267,582 research outputs found

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity

    A sub-determinant approach for pseudo-orbit expansions of spectral determinants in quantum maps and quantum graphs

    Get PDF
    We study implications of unitarity for pseudo-orbit expansions of the spectral determinants of quantum maps and quantum graphs. In particular, we advocate to group pseudo-orbits into sub-determinants. We show explicitly that the cancellation of long orbits is elegantly described on this level and that unitarity can be built in using a simple sub-determinant identity which has a non-trivial interpretation in terms of pseudo-orbits. This identity yields much more detailed relations between pseudo orbits of different length than known previously. We reformulate Newton identities and the spectral density in terms of sub-determinant expansions and point out the implications of the sub-determinant identity for these expressions. We analyse furthermore the effect of the identity on spectral correlation functions such as the auto-correlation and parametric cross correlation functions of the spectral determinant and the spectral form factor.Comment: 25 pages, one figur

    Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities. I. Generalizations of the Capelli and Turnbull identities

    Full text link
    We prove, by simple manipulation of commutators, two noncommutative generalizations of the Cauchy-Binet formula for the determinant of a product. As special cases we obtain elementary proofs of the Capelli identity from classical invariant theory and of Turnbull's Capelli-type identities for symmetric and antisymmetric matrices.Comment: LaTeX2e, 43 pages. Version 2 corrects an error in the statements of Propositions 1.4 and 1.5 (see new Remarks in Section 4) and includes a Note Added at the end of Section 1 comparing our work with that of Chervov et al (arXiv:0901.0235
    • …
    corecore