an endpoint in
Bi.

The idea is to use the paths in B to reroute the paths in A. Let Bi be the
paths in B with an endpoint in Bi and let mi := |Ai|.

Label the paths of A1 := {P1, . . . , Pm1} clockwise, the paths of B1 :=
{R1, . . . , Rm1+m2} clockwise, and the paths of Bn := {L1, . . . , Lmn+m1} anti-
clockwise.
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We will reroute the paths in A1 so that they are all between Lm1 and
Rm1 . Towards a contradiction suppose not. The crux of the proof is the
following claim.

Claim. For any i < j, if the paths Pi, . . . , Pj are not all in between Lj−i+1 and
Rj−1+1 then either

• Pi ∩ Lj−i+1 6= ∅ and PiLj−i+1 ∩Rj−i+1 = ∅, or

• Pj ∩Rj−i+1 6= ∅, and PjRj−i+1 ∩ Lj−i+1 = ∅.

SUBPROOF. Suppose that the paths Pi, . . . , Pj are not all in between Lj−i+1

and Rj−1+1. By planarity, it follows that Pi or Pj must intersect Lj−i+1

or Rj−i+1. By symmetry we may assume that Pi intersects Lj−i+1 or
Rj−i+1. First suppose that Pi intersects Lj−i+1. Then we are done unless
PiLj−i+1 ∩Rj−i+1 6= ∅. However, this implies that Pi also intersects Rj−i+1,
and that it does so before it intersects Lj−i+1. Therefore, Pj ∩ Rj−i+1 6= ∅,
and PjRj−i+1∩Lj−i+1 = ∅, as required. The remaining case is if Pi intersects
Rj−i+1, but not Lj−i+1. In this case we again we have Pj ∩ Rj−i+1 6= ∅, and
PjRj−i+1 ∩ Lj−i+1 = ∅.

We now apply the above claim with i = 1 and j = m1. We conclude
that all paths of A1 are indeed between Lm1 and Rm1 unless

• P1 ∩ Lm1 6= ∅ and P1Lm1 ∩Rm1 = ∅, or

• Pm1 ∩Rm1 6= ∅ and Pm1Rm1 ∩ Lm1 = ∅.

By symmetry, we may assume P1 ∩ Lm1 6= ∅ and P1Lm1 ∩ Rm1 = ∅.
We replace P1 by P1Lm1 . We can then inductively continue rerouting by
applying the claim to P2, . . . , Pm1 .

By repeating the above argument, for each i ∈ [n] we obtain a family
A′

i of disjoint Ai-Z paths such that for all i

• |A′
i| = |Ai|, and

• The paths in A′
i intersect at most |Ai| paths of Bi and at most |Ai|

paths of Bi−1.

It immediately follows that the family A′ :=
⋃n

i=1A′
i is disjoint, since

|Bi| ≥ |Ai|+ |Ai+1| for each i.
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Let Cm be a cycle of length m and Pn be a path of length n ≥ 2. We
define the (m,n)-cylindrical grid to be the graph Cm×Pn−1. The two cycles
of length m in Cm×Pn−1 that pass through only degree 3 vertices are called
the boundary cycles.

Let Π be a pattern, such that V (Π) is a society. We say that Π is cross-free
if there do not exist distinct points a, b, c, d of V (Π) (occurring in that cyclic
order) such that {a, c} ∈ Π and {b, d} ∈ Π.

Theorem 7.8.2. Let G be the (2k, k)-cylindrical grid with boundary cycles C1

and C2. If Π is a k-pattern with V (Π) = V (C1) that is cross-free, then Π is
realizable in G.

Proof. Let Π be a cross-free k-pattern of X := V (C1). Since Π is cross-
free, we can find an element {s, t} ∈ Π such that s and t are consecutive
vertices of X . We link s and t directly via the edge st. By regarding
H := C2k−2 × Pk−1 as a minor of G\{s, t} in the natural way we reduce
to a Π′-linkage problem in H , with |Π′| = |Π| − 1. By induction, H does
indeed have a Π′-linkage, so G has a Π-linkage.
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Chapter 8

Redundant Vertices in Surfaces

Let G be a Γ-labelled graph and let Π be a pattern in G. Recall that a
vertex v ∈ V (G) is essential for Π, if Π is realizable and v ∈ V (P) for any
realization P of Π in G. A vertex is redundant for Π if it is not essential for
Π.

In Chapter 6, we discussed redundant vertices in clique-minors. This
chapter addresses another instance where we can certify that a vertex is
redundant. That is, we consider redundant vertices for Γ-labelled graphs
drawn in a surface.

8.1 The Main Theorem

Let G be a Γ-labelled graph embedded in a surface Σ, let Π be a pattern in
G, and let f be a face of G. We may regard the boundary of f as a closed
walk W in G. We define the group-value (or just value) of f to be γG(W ). We
let γG(f) denote the value of f . A vertex v ∈ V (G) is l-protected in Σ (with
respect to Π) if

• γG(f) = 0, for every face f of G in Σ;

• there are l vertex disjoint cycles C1, . . . , Cl of G, bounding discs
∆1, . . . , ∆l in Σ with v ∈ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆l;

• V (Π) is disjoint from int(∆l).

We refer to C1, . . . , Cl as the circuits protecting v. Our aim is to prove the
following theorem.
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Theorem 8.1.1. For all surfaces Σ, all finite abelian groups Γ and all k ∈ N, there
exists a constant µ := µ(k, Γ, Σ) such that if G is a Γ-labelled graph embedded in
Σ, Π is a k-pattern in G, and v ∈ V (G) is a µ-protected vertex in Σ with respect
to Π, then v is redundant.

8.2 Proof of the Theorem

In this section we prove the main result. This proof is based on
an unpublished proof of Thor Johnson and Paul Seymour. To apply
induction, it turns out that it is more useful to work with disks with strips
rather than surfaces.

Let Σ := ∆∪ S1 ∪ . . . Sn be a disk with n strips, G be a Γ-labelled graph
embedded in Σ, and Π be a pattern in G. We say that a vertex v ∈ V (G) is
l-insulated in ∆(Σ) (with respect to Π) if

• γG(F ) = 0, for every face F of G in Σ;

• there are l vertex disjoint cycles C1, . . . , Cl of G, bounding discs
∆1, . . . , ∆l in ∆ with v ∈ ∆1 ⊂ ∆2 ⊂ · · · ⊂ ∆l = ∆;

• V (Π) is disjoint from int(∆l);

• Ci is an induced subgraph of G ∩∆ for each i ∈ [l].

In particular, if we regard Σ as a surface, then an l-insulated vertex is an
l-protected vertex, but not necessarily vice versa. We refer to C1, . . . , Cl as
the circuits insulating v, and we call v the insulated vertex.

We prove Theorem 8.1.1 as a corollary of the following result.

Theorem 8.2.1. For all finite abelian groups Γ and all k, n ∈ N there exists a
constant g := g(k, n, Γ) such that if G is a Γ-labelled graph embedded in a disk
with n strips Σ, Π is a k-pattern in G, v ∈ V (G) is a g-insulated vertex in ∆(Σ)
with respect to Π, and V (Π) ⊆ bd(Σ), then v is redundant.

The proof of Theorem 8.2.1 is rather lengthy, so we defer it until
the next section. It is however, relatively straightforward to derive
Theorem 8.1.1 from Theorem 8.2.1, which we now proceed to do.
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PROOF OF 8.1.1 FROM 8.2.1. Let g be the function given
in Theorem 8.2.1. We will prove that µ(k, Γ, Σ) := g(k, Γ, 4k + N∗(Σ, 1))
suffices, where N∗ is the function from Lemma 7.1.3. Let (G, Π, Σ) be a
counterexample with |V (G)| + |E(G)| minimal. That is, G is a Γ-labelled
graph embedded on a surface Σ, Π is a k-pattern in G and v ∈ V (G) is a
µ-protected (µ := g(k, Γ, 4k + N∗(Σ, 1))) vertex in Σ with respect to Π, but
yet v is essential.

Let C1, . . . , Cµ be the circuits protecting v, bounding disks ∆1, . . . , ∆µ

in Σ, such that
∑µ

i=1 |V (Ci)| is minimum. Let P be a realization of Π in G
and let H be the subgraph of G composed of C1 ∪ · · · ∪ Cµ.

Claim 1. V (G) = V (H).

SUBPROOF. Suppose not. First observe that by deleting any vertices of G
which are not in V (H)∪V (P) we contradict the minimality of G. Similarly,
if e = ab is an edge of a path in P and a /∈ V (H), then we can shift to make
γG(e) = 0 and then contract e onto b.

Observe that Claim 1 implies that V (Π) ⊆ V (Cµ).

Claim 2. If e is an edge of G contained in ∆µ, then either e ∈ E(H) or the ends
of e are not contained in V (Ci) for any i ∈ [µ].

SUBPROOF. Towards a contradiction suppose e ⊆ ∆µ, e /∈ E(H), and
ends(e) ⊆ V (Cj) for some j ∈ [µ]. Since

∑µ
i=1 |V (Ci)| is minimum, it

must be that the ends of e are consecutive vertices of V (Cj). Recall that by
hypothesis, every face of G has group-value zero. Therefore, by flipping if
necessary, there exists another edge e′ ∈ E(G) with the same head, tail, and
group-value as e. Therefore, (G\e, Π, Σ) is a smaller counterexample.

We now consider an edge e of G outside ∆µ. We say that e is contractible,
if e and a subpath of Cµ bounds a disk in Σ. Otherwise, e is non-contractible.

Claim 3. There are at most 2k homotopy classes of contractible edges.

SUBPROOF. Let e be a contractible edge. Let Q be a subpath of Cµ such
that Q ∪ {e} bounds a disk in Σ. Note that some internal vertex of Q must
be in V (Π), for otherwise we can delete E(Q) from G and replace Cµ by
(Cµ\E(Q) ∪ {e}. Now let {e1, . . . , en} be a set of contractible edges that
are pairwise non-homotopic. Since each ei is contractible, no two of these
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edges can cross. For each i, let Qi be a subpath of Cµ such that Qi ∪ {ei}
bounds a disk in Σ. Observe that if Qi ⊆ Qj , then ei and ej are homotopic.
Letting Ii be the set of internal vertices of Qi for each i ∈ [n], we have that

I := {Ii : i ∈ [n]}

is a family of disjoint subsets, each of which contains a vertex in V (Π). So,

n = |I| ≤ |V (Π)| ≤ 2k,

as required.

Claim 4. There are at most N∗(Σ, 1) homotopy classes of non-contractible edges.

SUBPROOF. Let E be a maximal family of representatives for the
homotopy classes of non-contractible edges. Contract ∆ to a point x, and
let Σ∗ be the resulting surface and E∗ be the resulting family of curves.
Evidently, Σ∗ is homeomorphic to Σ, and E∗ is a 1-family of pairwise non-
homotopic arcs in Σ∗ (with respect to the basepoint x). By definition of N∗,
we have that

|E| = |E∗| ≤ N∗(Σ, 1),

as required.

At this point, we may regard G as being embedded in a disk with
t := 2k+N∗(Σ, 1) strips Σ′ := ∆∪S1∪· · ·∪St, where ∆µ = ∆. Unfortunately,
some vertices of V (Π) may not be on the boundary of Σ′. However, if some
vertex x ∈ V (Π) is on a non-corner point of Si, we can split Si into two
strips and place x on the boundary of one of the new strips. Note that
there are at most 2k such vertices x. Therefore, we have shown

Claim 5. G is embedded in a disk with at most t + 2k = 4k + N∗(Σ, 1) strips
Σ′′ := ∆∪S1 ∪ · · · ∪St+2k, v is a g(k, Γ, t + 2k)-insulated vertex in ∆(Σ′′) with
respect to Π, and V (Π) ⊆ bd(Σ′′).

