846 research outputs found

    Fast and accurate con-eigenvalue algorithm for optimal rational approximations

    Full text link
    The need to compute small con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices naturally arises when constructing rational approximations with a (near) optimally small LL^{\infty} error. Specifically, given a rational function with nn poles in the unit disk, a rational approximation with mnm\ll n poles in the unit disk may be obtained from the mmth con-eigenvector of an n×nn\times n Cauchy matrix, where the associated con-eigenvalue λm>0\lambda_{m}>0 gives the approximation error in the LL^{\infty} norm. Unfortunately, standard algorithms do not accurately compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few or no correct digits for con-eigenvalues smaller than the machine roundoff. We develop a fast and accurate algorithm for computing con-eigenvalues and con-eigenvectors of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative accuracy. The algorithm computes the mmth con-eigenvalue in O(m2n)\mathcal{O}(m^{2}n) operations and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponentially fast, we obtain (near) optimal rational approximations in O(n(logδ1)2)\mathcal{O}(n(\log\delta^{-1})^{2}) operations, where δ\delta is the approximation error in the LL^{\infty} norm. We derive error bounds demonstrating high relative accuracy of the computed con-eigenvalues and the high accuracy of the unit con-eigenvectors. We also provide examples of using the algorithm to compute (near) optimal rational approximations of functions with singularities and sharp transitions, where approximation errors close to machine precision are obtained. Finally, we present numerical tests on random (complex-valued) Cauchy matrices to show that the algorithm computes all the con-eigenvalues and con-eigenvectors with nearly full precision

    On truncations of Hankel and Toeplitz operators

    Get PDF
    We study the boundedness properties of truncation operators acting on bounded Hankel (or Toeplitz) infinite matrices. A relation with the Lacey-Thiele theorem on the bilinear Hilbert transform is established. We also study the behaviour of the truncation operators when restricted to Hankel matrices in the Schatten classes

    Complete boundedness of the Heat Semigroups on the von Neumann Algebra of hyperbolic groups

    Full text link
    We prove that (λgetgrλg)t>0(\lambda_g\mapsto e^{-t|g|^r}\lambda_g)_{t>0} defines a completely bounded semigroup of multipliers on the von Neuman algebra of hyperbolic groups for all real number rr. One ingredient in the proof is the observation that a construction of Ozawa allows to characterize the radial multipliers that are bounded on every hyperbolic graph, partially generalizing results of Haagerup--Steenstrup--Szwarc and Wysocza\'nski. Another ingredient is an upper estimate of trace class norms for Hankel matrices, which is based on Peller's characterization of such norms.Comment: v2: 28 pages, with new examples, new results, motivations and hopefully a better presentatio
    corecore