By definition of the function g, we have that v is indeed redundant for
Π.
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8.3 Proof of the Auxiliary Result

As promised, we give the proof of the following auxiliary result, which we
restate here.

Theorem 8.2.1. For all finite abelian groups Γ and all k, n ∈ N there exists
g := g(k, Γ, n) such that if G is a Γ-labelled graph embedded in a disk with n
strips Σ, Π is a k-pattern in G, v ∈ V (G) is a g-insulated vertex in ∆(Σ) with
respect to Π, and V (Π) ⊆ bd(Σ), then v is redundant.

Proof. We establish the existence of g(k, Γ, n) via induction on n. Let
t(k, Γ, n) be the function given in Lemma 7.2.1, and let

m := (4n + 1)t(k, Γ, n) + 8k.

We will show that any function g(k, Γ, n) which satisfies

• g(k, Γ, 0) ≥ k2, and for each n ∈ N,

• g(k, Γ, n)− g(2k + m(2n + 1)2n(m−1), Γ, n− 1) ≥ 2k + nt(k, Γ, n)

will suffice.
Let (G, Π, Σ) be a counterexample with |E(G)| minimal. That is, G is a

Γ-labelled graph embedded on a disk with n strips Σ, Π is a k-pattern in
G, v ∈ V (G) is a g-insulated (g := g(k, Γ, n)) vertex in Σ with respect to Π,
V (Π) ⊆ bd(Σ), but yet v is essential.

Let Σ = ∆ ∪ S1 ∪ · · · ∪ Sn and let C1, . . . , Cg be circuits insulating v,
bounding disks ∆1, . . . , ∆g in Σ, where ∆g = ∆. Let H be the subgraph of
G composed of C1 ∪ · · · ∪ Cg. Let P be a realization of Π in G.

Claim 1. E(H) ∩ E(P) = ∅.

SUBPROOF. Shift and then contract any edges e in E(H) ∩ E(P).

Claim 2. V (G) = V (H) ∪ (V (G) ∩ bd(Σ)).

SUBPROOF. If e has ends a and b and b /∈ V (H) ∪ (V (G) ∩ bd(Σ)), then we
shift to make γG(e) = 0 and contract e onto a.

Claim 3. V (G) = V (H).
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SUBPROOF. Let e ∈ E(G) be contained in a strip Si, and let a and b be the
ends of e. If both a and b are in V (H), there is nothing to prove. Otherwise,
by the previous claim, we may assume that b ∈ bd(Σ), but that b is not on
either end of Si. We shift to make γG(e) = 0, pull e slightly away from
bd(Σ), and then contract e onto a.

Claim 4. Every cycle in G ∩∆ has value 0.

SUBPROOF. Let C be a cycle in G ∩∆. Note that C bounds a disk ∆′ in ∆.
The value of C is equal to the sum of the values of all the faces contained
in ∆′. Hence, C has value 0.

Claim 5. We can shift so that every edge in ∆(Σ) is zero-labelled.

SUBPROOF. Follows from Claim 4 and Lemma 1.2.2.

Henceforth, we assume that all the edges in ∆(Σ) are zero-labelled. We
now examine how the paths in P go through ∆. If x ∈ V (Cj), we define
the level of x, denoted l(x), to be j. A path P = x0x1 . . . xq in G is decreasing
if P ⊆ ∆ and

l(x0) ≥ l(x1) · · · ≥ l(xq).

A hill of a path P is a subpath J := aPc of P where

• l(a) = l(c), and

• l(b) > l(a) for all b ∈ V (P ) strictly between a and c.

• J and a subpath of Cl(a) bound a disk in Σ.

The sea level l(J) of J , is defined to be l(a).

Claim 6. No path P in P contains a hill.

SUBPROOF. Suppose not. Among all hills of all paths in P , choose J with
the lowest sea level l(J). Let J have ends a and b and suppose that J is a
hill of P ∈ P . By choice of J , there is a subpath K of Cl(J) also with ends
a and b, such that no path in P uses an internal vertex of K. Otherwise,
there would be a hill of a path in P with lower sea level than J . Therefore,
we can replace P in P by (P\J)∪K. Letting e be the edge of J incident to
a, we conclude that G\e is a smaller counterexample, a contradiction.
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Let us now analyze the edges that are outside ∆. For each strip Si of Σ,
we let E(Si) be the edges of G contained in Si. Recall that an edge e passes
through Si if e ⊆ Si and its ends are on different ends of Si.

Claim 7. For each i ∈ [n], if e ∈ E(Si), but e does not pass through Si, then
γG(e) = 0.

SUBPROOF. Enlarge the disk ∆ and apply the argument in Claim 5.

By flipping edges if necessary we may assume that for each strip Si,
the edges that pass through Si each pass through in the positive direction.

Claim 8. For each strip Si, all the edges that pass through Si have the same
group-value.

SUBPROOF. For each strip Si we construct a graph G∗(Si) as follows. The
vertex set of G∗(Si) is the set of edges of G that pass through Si. We define e
to be adjacent to f in G∗(Si) if and only if e and f are both on the boundary
of the same face of G. If e and f are adjacent in G∗(Si), then we claim they
have the same group-label. To see this, let F be the face of G such that
e ∪ f ⊆ F . Note that all other edges of G on the boundary of F have
group-label zero. Thus, γG(e) = γG(f), as required. It now follows that
all edges that pass through Si have the same group-label since G∗(Si) is
connected (actually a path).

At this point we now regard each strip Si as a Γ-labelled strip, where
the group-value of Si is the group-value of any edge that passes through
Si. If we regard Π as a pattern in Σ instead of a pattern in G, then evidently
there is a topological realization of Π in Σ, since there is realization of
Π in G. Lemma 7.7.3 asserts that there is a topological realization of Π
that passes through each strip only a few times. Let t := t(k, Γ, n) be the
function given in Lemma 7.7.3, and let L be such a topological realization
of Π in Σ. The pivotal idea is to try and realize L in G.

Let Y = V (Cg), N := g(k + m(2n + 1)2n(m−1), Γ, n− 1) and Z = V (CN).
We define a matroid M on Y by rM(A) = κG∩∆(A, Z) for all A ⊆ Y .

For each strip S of Σ, we choose a maximum matching m(S) contained
in the edges that pass through S. We let V (S) be the vertices covered by
m(S). We partition V (S) as V0(S) ∪ V1(S), according to the end of S a
vertex belongs to. For i ∈ Z2, we let Mi(S) be the restriction of M to Vi(S)
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respectively. If we identify the endpoints of each edge that passes through
S, then we can naturally regard M0(S) and M1(S) as matroids on the same
ground set. For X ⊆ Vi(S) we let clone(X) be the copy of X in Vi+1(S).

We first consider the case when M0(Si) and M1(Si) have a large
common independent set, for each strip Si of Σ.

Case 1. M0(Si) and M1(Si) have a common independent set of size m :=
(4n + 1)t(k, Γ, n) + 8k for each strip Si of Σ.

We will need the following claim.

Claim 9. If A ⊆ Y is independent in M , then there is a family of |A| disjoint
decreasing A-Z paths in G ∩∆.

SUBPROOF. Choose a family Q of |A| disjoint A-Z paths in G∩∆ with the
minimum number of total hills. If Q has no hills, we are done. Otherwise,
among all hills of all paths in Q, choose J with the lowest sea level l(J).
Let J have ends a and b and suppose that J is a hill of Q ∈ Q. By choice
of J , there is a subpath K of Cl(J) also with ends a and b, such that no path
in Q uses an internal vertex of K. Therefore, we can replace Q in Q by
(Q\J) ∪K, contradicting the choice of Q.

Let us recall some notation. By orienting bd(∆) clockwise, we may
regard it as a cyclically ordered set. For a, b ∈ bd(∆), [a, b] is the set
of points between a and b in the ordering. That is, it is the clockwise
subarc of bd(∆) from a to b. Since V (Π) is disjoint from each strip (except
possibly at the corners), it follows that the corners of the strips of Σ induce
a contiguous partition X1, . . . , Xl of V (Π). Consider an arbitrary set Xi of
the partition. Label its vertices x1, . . . , xp (clockwise). In particular, this
implies that [x2, xp−1] is disjoint from each strip of Σ.

Recall that P is a realization of Π in G. For each xi, let P(xi) be the
(unique) path in P starting from xi. Define ω(xi) to be the number of
insulating cycles that P(xi) intersects before it uses an edge outside of ∆.

Claim 10. For each q ∈ [p], ω(xq) ≥ min{q, p− q + 1}.

SUBPROOF. We proceed by induction on min{q, p − q + 1}. Clearly the
claim holds for q ∈ {1, p}. Consider an arbitrary xq. By symmetry we may
assume that q ≤ p

2
and we inductively assume that ω(xq−1) ≥ q − 1 and

ω(xp−q+2) ≥ q − 1. Towards a contradiction assume that ω(xq) ≤ q − 1. Let

84



a be the second vertex of P(xq) which is on bd(∆) (xq is the first). Let Q be
the subpath of P(xq) from xq to a. Note that Q ∪ [xq, a] and Q ∪ [a, xq] both
bound disks in ∆. We denote them as ∆(�) and ∆(�), respectively. We say
that a disk is small if it does not contain v (the insulated vertex). Clearly,
exactly one of ∆(�) or ∆(�) is small. There are various cases depending
where a lies on bd(∆) and which of ∆(�) or ∆(�) is small.

Subclaim. ∆(�) is not small.

SUBPROOF. Towards a contradiction assume ∆(�) is small. We first prove
that a /∈ [xq−1, xq]. If so, then we can reroute P(xq) through [a, xq].
Thus, letting e be the first edge of P(xq) we see that G\e is a smaller
counterexample. So, we have shown that xq−1 ∈ [a, xq]. Since ω(xq−1) ≥
q − 1, the only way to avoid a contradiction is if P(xq) actually connnects
xq to xq−1 within ∆. But, we can then delete the first edge of P(xq) and
connect xq to xq−1 directly via [xq−1, xq].

Subclaim. ∆(�) is not small.

SUBPROOF. Towards a contradiction assume ∆(�) is small. As in the proof
of the previous subclaim we have a /∈ [xq, xq+1]. We now show that
a /∈ [xq, xp]. If so, then there must exist an index r ≥ q such that some path
of P connects up xr and xr+1 within ∆(�). Deleting the first edge of P(xr)
and rerouting P(xr) through [xr, xr+1] gives a contradiction. The only
remaining possibility is if a ∈ [xp, x1]. This forces either ω(xp−q+2) < q−1 or
P(xq) must connect xq to xp−q+2 within ∆. The first possibility contradicts
our inductive hypothesis. So, that leaves P(xq) = P(xp−q+2). But again,
this implies that there is some index s ∈ {q, . . . , p − q + 1} such that some
path of P connects up xs and xs+1 within ∆(�), which we have already
seen is a contradiction.

This completes the proof of the claim, since ∆(�) and ∆(�) cannot both
be small. So, ω(xq) ≥ min{q, p− q + 1}, as required.

We remark that the proof of Claim 10 does not actually rely on the
hypothesis in Case 1.

Claim 11. Xi is independent in M .
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SUBPROOF. Let S be an arbitrary strip of Σ. Since we are in Case 1, there
exists an M0(S)-independent subset I of size |Xi| = p. By Claim 9, there is
a familyQ of p disjoint decreasing I-Z paths in G∩∆. Label these paths as
Q1, . . . , Qp (counter-clockwise). We will use Q to construct p disjoint Xi-Z
paths in G ∩∆. By Claim 10, for each q ∈ [p], ω(xq) ≥ min{q, p− q + 1}. So
for each q ∈ {1, . . . , dp/2e} we can define a path R(xq) as follows:

• follow P(xq) until it intersects Cg−(q−1);

• follow Cg−(q−1) (counter-clockwise) until intersecting Qdp/2e−(q−1);

• follow Qdp/2e−(q−1) until reaching Z.

For q ∈ {p, p− 1, . . . , dp/2e+ 1} we define R(xq) as follows:

• follow P(xq) until it intersects Cg−p+q;

• follow Cg−p+q (clockwise) until intersecting Qdp/2e+p−q+1;

• follow Qdp/2e+p−q+1 until reaching Z.

It is easy to verify that

R := {R(xq) : q ∈ [p]}

is a family of disjoint Xi-Z paths in G ∩∆.

Recall that Xi was chosen arbitrarily. Therefore, we have shown

Claim 12. Xi is M -independent for all i ∈ [l].

Next we show that
⋃

Xi := V (Π) is actually M -independent. In fact,
we prove the following much stronger claim.

Claim 13. For each strip Si of Σ there exists a subset Ki of V0(Si) of size
t := t(k, Γ, n) such that V (Π) ∪

⋃
i∈[n](Ki ∪ clone(Ki)) is independent in M .

SUBPROOF. Of course we are in the case when M0(Si) and M1(Si) have a
large common independent set for each strip Si of Σ. So, for each i ∈ [n] let
Ji be an independent set of size (4n+1)t+8k in M0(Si), such that clone(Ji)
is also independent in M1(Si). We partition Ji into three sets J1

i , J2
i and J3

i
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where J1
i are the first 2(nt + 2k) points, J2

i are the next t points and J3
i are

the last 2(nt + 2k) points (in the clockwise order). Let

A := {J2
i : i ∈ [n]} ∪ {clone(J2

i ) : i ∈ [n]} ∪ {Xi : i ∈ [l]},

and

B := {Jk
i : i ∈ [n], k ∈ {1, 3}} ∪ {clone(Jk

i ) : i ∈ [n], k ∈ {1, 3}}.

Observe that each set in A is indeed M -independent, and that for any
B ∈ B we have

rM(B) = 2(nt + 2k) = 2
∑
A∈A

|A|.

Therefore, we are in perfect position to apply Theorem 7.8.1, and conclude
that

⋃
A∈A A is M -independent. Setting Ki = J2

i for each i ∈ [n] gives the
result.

We can now attempt to realize the topological linkage L in G. We
may assume that L intersects bd(∆) only at vertices in A. Let G′ :=
G ∩ (∆\int(∆N)). By removing all the strips from Σ and keeping track
of how the paths in P pass through the strips, we are left with a Π′-linkage
problem in the disk ∆, where V (Π′) ⊆ V (A). Note that this is just a linkage
problem in G̃′, since all edges of G′ are zero-labelled.

By Claim 13, we have that V (A) is M -independent. Therefore, by
Claim 9, there exists a family of |V (A)| disjoint decreasing V (A)-Z paths
(recall Z = V (CN)) in G′. These decreasing paths, together with the
insulating circuits Cg, Cg−1, . . . , CN form a large cylindrical-grid minor H ′

in G′. Since
g −N ≥ 2k + nt ≥ |A|,

Theorem 7.8.2 implies that G′ actually has a Π′-linkage. Thus, G′ also has
a Π-linkage, and v is redundant for Π in G since v /∈ V (G′). This case is
hence complete. �

The remaining case is if M0(Si) and M1(Si) do not have a large common
independent set, for some strip Si of Σ. By re-indexing, we may assume
that Si = S1.

Case 2. M0(S1) and M1(S1) do not have a common independent set of size
m = (4n + 1)t(k, Γ, n) + 8k.
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The idea in this case is to reduce the number of strips. Recall that
Y = V (Cg), N := g(k + m(2n + 1)2n(m−1), Γ, n − 1) and Z = V (CN). Since
M0(S1) and M1(S1) do not have a common independent set of size m, by
Theorem 2.6.1 (Matroid Intersection Theorem), there is a partition {A, B}
of V0(S1) such that

rM0(S1)(A) + rM1(S1)(clone(B)) < m.

That is, there exist subsets T and U of V (G ∩∆) such that

• T separates A from Z in G ∩∆,

• U separates clone(B) from Z in G ∩∆, and

• |T |+ |U | < m.

There are three subcases, depending where T and U lie with respect to the
insulating circuits CN , . . . , Cg. Recall that the level of a vertex x ∈ G∩∆ is
the unique index j such that x ∈ Cj .

Subcase. The level of each x ∈ T ∪ U is at most g −m.

This implies that T ∪ U actually separates Y from Z in G ∩∆. We will
reduce the Π-linkage problem in G to a Π′-linkage problem in the disk
∆N . We let G′ := G ∩ ∆N . It remains to explain how to construct Π′.
Let P be a path in P . We say that P is outside ∆N if it is disjoint from
int(∆N). We say that P is inside ∆N if it is contained in ∆N . We remark
that a path outside of ∆N may not be contained entirely within ∆, and
we regard a single vertex as a path. We define O(P ) to be the family
of maximal subpaths of P among those outside ∆N , and I(P ) to be the
family of maximal subpaths of P among those inside ∆N . Note that the
paths in O(P ) are vertex disjoint, as are those in I(P ). Furthermore, P can
be written as O1I1 . . . OrIrOr+1, where

• Oi ∈ O(P ), for each i ∈ [r + 1],

• Ii ∈ I(P ), for each i ∈ [r],

• the last vertex of Oi is the first vertex of Ii, for each i ∈ [r], and

• the last vertex of Ii is the first vertex of Oi+1 for each i ∈ [r].
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For each i ∈ [r] let xi be the last vertex of Oi, and yi be the last vertex of Ii.
Place (xi, yi, 0) into Π′ for each i ∈ [r], and then repeat for each path of P .
Clearly, G′ has a Π′-linkage if and only if G has a Π-linkage. We prove that
|Π′| is not too large by appealing to Claim 6. Thus, for each P ∈ P , every
path in O(P ) must use an edge outside ∆ since P contains no hills. Since
T ∪U separates Z from Y in G∩∆, every member ofO(P ) must use at least
two vertices of T ∪ U . It follows that

∑
P∈P 2|O(P )| ≤ |T ∪ U |. Therefore,

|V (Π′)| ≤ |T ∪ U | < m. Since N ≥ g(k + m, Γ, 0), and v is clearly an s-
insulated vertex in ∆N with respect to Π′, we conclude that v is redundant
for Π′. Hence, v is also redundant for Π. This subcase is complete.

The next subcase is if no element of T ∪ U occurs very deep in the disk
∆.

Subcase. For each vertex x of T ∪ U , the level of x is at least g −m + 1.

Let h := g − m + 1. Again the idea is to reduce to number of strips.
We will reduce to a problem in a disk with n − 1 strips, where the disk is
∆h. First, we recall some notation from Chapter 7. A path P is a ∆h-path
if both its ends belong on ∆h, and it is otherwise disjoint from ∆h. Note
that this clearly implies that the ends of P are on the boundary of ∆h. For
each path P of P , we define U(P ) to be the family ∆h-subpaths of P . We
then define U(P) :=

⋃
P∈P U(P ).

Claim 14. There are at most (2n + 1)2n(m−1) homotopy classes of paths in U(P).

SUBPROOF. Let Q ∈ U(P). Since Q does not contain any hills, there is
no subpath K of Ch such that Q ∪ K bounds a disk in Σ. In particular,
this implies that Q must use an edge outside of ∆ and that the homotopy
class of Q is determined by how Q passes through the strips of Σ. We
remark that the homology class of Q only depends on the number of times
Q passes through each strip, but for homotopy, order is relevant. Let A
be the alphabet {S1, . . . , Sn, S

−1
1 , . . . , S−1

n }. The homotopy class Q, denoted
H(Q), is then naturally encoded by a string of letters fromA. We make the
convention that if SiS

−1
i or S−1

i Si appears in H(Q) for some i ∈ [n], then
we cancel it. With this convention, we prove that the length of H(Q) (as a
string) is not very long.

Subclaim. Each letter of A appears at most 2m− 1 times in H(Q).
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SUBPROOF. Towards a contradiction assume that some letter α appears at
least 2m times in H(Q). By reversing the direction of Q we may assume
α = Sj , for some j ∈ [n]. Let e1, . . . , e2m be edges of Q corresponding
to the occurrences of Sj in H(Q). That is, for each i ∈ [2m], ei passes
through the strip Sj and Q passes through each ei in the forward direction.
Furthermore, by cancellation, the next edge of Q after ei passing through
a strip cannot pass through Sj in the backward direction. Now, for each
i ∈ [2m], define xi := headG(ei). We re-index so that x1, . . . , x2m occur
clockwise along one end of the strip Sj . Either xm occurs before xm+1 along
Q or vice versa. By symmetry, we assume the former. Let Q′ := xmQ, the
subpath of Q starting from xm. Let y be the first vertex of Q′ such that the
next edge of Q′ passes through a strip Sk. Note that y exists since xm occurs
before xm+1 along Q. By cancellation Sk 6= Sj , so it follows that y ∈ [x2m, x1]
(recall that [x2m, x1] is the clockwise subarc of bd(∆) from x2m to x1). Also
recall that a region R in ∆ is big if it contains the insulated vertex, and is
small otherwise. Clearly, exactly one of xmQy ∪ [y, xm] or xmQy ∪ [xm, y]
bounds a small region R. It might be that R is not a disk, since xmQy may
contain other vertices on bd(∆) besides xm and y. However, the relevant
observation is that either {x1, . . . , xm} ⊆ R or {xm, . . . , x2m} ⊆ R. In either
case we get a contradiction, since xmQy intersects at most m− 1 insulating
circuits. This proves the subclaim.

We conclude that the length of H(Q) (as a string) is at most 2n(m− 1).
We conclude that there are at most (2n + 1)2n(m−1) possibilities for H(Q),
which proves the claim.

We call a homotopy class thin if it contains at most m paths in U(P),
otherwise it is thick.

Claim 15. There are at most n− 1 thick homotopy classes.

SUBPROOF. Let H be a homotopy class, represented as a string of letters
from {S1, . . . , Sn, S

−1
1 , . . . , S−1

n }. Note that H is not the empty string by
Claim 6. If H is of length at least two, then H cannot contain more than m
paths from U(P), since each path in U(P) intersects at most m insulating
circuits. Thus, if H is thick, then H must be a string of length 1. Up to
inversion, this implies thatH = Si, for some i ∈ [n]. However, consider the
homotopy class H1 represented by the string S1. Recall that we are in the
case where M0(S1) and M1(S1) do not have a large common independent
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set. Therefore, if Q ∈ U(P) has homotopy type S1, then Q must use a
vertex of U ∪ T . Since, |U ∪ T | < m, it follows that there are fewer than m
paths in H1. That is, H1 is thin. This leaves only n − 1 homotopy classes
that may be thick, as required.

We are now in position to complete this subcase and complete the
entire proof. Let G′ := (G ∩ ∆h) ∪ U(P). By Claim 14 we can regard G′

as embedded in a disk with at most l := (2n + 1)2n(m−1) strips

Σ′ := ∆h ∪ S ′
1 ∪ . . . S ′

l.

We describe how to reduce the Π-linkage problem in G to a Π′-linkage
problem in G′. Let P ∈ P . Let x be the first vertex of P which is on bd(∆h),
and let y be the last vertex of P which is on bd(∆h). Observe that since
V (Π) ⊆ bd(Σ), it is easy to see that both x and y can only intersect the
new strips S ′

1, . . . , S
′
l at corner points. Let α ∈ Γ be the group-value of

Px, and let β ∈ Γ be the group-value of yP . Place (x, y, γ(P ) − (α + β))
in Π′. If no such x exists, we do nothing. We then repeat for all paths of
P . At first glance it seems as if we have increased the complexity of our
problem, since we have more strips than we began with. However, by
Claim 15, at most n−1 of the strips S ′

1, . . . , S
′
l are thick. By re-indexing, we

may assume that S ′
n, . . . , S

′
l are all thin. By deleting all the edges contained

in S ′
n ∪ · · · ∪ S ′

l , and keeping track of how the paths in P pass through
S ′

n ∪ · · · ∪ S ′
l , we reduce to a Π′′-linkage in ∆h ∪ S ′

1 ∪ · · · ∪ S ′
n−1, where

|V (Π′′)| ≤ 2k + m((2n + 1)2n(m−1) − n + 1). Since v is an h-insulated vertex
with respect to Π′′, and h ≥ N ≥ g(k+m(2n+1)2n(m−1), Γ, n−1), it follows
that v is redundant for Π′′, and hence also for Π. This completes the second
subcase.

The remaining subcase is handled by a combination of the previous
two techniques and is omitted.

For the base of the induction, one can show using Theorem 7.8.2 that
g(k, Γ, 0) = k2 suffices for the disk. This completes the proof.

8.4 Sufficient Conditions

In this section, we describe conditions which are sufficient to guarantee
that a Γ-labelled graph G has a Π-linkage. One example of a set of
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such conditions was given in Theorem 6.1.2, related to large K(Γ, n)-
minors. Another example was given in Theorem 7.8.2, concerning graphs
embedded on the cylinder. Here we generalize Theorem 7.8.2 and discuss
sufficient conditions for Γ-labelled graphs embedded in a fixed surface Σ.

To better motivate the reader, we first consider the special case when Γ
is trivial, that is, just graphs. We start with graphs embedded on the disk,
where it is possible to give conditions which are necessary and sufficient.

Let G be a graph embedded on a disk ∆, and let Π be a pattern of G
with V (Π) contained on the boundary of ∆. Let δ denote the boundary of
∆, and let D be a dual δ-path with ends a and b on δ. For each {s, t} ∈ Π,
we say that D separates {s, t} if s and t are in different (topological)
components of δ\{a, b} or if {s, t} ∩ {a, b} 6= ∅. If every dual δ-path D
separates at most |V (D)| elements of Π, we say that (G, Π) satisfies the
topological cut condition.

Theorem 8.4.1. Let G be a graph embedded on a disk ∆, and let Π be a pattern of
G with V (Π) ⊆ bd(∆). Then G has a Π-linkage if and only if Π is topologically
realizable in ∆ and (G, Π) satisfies the topological cut condition.

The stated conditions are clearly necessary for G to have a Π-linkage.
As we do not need this result, we omit the proof of the converse. See [36,
Theorem 3.6].

Theorem 8.4.2. For any k ∈ N and surface Σ, there exist constants r(k, Σ) and
w(k, Σ) with the following property. Let G be a graph 2-cell embedded in Σ̂ and
let Π be a k-pattern in G where V (Π) ⊆ bd(Σ). If G has a respectful tangle T of
order at least r(k, Σ) such that

• Π is topologically realizable in Σ,

• if δ1 and δ2 are distinct holes of Σ, then dΣ(δ1, δ2) ≥ w(k, Σ), and

• V (Π) is T -independent,

then G has a Π-linkage.

Proof. The result actually follows quite easily from Theorem 8.1.1. Let µ
be the function from Theorem 8.1.1. We will show that

• r(k, Σ) := 4µ(k, {0}, Σ) + 6
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• w(k, Σ) := 2µ(k, {0}, Σ) + 3

suffice. Let G, Σ, Π, k, and T be given as above. The idea is to
superfluously add some new edges to G so that the enlarged graph clearly
has a Π-linkage. We then apply Theorem 8.1.1 to show that each of the
newly added edges is actually redundant for Π, and hence G has a Π-
linkage.

Let H be the set of holes of Σ. For notational convenience we let
n := µ(k, {0}, Σ). By Corollary 7.5.5, for each δ ∈ H there is a cycle Cδ

of G such that

• Cδ bounds a disk ∆δ in Σ̂ with δ ⊆ ∆δ, and

• dΣ(y, δ) = n, for all vertices y of Cδ.

Let Xδ be the vertices of Π on the hole δ. By Lemma 7.5.6, there is a
family Pδ of |Xδ| disjoint Xδ-Cδ paths in G. For each x ∈ Xδ, let x′ ∈ V (Cδ)
be the other endpoint of the path in Pδ that contains x. Repeat this for all
holes of Σ and define

X ′ := {x′ : x ∈ V (Π)}.

Let Π′ be the pattern in G, with V (Π′) = X ′ that is naturally induced
by Π. Observe that dΣ(δ1, δ2) ≥ 2n + 3, for any two distinct holes δ1 and
δ2 of Σ. Therefore, the family of disks D := {∆δ : δ ∈ H} is a disjoint
family. Let Σ′ be the surface obtained from Σ̂ by removing the interiors
of each disk in D. Since Π is topologically realizable in Σ, evidently Π′ is
topologically realizable in Σ′. Furthermore, if G∩Σ′ has a Π′-linkage, then
G has a Π-linkage.

Let L be a topological realization of Π′ in Σ′. A priori, we cannot
assume that L intersects G ∩ Σ′ only at vertices, but we may assume that
L intersects G ∩Σ′ finitely often. Define G′ with vertex set V (G) ∪ (L ∩G)
and with edge set the arcs in G ∪ L with both endpoints in V (G′). Define

EL := {e ∈ E(G′) : e ⊆ L for some L ∈ L}.

Observe that G′\EL is a subdivision of G.
We now regard Π as a pattern in G′ and show that every edge in EL is

redundant for Π in G′. Let e ∈ EL. Since T is a respectful tangle of order at
least 4n + 6, by Corollary 7.5.5 there are vertex disjoint cycles C1, . . . , Cn in
G′ bounding disks ∆1, . . . , ∆n in Σ such that e ⊂ ∆1 ⊂ · · · ⊂ ∆n. Moreover,
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since L is disjoint from the interior of each of the disks in D, we may
assume that V (Π) is disjoint from int(∆n). That is, e is an n-protected
edge in Σ with respect to Π. By Theorem 8.1.1, e is redundant for Π.

We now choose another edge in EL and repeat the same argument with
G′ replaced by G′\e. Proceeding sequentially through EL we conclude
that G′\EL has a Π-linkage if and only if G′ has a Π-linkage. But G′

manifestly does have a Π-linkage, by its construction. Therefore, G′\EL
has a Π-linkage. But, G′\EL is a subdivision of G. Therefore, G also has a
Π-linkage, as required.

Before moving on to the sufficient conditions for group-labelled
graphs, it is necessary to take a brief topological interlude.

Let Σ be a surface, and let p be a fixed point of Σ. Let π(Σ) be the
set of homotopy classes of closed curves in Σ with basepoint p. It is not
hard to show that there is a natural group structure on π(Σ) defined via
composition of curves. We call π(Σ) the fundamental group of Σ. The (first)
homology group of Σ, denoted H1(Σ), is the abelianization of π(Σ). We
remark that π(Σ) is independent of the choice of p and only depends on
the homeomorphism class of Σ. See [51] for an agreeable introduction to
algebraic topology.

Let G be a Γ-labelled graph 2-cell embedded in a surface Σ. If every
face of G has group-value zero, then G induces a natural homomorphism
φG : H1(Σ) → Γ. We thus define a Γ-labelled surface to be a pair (Σ, φ),
where Σ is a surface and φ is a homomorphism from H1(Σ) → Γ. Let
S := (Σ, φ) be a Γ-labelled surface, and let C be a curve in Σ. Observe
that C is naturally equipped with a group-value φ(C) from Γ. The easiest
way to determine φ(C) is to work with a convenient representation of S. A
natural representation of S are the disks with Γ-labelled strips introduced
in Section 7.7. That is, if we decompose S into a disk with Γ-strips, then we
can determine φ(C) simply by counting how many times C passes through
each strip.

Two Γ-labelled surfaces S1 := (Σ1, φ1) and S2 := (Σ2, φ2), are isomorphic,
if there is a homeomorphism from ξ : Σ1 → Σ2 such that φ2(ξ(C)) = φ1(C)
for all curves C in Σ1.

Let G be a Γ-labelled graph 2-cell embedded in a surface Σ such that
every face of G has group-value zero. Recall that G induces a natural
homomorphism φG : H1(Σ) → Γ. We say that (Σ, φG) is the Γ-labelled
surface induced by G. Let Π := {(si, ti, γi) : i ∈ [k]} be a pattern in G. Since
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S := (Σ, φG) is a Γ-labelled surface, it is not nonsense to ask whether Π has
a topological realization in S. A topological realization of Π in S is a family
{Li : i ∈ [k]} of disjoint arcs in Σ such that for each i ∈ [k], the tail of Li is
si, the head of Li is ti, and φ(Li) = γi.

We are almost ready to present the theorem, but first we introduce
some group-theoretic notation. Let G be a Γ-labelled graph, and let Γ′

be a subgroup of Γ. We let Γ/Γ′ denote the factor group of cosets of Γ′. For
γ ∈ Γ, γ + Γ′ denotes the coset {γ + γ′ : γ′ ∈ Γ′}. We abuse notation and
let G/Γ′ denote the (Γ/Γ′)-labelled graph obtained from G by reducing all
the edge-labels (modulo Γ′). Similarly, if Π is a pattern in G, we let Π/Γ′ be
the pattern obtained from Π by replacing each (s, t, γ) in Π by (s, t, γ + Γ′).
Thus, if Π is a pattern in G, then Π/Γ′ is a pattern in G/Γ′.

Let G be a Γ-labelled graph 2-cell embedded in a surface Σ, and let F
be the set of faces of G. We define ΓF to be the subgroup of Γ generated
by {γ(f) : f ∈ F}. We call ΓF the face subgroup of Γ. We have previously
shown that if the face subgroup of Γ is trivial, then G naturally endows
Σ as a Γ-labelled surface. We now extend this definition by considering
G/ΓF . Evidently, every face of G/ΓF is zero-valued in Γ/ΓF . Thus, G/ΓF

induces a (Γ/ΓF )-labelled surface S. We again say that S is the (Γ/ΓF )-
labelled surface induced by G.

Finally, if A is a multiset of elements of Γ we say that A strongly generates
Γ if every γ ∈ Γ is the sum of the members of some sub-multiset of A. Here
is the main result of this section.

Theorem 8.4.3. For any k ∈ N, any finite abelian group Γ, and any surface Σ
there exist constants R(k, Γ, Σ) and W (k, Γ, Σ) with the following property. Let
G be a Γ-labelled graph 2-cell embedded in Σ̂, and let Π be a k-pattern in G where
V (Π) ⊆ bd(Σ). Let ΓF be the face subgroup of Γ, let Γ′ := Γ/ΓF , and let S be the
Γ′-labelled surface induced by G.

If G has a respectful tangle T in Σ of order at least R(k, Γ, Σ) and for each
i ∈ [k] there exists a family Fi of faces of G satisfying

• Π/ΓF is topologically realizable in S,

• V (Π) is T -independent,

• if δ1 and δ2 are distinct holes of Σ, then dΣ(δ1, δ2) ≥ W (k, Γ, Σ),

• if δ is a hole and f ∈
⋃

i∈[k]Fi, then dΣ(δ, f) ≥ W (k, Γ, Σ),
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• if f1 and f2 are distinct faces of
⋃

i∈[k]Fi, then dΣ(f1, f2) ≥ W (k, Γ, Σ),
and

• for each i ∈ [k], the multiset {γ(f) : f ∈ Fi} strongly generates ΓF ,

then G has a Π-linkage.

Proof. Let µ be the function from Theorem 8.1.1. We will prove that

• R(k, Γ, Σ) := 4µ(k, Γ, Σ) + 2k|Γ|2 + 6

• W (k, Γ, Σ) := 2µ(k, Γ, Σ) + 5

suffice.
Let G, Σ, Π, k, ΓF ,F1, . . . ,Fk,S, and T be given as above. For notational

convenience we let n := µ(k, Γ, Σ). Let F :=
⋃

i∈[k]Fi. Let Π := {(si, ti, γi) :

i ∈ [k]}.
The first step is to create a new linkage problem from Π and the faces in

F . Observe that any multiset that strongly generates Γ contains a multiset
of size at most |Γ|2 that strongly generates Γ. Therefore, we may assume
that |F| ≤ k|Γ|2. Let X denote the set of vertices of G incident to a face
in F . By Theorem 7.5.3, there is a 2-cell subdrawing G0 of G\X such that
G0 has a respectful tangle T0 of order at least R(k, Γ, Σ) − 2k|Γ|2. For each
f ∈ F , let f+ be the unique face in G0 containing f . Let Rf be a set of two
disjoint V (f)-V (f+) paths in G. We let uf and vf be the ends ofRf on V (f)
and xf and yf be the corresponding ends ofRf on V (f+). Let Jf be the set
of two uf -vf paths through f . Perform shifts in G so that for all f ∈ F ,

• the two paths in Rf are both zero-labelled,

• the counter-clockwise path from uf to vf through f is zero-labelled.

Observe that this implies that the clockwise path from uf to vf in Jf has
value γG(f). We create a pattern ΠF in G as follows. Let f1, . . . , fm be the
faces in F1. Place each of

(s1, xf1 , 0), (yf1 , xf2 , 0), . . . , (yfm−1 , xfm , 0), (yfm , t1, γ1)

into ΠF . Repeat for F2, . . . ,Fk.

Claim 1. If G0/ΓF has a (ΠF/ΓF )-linkage, then G has a Π-linkage.
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Proof. Let Q be a (ΠF/ΓF )-linkage in G0/ΓF . We may also view Q as a set
of paths in G0, and hence also in G. We will show how to combine the
paths in Q,

⋃
f∈F Rf , and

⋃
f∈F Jf into a Π-linkage of G. For each i ∈ [k]

let Qi consist of the paths in Q incident with f+, for some f ∈ Fi. Since Q
is a realization of ΠF/ΓF in G0/ΓF , it follows that for each i ∈ [k],∑

Q∈Qi

γG(Q) = γi + αi,

for some αi ∈ ΓF . However, by hypothesis the multiset {γ(f) : f ∈
Fi} strongly generates ΓF for each i ∈ [k]. Therefore, by choosing an
appropriate path from each Jf and then joining these paths to the paths in
Q, and

⋃
f∈F Rf in the obvious way, we obtain a realization of Π in G.

Let H denote the set of holes of Σ, and let F+ := {f+ : f ∈ F}. By
Corollary 7.5.4, for each h ∈ H ∪ F+ there is a cycle Ch of G such that

• Ch bounds a disk ∆h with h ⊆ ∆h, and

• dΣ(y, h) = n, for all vertices y of Ch.

For each h ∈ H ∪ F+ let Zh be the vertices of ΠF on h.

Claim 2. If h ∈ H ∪ F+, then there is a family of |Zh| disjoint Zh-Ch paths in
G0.

SUBPROOF. If h ∈ H, then Zh is T -independent, so the claim follows from
Lemma 7.5.6. If h ∈ F , then |Zh| = 2, so the claim follows since G is 2-cell
embedded in Σ.

For each h ∈ H ∪ F+, let Ph be such a collection of paths. For each
z ∈ Zh let z′ ∈ V (Ch) be the other endpoint of the path in Ph that contains
z. Repeat this for all members of H ∪ F+, and define

Z ′ :=
⋃

h∈H∪F+

{z′ : z ∈ Zh}.

Let Π′
F be the pattern obtained from ΠF by replacing each (s, t, γ) ∈ ΠF

by (s′, t′, γ). Let DF := {∆f : f ∈ F+} and DH := {∆δ : δ ∈ H}. Since
dΣ(h1, h2) ≥ 2n + 3 for any two distinct members h1, h2 ∈ H ∪ F+, the
family D := DH ∪ DF is a disjoint family of disks. Let Σ′ be the surface
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obtained from Σ̂ be removing the interiors of those disks in DH (but not
DF ). Define G′ := G0 ∩ Σ′. We naturally regard Σ′ as a (Γ/ΓF )-labelled
surface S’ that is isomorphic to S.

Claim 3. Π′
F/ΓF is topologically realizable in S ′.

SUBPROOF. Decompose S ′ into a disk with Γ-strips such that all disks
in DF are contained in the disk ∆(S ′). Since by hypothesis Π/ΓF is
topologically realizable in S, it follows readily that Π′

F/ΓF is topologically
realizable in S ′.

The remainder of the argument conforms to the proof of Theorem 8.4.2.
Let L be a topological realization of Π′

F/ΓF in S ′ and let H := G0/ΓF . We
may assume that L intersects H finitely often. We will define a (Γ/ΓF )-
labelled graph H + L from H and L as follows. We define V (H + L) to be
V (G0) ∪ (L ∩ G0) and E(H + L) to be the set of arcs in G0 ∪ L with both
ends in V (H + L). Each edge of H + L inherits an orientation from H or
from L. Let

EL := {e ∈ E(H + L) : e ⊆ L for some L ∈ L}.

It remains to define the edge-labels of H + L . For each e ∈ E(H + L) we
choose an edge-label γH+L(e) such that

• Every face of H + L has group-value zero (in Γ/ΓF ).

• The edges in EL are the edges of a (Π′
F/ΓF )-linkage in the obvious

way.

• (H + L)\EL is a topological minor of H in the obvious way.

The easiest way to do this is to take a (Γ/ΓF )-labelled triangulation T of Σ′

such that

• T and H both induce the same (Γ/ΓF )-labelled surface, and

• H is a topological minor of T .

If T is sufficiently fine, it follows that we can actually choose L so that it
only passes through edges of T . We then recover the edge labels of H + L
from the edge labels in T .
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We now regard ΠF/ΓF as a pattern in H + L and show that every
edge in EL is redundant for ΠF/ΓF in H + L. Let e ∈ EL. Since T is a
respectful tangle of order at least 2n+1, by Corollary 7.5.5 there are vertex
disjoint cycles C1, . . . , Cn in H + L bounding disks ∆1, . . . , ∆n in Σ such
that e ⊂ ∆1 ⊂ · · · ⊂ ∆n. Moreover, since L is disjoint from the interior of
each of the disks in DH ∪ DF , we may assume that V (ΠF/ΓF ) is disjoint
from int(∆n). That is, e is an n-protected edge in Σ with respect to ΠF/ΓF .
By Theorem 8.1.1, e is redundant for ΠF/ΓF .

We proceed sequentially through EL and conclude that (H + L)\EL
has a (ΠF/ΓF )-linkage if and only if H + L has a (ΠF/ΓF )-linkage. But
H + L clearly does have a (ΠF/ΓF )-linkage by its construction. Therefore,
(H + L)\EL has a ΠF/ΓF -linkage. It follows that H must also have a
ΠF/ΓF -linkage. By Claim 1, G has a Π-linkage, as required.

99



Chapter 9

Taming a Vortex

We previously encountered vortices when discussing the Graph Minors
Structure Theorem in Chapter 5. In this chapter, we prove some important
results concerning the structure of vortices. First we prove that if G is
embedded in a surface Σ and H is a subgraph of G which is “clustered”
in Σ, then we may view H as a vortex. Next we show that under certain
conditions, we can slightly enlarge a vortex so that it has a special type
of vortex decomposition that is “linked”. This is quite crucial, as our final
theorem asserts that it is always possible to reroute a linkage so that it only
passes through a “linked” vortex a few times.

9.1 Vortices and Distance

We recall the definitions from Section 5.2. A society is a finite set of points
S that are cyclically ordered. An interval of S is a (non-empty) set of
consecutive vertices of S in the ordering. A halving of S is a partition of S
into two intervals. For u, v ∈ S, we let S(u, v) denote those vertices that
occur after u but before v in S. We define S[u, v] := S(u, v) ∪ {u, v}. So,
{S(u, v), S[v, u]} is a halving of S. If G is a graph and S ⊆ V (G) is a society,
we call the pair (G, S) a vortex. A vortex (G, S) has adhesion at most n if for
any halving of S, there do not exist n vertex disjoint paths in G between
the two halves.

Theorem 9.1.1. Let n ∈ N, let G be a graph embedded in a surface Σ, let dΣ be
the surface metric, and let x ∈ V (G). If there is a cycle C of G bounding a disk ∆
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in Σ such that dΣ(x, y) = n for all y ∈ V (C), then (G ∩∆, V (C)) is a vortex of
adhesion at most 2n + 4.

Proof. Suppose not. Let {X, Y } be a halving of V (C) such that there is a
family P of 2n + 4 disjoint X-Y paths of G contained in ∆. Let H be the
subgraph of G induced by E(C) ∪ E(P). We regard H as embedded in ∆,
and as such H has at least 2n+3 faces in ∆. Note that the dual graph H∗ of
H is a path. We label the faces of H as F1, . . . , Fm according to their order
in H∗. Let i be the minimum index in [m] such that x ∈ Fi.

If i ≤ n + 1, then we let z be any vertex in V (C) ∩ V (Fm) and D be any
dual curve in Σ connecting x to z. If D is contained in ∆, then clearly D
has length at least n+2. On the other hand, if D is not contained in ∆, then
D must use a vertex y of C before reaching z. Since, dΣ(x, y) = n, it follows
that D has length at least n + 2 in this case as well. Thus, dΣ(x, z) ≥ n + 1,
which is a contradiction.

The remaining possibility is if i ≥ n+2, and x /∈ V (Fn+1). The previous
argument shows that dΣ(x, z) ≥ n+1 where z is any vertex in V (C)∩V (F1).
This completes the proof.

9.2 Linked Vortex Decompositions

Let G be a graph and let L be a linearly ordered subset of V (G). Recall that
a vortex decomposition of (G, L) is a collection {Gv : v ∈ L} of subgraphs
of G such that for all x, y ∈ L, with x ≤ y

(V1) E(Gx ∩Gy) = ∅, and
⋃

v∈L Gv = G.

(V2) Gx ∩Gy ⊆
⋂

z∈L[x,y] Gz.

(V3) If x ∈ V (Gy) ∩ L, then y = x or y is the successor of x in L.

A vortex decomposition is linked if it additionally satisfies

(V4) For any three consecutive vertices x, y, z of L, there is a collection of
disjoint paths in Gy linking V (Gx ∩Gy) to V (Gy ∩Gz).
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The linked depth of a vortex is the minimum depth taken over all linked
vortex decompositions.

We end this section by making some observations about linked vortex
decompositions that will be needed later. Let {Gv : v ∈ L} be a linked
vortex decomposition of (G, L) of depth d. The first observation is that
(V4) implies that |V (Gx ∩ Gy)| = d for all consecutive vertices x, y ∈ L.
Next we observe that if [x, y] is an interval of L, then it is clear that
(
⋃

v∈[x,y] Gv,
⋃

v/∈[x,y] Gv) is a separation of G of order at most 2d. We denote
this separation as G[x, y] and call it the separation of G induced by [x, y]. It
is clear that nested intervals of L induce nested separations of G.

Lemma 9.2.1. Let {Gv : v ∈ L} be a linked vortex decomposition of (G, L) and
let [x1, y1] ⊆ . . . ⊆ [xm, ym] be intervals of L. Then G[x1, y1], . . . , G[xm, ym] is a
nested sequence of separations of G.

We now prove a strengthened form of (V4).

Lemma 9.2.2. Let {Gv : v ∈ L} be a linked vortex decomposition of (G, L) of
depth d. If v1, . . . , vn are consecutive vertices of L, then there are d vertex disjoint
paths in

⋃n−1
i=2 Gvi

between V (Gv1 ∩Gv2) and V (Gvn−1 ∩Gvn).

Proof. We proceed by induction on n. The base case n = 3 is handled by
(V4). Let v1, . . . , vn be consecutive vertices of L. By induction there is a
collection P of d vertex disjoint paths in

⋃n−2
i=2 Gvi

between V (Gv1 ∩ Gv2)
and V (Gvn−2 ∩ Gvn−1). By (V4) there is a collection Q of d vertex disjoint
paths in Gvn−1 between V (Gvn−2 ∩Gvn−1) and V (Gvn−1 ∩Gvn). By (V2), we
have that V (Q) ∩ V (P) = V (Gvn−2 ∩ Gvn−1). Therefore, by combining the
paths in P and Q appropriately, we get the desired set of paths.

A sequence (A1, B1), . . . , (Am, Bm) of separations of G is nested, if Ai ⊆
Ai+1 and Bi+1 ⊆ Bi for all i ∈ [m− 1].

Lemma 9.2.3. Let {Gv : v ∈ L} be a linked vortex decomposition of (G, L) of
depth d. Let [x1, y1] ⊆ . . . ⊆ [xm, ym] be intervals of L such that the separations
G[x1, y1], . . . , G[xm, ym] all have the same order, say n. Let U be the vertex
boundary of G[x1, y1] and V be the vertex boundary of G[xm, ym]. Then there
is a family of n disjoint U -V paths in

⋃
v∈[xm,x1]∪[y1,ym] Gv.
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Proof. By Lemma 9.2.2, there is a family P of d paths such that for each
P ∈ P and each v ∈ L, Gv contains a vertex of P . Therefore, letting
G′ :=

⋃
v∈[xm,x1]∪[y1,ym] Gv, we see that P ∩ G′ contains the required family

of n disjoint U -V paths.

9.3 Linking a Vortex

The main result of this section is subject to the following assumptions. Let
G be a graph and let (G0, G1) be a separation of G such that:

(A1) G0 is 2-cell embedded in a surface Σ.

(A2) V (G0 ∩G1) are the vertices of a face F of G0.

(A3) If V (F ) is cyclically ordered via the boundary of F then (G1, V (F ))
is a vortex of adhesion at most n.

(A4) G0 has a respectful tangle T of order at least 2n + 1.

Under these conditions, it is possible to enlarge F to a disk ∆, so that the
portion of G inside ∆ has a linked vortex decomposition of depth at most
n.

Theorem 9.3.1. There is a cycle C0 in G0 bounding a disk ∆ containing F such
that the vortex (G1∪(∆∩G0), V (C0)) has a linked vortex decomposition of depth
at most n.

Proof. For each i ∈ [n], let Si be the set of vertices of G0 at distance exactly
i − 1 from F (with respect to dΣ). By Corollary 7.5.5, for each i ∈ [n],
there exists a cycle Ci of G0 which only passes through vertices of Si.
Furthermore, each Ci bounds a disk ∆i in Σ such that ∆1 ⊂ · · · ⊂ ∆n.
By (A1), we may assume ∆1 = F .

Let H ′ be the subgraph of G induced by V (G1) ∪ V (C1) ∪ · · · ∪ V (Cn).
Observe that C1 ∪ Cn bounds a cylinder Σ′ in Σ. Define J ′ := H ′ ∩ Σ′. By
construction, there exists a dual curve R of length n in Σ′ that intersects
each Ci exactly once. Label V (R) = {r1, . . . , rn}, where ri ∈ V (Ci) for each
i. Cut Σ′ open along R, splitting each ri into two copies ui and vi. Let H
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and J be the graphs obtained from H ′ and J ′ after splitting V (R), and let
U := {ui : i ∈ [n]}, V := {vi : i ∈ [n]}.

Every un-vn path P in J corresponds to a cycle C(P ) in J ′ which bounds
a disk ∆(P ) in Σ. We define H ′

P := (G0 ∩ ∆(P )) ∪ G1, and HP to be the
graph obtained from HP by cutting Σ′ open along the dual curve R. Note
that HP is a subgraph of H . We now choose a un-vn path P in J such that

(1) κHP
(U, V ) = n,

(2) subject to (1), ∆(P ) is minimal (with respect to inclusion).

Let Q := {Qi : i ∈ [n]} be a collection of n disjoint U -V paths in HP ,
labelled according to their endpoints in U = {ui : i ∈ [n]}. By planarity, if
the last path Qn uses an edge of G1, then all paths in Q must also use an
edge of G1. Therefore, Qn does not use an edge of G1, otherwise the vortex
(G1, S) would have adhesion more than n. It now follows that Qn must
in fact connect un to vn. Observe that by choice of P , we have Qn = P .
Let Qn = b1 . . . bm. By choice of P , there is a family Y := {Y1, . . . , Ym} of
(vertex) separations such that for each i ∈ [m],

(S1) Yi separates U from V in HP ,

(S2) |Yi| = n, and

(S3) bi ∈ Yi.

If Y is such a family and Yi, Yj ∈ Y , we say that Yi and Yj cross if i < j and
there exist a ∈ Yi and b ∈ Yj such that b occurs before a on some path of Q.

Claim. There exists such a family Y ′ such that no two members of Y ′ cross.

SUBPROOF. Let Y := {Y1, . . . , Ym} satisfy (S1), (S2), and (S3). We will
uncross the sets in Y one at a time. Let Yi, Yj ∈ Y with i < j. Observe that
there are separations (A, B) and (C, D) of HP such that

• V (A ∩B) = Yi, and V (C ∩D) = Yj .

• U ⊆ V (A ∩ C), and V ⊆ V (B ∩D).
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Since (A, B) and (C, D) are both minimum order separations separating U
and V , so are (A ∩ C, B ∪ D) and (A ∪ C, B ∩ D), by submodularity. We
thus set Yi := bd(A∩C, B ∪D) and Yj := bd(A∪C, B ∩D) and refer to this
operation as uncrossing Yi and Yj .

Let I = {(i, j) : i, j ∈ [m], i < j}. For (i, j) ∈ I and (i, j) 6= (m − 1, m)
we let (i, j)+ be the successor of (i, j) in I under the usual lexicographic
ordering. It is now easy to state how to construct the required family
Y ′. Starting with (i, j) = (1, 2), uncross Yi and Yj . Set (i, j) = (i, j)+ and
recurse until (i, j) = (m− 1, m).

So, let Y ′ = {Y1, . . . , Ym} be such a family. Therefore, for each i ∈ [m]
there exists a separation (Ai, Bi) of HP of order n such that

• bd(Ai, Bi) = Yi,

• U ⊆ Ai and V ⊆ Bi,

• Ai ⊆ Ai+1, and Bi+1 ⊆ Bi, for each i ∈ [m− 1].

For each i ∈ [m− 1] we define G′
i := Ai+1 ∩Bi.

Now note that the last path Qn ∈ Q actually corresponds to a cycle
C0 in G0 since its endpoints become identified. Since C0 does not use an
edge of G1, it follows that C0 bounds a disk ∆ in Σ containing F . Let
G′ := G1 ∪ (∆ ∩ G0). By construction, G′

1 ∪ · · · ∪ G′
m−1 is a linked vortex

decomposition of depth n of the vortex (G′, V (C0)), as required.

9.4 Avoiding Vortices

In this section G is a Γ-labelled graph that is l-near embedded in a surface
Σ, where the near embedding has no apex vertices. We will analyze the
structure of linkages in G with respect to such a near embedding. Let Π
be a pattern in G. Our main result is that if P is a set of paths realizing Π,
then it is always possible to reroute the paths in P so that they still realize
Π, but only pass through the vortices a few times.

Let us be precise. Let G0 ∪ G1 ∪ · · · ∪ Gl be a l-near embedding
of G in Σ with no apex vertices, G0 as the embedded subgraph and
(G1, L1), . . . , (Gl, Ll) the vortices of the near embedding.

A path P in G is a Σ-jump if for some i ∈ [l]
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• P ⊆ G0,

• both ends of P are on bd(Σ), and

• no internal vertex of P is on bd(Σ).

The main result of this section is the following. Our proof is based on a
proof of an analogous result for graphs in Graph Minors XXI [43, Theorem
6.3].

Theorem 9.4.1. For every surface Σ, every finite abelian group Γ and every
k, l ∈ N there exists j := j(k, l, Γ, Σ) ∈ N such that, if G0 ∪ G1 ∪ · · · ∪ Gl

is an l-near embedding of a Γ-labelled graph G in Σ with no apex vertices, G0

as the embedded subgraph and (G1, L1), . . . , (Gl, Ll) as the vortices and Π is a
realizable k-pattern in G, then there is a set of paths P in G realizing Π with at
most j Σ-jumps.

We will require the following two obvious lemmas.

Lemma 9.4.2. Let (γ1, . . . , γm) be a sequence of elements from a finite abelian
group Γ. If m > |Γ|, then there exist indices i < j such that

∑j
n=i+1 γn = 0.

Proof. By the pigeonhole principle, there exist indices i < j such that∑i
n=1 γn =

∑j
n=1 γn. But then

∑j
n=i+1 γn = 0, as required.

Lemma 9.4.3. Let G be a Γ-labelled graph, Π be a pattern in G, and (A, B) be a
separation of G. If P is a Π-linkage in G, then P ∩B is a Π′-linkage in B, where
V (Π′) ⊆ (V (Π)\V (A)) ∪ V (A ∩B).

The key idea of the proof is the next lemma, which allows us to control
how a linkage passes through a sequence of nested separations.

Lemma 9.4.4. For all k, n ∈ N and all finite abelian groups Γ, there exists
m := m(k, n, Γ) ∈ N with the following property. Let G be a Γ-labelled graph
and let Π be a realizable k-pattern in G. Let (A1, B1), . . . , (Am, Bm) be a nested
sequence of separations of G, each of order n. Finally, let L be a linkage in G
satisfying

• {tail(L) : L ∈ L} = V (A1 ∩B1), and

• {head(L) : L ∈ L} = V (Am ∩Bm).
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Then there is a realization P of Π, and indices s < t such that P ∩ (Bs ∩ At) ⊆
L ∩ (Bs ∩ At).

Proof. We show that m(k, n, Γ) := |Γ|(2|Γ|(2k+n)2) + 1 suffices. Fix k, n and Γ
and let

G, Π, (A1, B1), . . . , (Am, Bm),L

be a counterexample with |E(G)| minimal. By shifting, we may assume
that all edges in E(L) are zero-labelled. Let L := {L1, . . . , Ln} and for
each i ∈ [m], label the vertices in V (Ai ∩Bi) as {l1i , . . . , lni } according to the
(unique) Lj which passes through it. We remark that it is possible that say
l1i = l1j , for distinct i and j. Let X := V (Π) and consider the set X ∪ [n]. For
each finite abelian group Γ, there are at most 2|Γ|(2k+n)2 patterns Π′, such
that V (Π′) ⊆ X ∪ [n]. Let Q be a realization of Π. For any i ∈ [m], let Πi be
the pattern of Q ∩ Bi in Bi. By Lemma 9.4.3, V (Πi) ⊆ X ∪ {l1, . . . , ln}. If
we identify {l1, . . . , ln} with [n], then we may regard each Πi as a pattern
with V (Πi) ⊆ X ∪ [n]. Let g := |Γ| + 1. Since m = |Γ|(2|Γ|(2k+n)2) + 1, there
are indices i1 < i2 < · · · < ig such that Πij are the same for all j ∈ [g]. In
particular, this implies that X ∩ Ai1 = X ∩ Aig and X ∩ Bi1 = X ∩ Big . We
may assume that Aig ∩ Big−1 contains an edge in E(L). Otherwise, we are
done since we can take P := Q, s = ig−1, and t = ig.

There are two cases to consider. The first is if V (Πig) is disjoint from
[n]. But then, E(Q) ∩ E(Aig ∩Big−1) is empty, a contradiction.

By symmetry, the remaining case is if (x, i, γ) ∈ V (Πig), for some x ∈ X ,
i ∈ [n], and γ ∈ Γ. Since Πig = Πig−1 = · · · = Πi1 , it follows that there is
a path Q ∈ Q that passes through x and each of lij for all j ∈ {i1, . . . , ig}.
By switching i if necessary, we may assume that Q contains an edge of
Aig ∩ Big−1 . Now, for each j ∈ [g] we let γj be the group-value of the
subpath of Q from x to lij . By Lemma 9.4.2, there exist q < r such that∑r

j=q+1 γj = 0. Let Q′ := Q ∩ (Air ∩ Biq) and L′ := Li ∩ (Air ∩ Biq). We
replace Q in Q by (Q\Q′)∪L′. Letting e be an edge of L′, we have that G/e
is a smaller counterexample, a contradiction.

We now proceed to prove Theorem 9.4.1. We illustrate the main idea
by first considering the case when Σ is the disk.

Theorem 9.4.5. For any k, d ∈ N, and any finite abelian group Γ, there exists
j := j(k, d, Γ) ∈ N with the following property. Let G be a Γ-labelled graph, Π
be a realizable k-linkage in G and (G0, G1) be a separation of G such that
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• G0 is embedded in a disk ∆ with V (Π) ⊆ bd(∆), and

• (G1, V (G1) ∩ bd(∆)) has a linked vortex decomposition of depth at most d.

Then there is a realization of Π in G with at most j ∆-jumps.

Proof. Fix k, d, and Γ, and let f := m(k, 2d, Γ)2d, where m is the function
from Lemma 9.4.4. We will show that j := f f suffices. Let G := G0 ∪ G1,
and Π be a counterexample with |E(G)| minimal. Among all realizations
of Π in G choose P with the minimum number of ∆-jumps. By choice
of G, we note that P contains more than j ∆-jumps. Let δ := bd(∆),
L := V (G) ∩ δ, and let {Gv : v ∈ L} be a linked vortex decomposition
of (G1, L) of depth d. Note that we regard L as a sub-order of δ, see
Remark 5.2.2.

Claim. V (G0) = V (Π).

SUBPROOF. Deleting any vertices of G0 which do not appear in V (P)
would yield a smaller counterexample. Now, let e be an edge of G0 with
ends x and y such that x is not δ. By shifting at x so that γG(e) = 0, and
then contracting e onto y, we get that G/e is a smaller counterexample.

Therefore the ∆-jumps are simply the edges of G0 and it suffices to
prove that |E(G0)| ≤ j. In order to apply Lemma 9.4.4 we require
a suitable collection of nested separations, which will be provided via
certain dual curves. We call a dual curve b in ∆ a bite if b only meets G0 at
its ends, which are on L. Let b be a bite with ends x < y on L. We define
δ[x, y] to be the clockwise arc of δ from x to y. We let ∆(b) be the disk in ∆
bounded by b ∪ δ[x, y]. Now it is easy to see how to construct a separation
of G from b. Namely, we define

A(b) := (G0 ∩∆(b)) ∪
⋃

z∈L[x,y]

Gz, and

B(b) := (G0 ∩∆\∆(b)) ∪
⋃

z /∈L[x,y]

Gz.

It is clear that (A(b), B(b)) is a separation of G of order at most 2d.
Moreover,
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Claim. If b1, . . . , bn is a sequence of bites such that ∆(b1) ⊆ . . . ⊆ ∆(bn), then
the sequence of separations (A(b1), B(b1)), . . . , (A(bn), B(bn)) is nested.

SUBPROOF. Immediate from Lemma 9.2.1.

Recall that we must prove that |E(G0)| ≤ j. We do this by bounding
the number of edges in G∗

0, the dual graph of G0 in ∆. Recall that the
vertices of G∗

0 are the faces of G0 in ∆, and two faces F1, F2 ∈ V (G∗
0) are

adjacent if and only if bd(F1) ∩ bd(F2) contains an edge of G0. Evidently,
|E(G∗

0)| = |E(G0)|, and G∗
0 is a tree. We will show that G∗

0 has maximum
degree f and that every path in G∗

0 has length at most f . It will thus follow
that |E(G∗

0)| ≤ f f , as required.
If the dual graph G∗

0 contains a vertex of degree greater than f or a path
of length greater than f , then there is a sequence of bites b1, . . . , bf in ∆ and
distinct edges e1, . . . , ef of G0 such that

• ∆(b1) ⊆ . . . ⊆ ∆(bf ), and

• ei ∈ ∆(bi)\∆(bi−1) for each i ∈ [f ]. (define ∆(b0) = ∅)

Since f = m(k, 2d, Γ)2d, by re-indexing we may assume that there is a
subsequence b1, . . . , bm such that the separations (A(bi), B(bi)) all have the
same order, say n ≤ 2d.

By Lemma 9.2.3 there is a collection L of n disjoint paths in G1 such
that

• {tailG(L) : L ∈ L} is the vertex boundary of (A(b1), B(b1)), and

• {headG(L) : L ∈ L} is the vertex boundary of (A(bm), B(bm)).

We are now in prime position to apply Lemma 9.4.4. We conclude that
there are indices s < t in [m] and another realization P ′ of Π such
that P ′ ∩ (A(bt) ∩ B(bs)) is a subset of L ∩ (A(bt) ∩ B(bs)). Since et ∈
E(A(bt) ∩ B(bs)), but clearly et /∈ E(P ′), it follows that G\et is a smaller
counterexample, a contradiction.

We now prove the general case.
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Theorem 9.4.6. For every surface Σ, every finite abelian group Γ and every
k, l ∈ N there exists j := j(k, l, Γ, Σ) ∈ N such that, if G0 ∪ G1 ∪ · · · ∪ Gl

is a l-near embedding of a Γ-labelled graph G in Σ with no apex vertices, G0

as the embedded subgraph and (G1, L1), . . . , (Gl, Ll) as the vortices and Π is a
realizable k-pattern in G with V (Π) ⊆ bd(Σ), then there is a realization of Π in
G with at most j Σ-jumps.

Proof. We will prove that

j(k, l, Γ, Σ) := (2lm(k, 4l, Γ))2lm(k,4l,Γ)+5h(Σ)2 max{ρ1(Σ)ρ2(Σ)},

suffices, where m(k, n, Γ) is the function from Lemma 9.4.4, h(Σ) is the
number of holes of Σ, ρ1(Σ) is the function from Lemma 7.1.3, and ρ2(Σ) is
the function from Lemma 7.1.4.

Fix Σ, Γ, k, l and let G := G0 ∪ G1 ∪ · · · ∪ Gl be a counterexample, with
|E(G)| minimal. For notational convenience we let M = m(k, 4l, Γ). For
each i ∈ [l], let {Gv : v ∈ Li} be a linked vortex-decomposition of Gi of
depth at most l, attached to the hole δi of Σ. Finally, let P be a realization
of Π in G with the minimum number of Σ-jumps. As in the proof of
Theorem 9.4.5 we have

Claim. V (G0) = V (G) ∩ bd(Σ).

Therefore, the Σ-jumps of P are simply the edges of G0. So, it suffices
to prove that |E(G0)| ≤ j. We partition E(G0) as E1 ∪ E2 ∪ E3, where
E1 consists of the edges of G0 which connect up two different holes, E2

consists of the non-contractible edges of G0 which connect up a common
hole, and E3 consists of the contractible edges of G0 which connect up a
common hole. We will show that none of E1 nor E2 nor E3 can be very
large.

Let us start with E1. For any two holes δi and δj of Σ, we let E(δi, δj)
be the edges of G0 with one end on δi and the other on δj . By definition of
ρ2, there are at most ρ2(Σ) homotopy classes (with respect to δ1 and δ2) of
edges in E(δ1, δ2).

Therefore, if there are at least 8lMρ2(Σ)
(

h(Σ)
2

)
edges of G0 which

connect different holes, then for some two holes, say δ1 and δ2, there are
8lMρ2(Σ) edges in E(δ1, δ2). Thus, there are 8lM pairwise homotopic
edges e1, . . . , e8lM in E(δ1, δ2). For each i ∈ [8lM ] let xi be the end of ei

on δ1 and yi be the end of ei on δ2. By choosing an appropriate half of the
edges and re-indexing, we may assume that either
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• x1 < · · · < x4lM in L1,

• y4lM < · · · < y1 in L2, and

• e1 ∪ e4lM ∪ δ1[x1, x4lM ] ∪ δ2[y4lM , y1] bounds a disk in Σ,

or

• x1 < · · · < x4lM in L1,

• y1 < · · · < y4lM in L2, and

• e1 ∪ e4lM ∪ δ1[x1, x4lM ] ∪ δ2[y1, y4lM ] bounds a disk in Σ.

In either case, just as in the proof of Lemma 9.4.5, these 4lM edges induce
a sequence (A1, B1), . . . , (A4lM , B4lM) of nested separations of G such that

• the order of (Ai, Bi) is at most 4l for each i ∈ [4lM ], and

• ei ∈ E(Ai)\E(Ai−1). (define E(A0) = ∅)

By taking an appropriate subsequence, we may assume that
(A1, B1), . . . , (AM , BM) all have the same order, say n ≤ 4l. Now since
both (G1, L1) and (G2, L2) have linked vortex decompositions of width
at most l, it follows that there is a linkage L of size n in G such that
{tailG(L) : L ∈ L} = bd(A1, B1) and {headG(L) : L ∈ L} = bd(AM , BM). As
in the proof of Lemma 9.4.5 we conclude that there is another realization
P ′ of Π in G such that et /∈ E(P ′) for some t ∈ [M ]. Thus, G\et is a smaller
counterexample, a contradiction. Therefore, |E1| < 8lM

(
h(Σ)

2

)
ρ2(Σ), else

we are done.
We now deal with E2. If there are at least 4lMρ1(Σ)h(Σ) edges in

E2, then for some hole δ1 of Σ, at least 4lMρ1(Σ) edges in E2 are δ1-
edges. By definition of ρ1, we conclude that at least 4lM of these δ1-
edges are pairwise homotopic. As in the previous case, we find M
pairwise homotopic δ1-edges e1, . . . , eM which induce a nested sequence
of separations (A1, B1), . . . , (AM , BM) of G such that for each i ∈ [M ]

• each (Ai, Bi) has the same order, say n ≤ 4l, and

• ei ∈ E(Ai)\E(Ai−1). (define E(A0) = ∅)

111



Since (G1, L1) has a linked vortex decomposition of width at most l, we
again conclude that there is a linkage L of size n in G such that {tailG(L) :
L ∈ L} = bd(A1, B1) and {headG(L) : L ∈ L} = bd(AM , BM). Thus,
there is another realization P ′ of Π in G such that et /∈ E(P ′) for some
t ∈ [M ]. So, G\et is a smaller counterexample, a contradiction. Thus
|E2| < 4lMρ1(Σ)h(Σ), else we are done.

By choice of j, since there are not many edges in E1 or E2, it is clear
that

|E3| ≥ 13lm(k, 4l, Γ)(2lm(k, 4l, Γ))2lm(k,4l,Γ)h(Σ)2 max{ρ1(Σ)ρ2(Σ)}.

It follows that, for some hole δ1 of Σ, there are at least

13lm(k, 4l, Γ)(2lm(k, 4l, Γ))2lm(k,4l,Γ)h(Σ) max{ρ1(Σ)ρ2(Σ)}

contractible edges of G0 with both ends on δ1. We denote this set as Eδ1
3 .

Recall that L1 is the linear ordering of V (δ1) given by the vortex (G1, L1).
We again stress that we regard δ1 as a linearly ordered set and L1 is a sub-
order of δ1 (see Remark 5.2.2). Let u and v be the first and last vertices of
L1 respectively. Let e be an edge in Eδ1

3 . Note that if Σ is the disk, we have
two subarcs A1 and A2 of δ1, such that both e ∪A1 and e ∪A2 bound a disk
in Σ. If Σ is not the disk there is only one such choice. The rest of the proof
is dedicated to overcoming this difficulty. For each e ∈ Eδ1

3 , we let a(e) be a
subarc of δ1 such that e∪ a(e) bounds a disk in Σ. We say that an edge e of
Eδ1

3 is bad if a(e) contains both u and v, the minimal and maximal elements
of L1, and is good otherwise.

Claim. Eδ1
3 contains fewer than 4lM bad edges.

SUBPROOF. Suppose not. Observe that any two bad edges are homotopic.
Hence, we have at least 4lM pairwise homotopic edges, and we can
proceed exactly as we did in the previous case.

Observe that there are at most 8lM(h(Σ) − 1)ρ2(Σ) edges of E1 with
one endpoint on δ1. Similarly, there are at most 4lMρ1(Σ) edges of E2 with
both ends on δ1. Also, by the above claim there are at most 4lM bad edges
in E3. Let X be the set of vertices of G on δ1 which are an endpoint of an
edge in E1, E2, or a bad edge of Eδ1

3 .
It follows that |X| ≤ 12lMh(Σ) max{ρ1(Σ), ρ2(Σ)}. Note that X

partitions δ1 into |X| intervals, and that no point of X is strictly between
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the endpoints of a good edge of Eδ1
3 (with respect to L1). It is easy to

see that Eδ1
3 contains at least (2lM)2lM |X| good edges. Hence, one of

these intervals contains the endpoints of at least (2lM)2lM good edges.
We can thus finish the proof by proceeding exactly as in the proof of
Lemma 9.4.5.

113



Chapter 10

The Algorithm

We end by giving a global overview of the algorithm.
Let G be a Γ-labelled graph and let Π be a k-pattern in G. We wish

to determine whether G has a Π-linkage. We begin by testing if G has
small branch-width. This can be done in linear-time by Theorem 3.1.4. If
G does have small branch-width, then we can solve the problem directly
by Corollary 3.6.2 (or by dynamic programming).

So, that leaves us with the case that G has huge branch-width. Here,
“huge” is an enormous constant w that allows us to find the structures
we require, but only depends on k and Γ. By the Grid Theorem
(Theorem 5.1.2), G̃ contains a large grid-minor H . We can efficiently find H
by Remark 5.1.3. By Theorem 4.4.1, H induces a high order tangle TH in G.
By Lemma 4.4.2, the diagonal D(H) of H is a large TH-independent subset
of V (G). Therefore, by Lemma 4.9.1, we can test whether any separation
(A, B) is in TH , as long as ord(A, B) is less than half the size of D(H). Thus,
D(H) exhibits a tangle that is still of high order. Our algorithm will

• certify that G has a Π-linkage, or

• delete a redundant vertex for Π, or

• find a new tangle.

We now apply Theorem 5.6.5 to determine the structure of G relative to
our current tangle in question. Either

• TH controls a K(n, Γ)-minor in G, where n is still big.
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• There exists a small set of vertices X ⊆ V (G), such that the T -large
block of G\X is Γ′-balanced for some proper subgroup Γ′ of Γ, and
contains a big K(Γ′, m)-minor.

• TH does not control a big Kl minor in G̃.

If TH controls a K(n, Γ)-minor in G, where n is still big, then we can
easily find a redundant vertex in the K(n, Γ)-minor (or certify that G has a
Π-linkage), by Theorem 6.1.1.

For the second outcome we proceed as follows. We may assume that
V (Π) ⊆ X , since k is fixed. Now if G\X only contains one block, then we
can apply Theorem 6.2.1 to find a redundant vertex within the K(Γ′, m)-
minor. Suppose G\X has more than one block, and let B be the TH-large
block of G\X . A piece P of G is a subgraph of G\X which is maximal with
respect to the following two properties.

• P is the union of blocks of G\X , and

• P intersects B at a single vertex.

For each piece P of G we test if G[V (P ) ∪X] has branch-width at most w,
where w is the same constant from the start of the algorithm. If G[V (P )∪X]
has low branch-width for each piece P , then we can find the set of all
realizable patterns Π′ in G[V (P ) ∪ X], with V (Π′) = X ∪ {y}, where y is
the unique vertex of V (P ) in B. We can therefore reduce to the case where
G\X consists of a single block, and use Theorem 6.2.1. If G[V (P ) ∪X] has
high branch-width for some piece P , we attempt to find a new tangle. We
find a large grid-minor H ′ in G[V (P ) ∪ X], and let D(H ′) be the diagonal
of H ′. It is possible that TH and TH′ are the same tangle (up to the order
that we care about). We can determine this by applying Theorem 4.9.6. If
TH′ is the same tangle as TH , then we move to another piece and test its
branch-width. If TH′ is a new tangle, then we start anew by determining
the structure of G relative to TH′ . If we cannot find a new tangle in this
way, then TH must be a leaf in the “tree of tangles”. Recall that such
tangles are called peripheral tangles. We can separate a peripheral tangle
from all other tangles of the same order by a low order separation. So, we
again reduce to the single block case, at the cost of introducing a few more
linkage vertices.

The remaining outcome is if TH does not control a big Kl-minor in G̃.
In this case, we use a constructive version of the Graph Minors Structure
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Theorem. Up to 3-separations, G embeds in a surface Σ, with a bounded
number of vortices of bounded adhesion, a bounded number of apex
vertices A, and a large part of the grid-minor H lying in a disk of Σ. Let
G0 be the part of G embedded in Σ. We may assume that V (Π) ⊆ A, since
k is fixed.

For this instance, we abuse terminology and define a piece of G to
be a subgraph of G that is glued onto G0 along an edge or reduction
triangle. For the moment, assume that G does not contain any pieces.
First we analyze how the apex vertices attach to G0. As in the proof of
Theorem 6.2.1, by flipping edges, we may assume that the edges from the
apex set to G0 are all directed toward G0. For each x ∈ A and γ ∈ Γ, we let

Nx,γ := {u ∈ V (G0\A) : e = xu ∈ E(G), γe = γ}.

We let N denote the family of all Nx,γ . For the moment, assume that
each member of N is of low rank in the tangle matroid MTH

. Thus, all
the neighbours of A in G0 are contained in a disk ∆, and there are not
very many vertices of G0 on the boundary of ∆. We may assume that
bd(∆)∩G0 is TH-independent. We remove the interior of ∆ from Σ, and let
δ be the corresponding hole. Note that if G has a Π-linkage, then G0∩Σ\∆
must have a Π′-linkage where V (Π′) is a subset of bd(∆). We do not know
what Π′ is, but we can find a redundant vertex for all possible Π′ via the
sufficient conditions in Theorem 8.4.3. Let ΓF be the face subgroup of Γ.
We attempt to find a collection of faces of G that are pairwise far apart and
strongly generate ΓF . We then recurse, but always find faces that are far
apart from the ones we have already found, and far apart from δ. If we
can find a family {F1, . . . ,Fl} such that

• each Fi is a collection of pairwise far apart faces that strongly
generate ΓF ,

• any two faces in F :=
⋃

i∈[l]Fi are also far apart, and

• each face in F is far from δ,

then Theorem 8.4.3 implies that any Π′ with its vertex set contained on δ is
realizable in G0. Thus, any vertex that is far from each face in F and also
far from δ is redundant for Π′, and hence also for Π.

If we cannot find such a collection F , then there must be a proper
subgroup Γ′F of ΓF and a small number of “clusters”, such that every face
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of G0 which is outside the union of all the clusters, has its group-value in
Γ′F . Note that we may regard each of these clusters as a vortex of bounded
adhesion, by Theorem 9.1.1. We can therefore replace Γ by Γ/Γ′F and then
recurse. We have added a few more vortices, but have moved to a smaller
group.

Eventually, we will either find a redundant vertex, or reduce to the case
that Γ = {0}. By enlarging each of the vortices slightly, we may assume
that they each have a linked vortex decomposition of bounded depth, by
Theorem 9.3. Now we can appeal to Theorem 9.4.6, which asserts that if Π′

is realizable in G0, then it has a realization which does not pass through the
vortices many times. We have therefore reduced to a problem in a surface,
at the cost of introducing a few more linkage vertices. But now, any vertex
that is far from δ and each of the linked vortices (including the new ones
we created), is redundant for Π′ in G0 and hence also for Π in G.

In the case that some members of N are of high rank in the tangle
matroid, we proceed exactly as in the proof of Theorem 6.2.1. Namely, we
divide N into the low rank sets and the high rank sets. The low rank sets
are contained in a disk in Σ, with not many vertices on the boundary, and
the high rank sets are dispersed all over the surface and do not cause us
problems.

Finally, we need to deal with the fact that G is only embedded in Σ
up to 3-separations. Again, we handle this in the same way as we did
for cliques. We test the branch-width of each piece of G in an attempt
to find a new tangle. If we discover a new tangle, we again start over
and find the structure of G relative to our new tangle. Note that this new
tangle may correspond to either the clique case or the surface case. Either
way, we keep a list of all the tangles that we have found so far and check
potential new tangles against all tangles in our list. Since G has at most
(|E(G)|−2)/2 maximal tangles by Corollary 4.8.3, we are guaranteed after
at most (|E| − 2)/2 steps to

• delete a redundant vertex, or

• certify that Π is realizable, or

• reach a peripheral tangle.

Once we reach a peripheral tangle we will certainly find a redundant
vertex or certify that Π is realizable in the next step. Note that we only
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need to keep a list of tangles until we delete a redundant vertex. Once
we delete a redundant vertex v, the algorithm begins again in earnest and
tests whether G\v has branch-width at most w.

As stated, the running-time of the algorithm is certainly polynomial,
but it is far from optimal since we are constructing the tree of tangles along
the way. If we only care about finding a peripheral tangle, the running-
time of the algorithm can be improved to O(|V (G)|6).
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