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Abstract. We study implications of unitarity for pseudo-orbit expansions of the

spectral determinants of quantum maps and quantum graphs. In particular, we

advocate to group pseudo-orbits into sub-determinants. We show explicitly that the

cancellation of long orbits is elegantly described on this level and that unitarity can be

built in using a simple sub-determinant identity which has a non-trivial interpretation

in terms of pseudo-orbits. We reformulate Newton identities and the spectral density

in terms of sub-determinant expansions and point out the implications of the sub-

determinant identity for these expressions. We analyse furthermore the effect of the

identity on spectral correlation functions such as the auto-correlation and parametric

cross correlation functions of the spectral determinant and the spectral form factor.
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1. Introduction

1.1. Overview

When calculating quantum spectra with the help of periodic orbit sums such as, for

example, arising from semiclassical expressions, one typically encounters problems due to

divergencies resulting from summing over a large number of periodic orbits which grows

exponentially with length. This is in particular the case for quantum systems whose

underlying classical dynamics is chaotic [1]. To apply these periodic orbit expressions

for determining quantum spectra, the number of relevant orbits needs to be reduced.

This is either achieved by reordering the orbit contributions making use of cancellations

such as is done in the cycle expansion [2] or one can also utilise unitarity of the quantum

dynamics leading to additional relations between the coefficients of the characteristic

polynomial and thus to finite sums over pseudo-orbits [3, 4, 5, 6, 7, 8].

A related problem is the semiclassical calculation of spectral correlation functions.

They are conjectured to follow Random Matrix Theory (RMT) for quantum systems

with chaotic classical limit. Establishing this connection explicitly using semiclassical

periodic orbit formulae for the spectral form factor could only be achieved fairly recently

following the work in [9]. This calculation has been extended in [10] yielding the full

spectral form factor as predicted by RMT for times smaller than the Heisenberg time

TH . (This is the time needed to resolve distances of the order of the mean level spacing

in the Fourier-transformed spectrum). The spectral form factor for times larger than TH
has been obtained using semiclassical periodic orbit expressions in [11]. The calculation

is based on a generating function approach containing two spectral determinants both

in the numerator and denominator at four different energies. The derivation makes ex-

plicit use of the fact that the spectral determinant is real for real energies. Although this

is obvious from its definition, Eq. (8) below, it is not clear a-priory when considering

the representation of the spectral determinant containing periodic-orbit sums. A real

spectral determinant in terms of periodic orbits can only be semiclassically obtained by

exploiting periodic-orbit correlations due to unitarity.

The above problem illustrates that we need a better understanding of correlations

between periodic orbits and in particular correlations between long and short orbits.

To analyse these correlations in more detail, we study here quantum unitary dynamics

described in terms of finite dimensional unitary matrices. We will in particular advocate

to consider spectral quantities in terms of sub-determinant expansions. We will derive

sub-determinant expressions for a range of important spectral quantities and consider

these for examples such as quantum graphs [12].

The paper is structured as follows: We first introduce the spectral determinant and

explain the known implications of unitarity for this quantity. We analyse in Sec. 2 further

implications of unitarity on pseudo-orbit expansions. In this context, we present a sub-

determinant identity for unitary matrices and we discuss the implications of this identity

on Newton identities and a pseudo-orbit expansion of the spectral density. In Sec. 3, we
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derive expressions for spectral correlation functions such as the auto-correlation and the

parametric cross correlation function of the spectral determinant and the spectral form

factor in terms of sub-determinant expansions. Implications due to the sub-determinant

identity will be discussed.

1.2. Some basic properties of the characteristic polynomial of a matrix

Consider a general complex matrix U of dimension N . Its characteristic polynomial is

given by

PU(z) ≡ det (z − U) =
N∑
n=0

(−1)N−naN−nz
n =

N∏
n=1

(z − zn), (1)

where the complex numbers zn are the eigenvalues of U . The complex coefficients an of

the polynomial in (1) will be at the centre of interest in this article. Here, a0 = 1 and the

remaining N coefficients an, n = 1, . . . , N , are N complex numbers which contain the

same information as the N eigenvalues zn. Note that the characteristic polynomial is

invariant under conjugation U 7→ CUC−1 with a non-singular matrix C. The coefficients

an are thus matrix invariants (as are the eigenvalues) and can be expressed in terms

of other matrix invariants such as traces of powers of U . Indeed, expressions for the

coefficients an in Eq. (1) in terms of eigenvalues or traces of U can be easily written

down, for instance

a1 =
N∑
n=1

zn = trU,

a2 =
1

2

∑
n6=m

znzm =
1

2

(
tr2 U − tr U2

)
,

. . . .

Similar formulae expressing the an’s in terms of traces hold for all n [13]. Note however,

that aN =
∏N

n=1 zn = detU has a much simpler expression in terms of the determinant

of U .

Alternatively one may express the coefficients in terms of sub-determinants of U .

Denote the set I = {1, 2, . . . , N} and let Γ ⊂ I be some subset of I of cardinality

|Γ| ≤ N . Then Γ defines a quadratic |Γ| × |Γ| submatrix UΓ which is obtained from U

by keeping only those rows and columns with indices belonging to Γ. We will denote

the determinant of UΓ as

dΓ = detUΓ . (2)

Using the linearity properties of the determinant with respect to its rows (or columns),

it is then straight forward to show that

an =
∑

Γ⊂I: |Γ|=n

dΓ . (3)

The sum extends over the
(
N
n

)
different choices of n rows (and the corresponding

columns) that build the sub-matrix UΓ. While an is a matrix invariant it is noteworthy

that this is in general not the case for the individual contributions detUΓ.
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2. On pseudo-orbit expansions in terms of determinants

2.1. Basic relations

Let us now consider the characteristic polynomial and some related spectral functions

for the specific case of unitary matrices U . We will keep the discussion general here and

will only later refer to U as the evolution matrix for a quantum system.

A unitary matrix U of dimension N has N uni-modular eigenvalues zn = eiθn . This

implies the functional equation

PU(z) = (−z)NeiφPU(1/z∗)∗ (4)

for its characteristic polynomial where z∗ denotes the complex conjugate of z and

eiφ = det U = aN . Comparing coefficients of zn on both sides of the functional equation

(4) results in the explicit relation

aN−n = eiφa∗n (5)

between the coefficients of the characteristic polynomial. Below in Sec. 2.2, we will

generalise this relation to individual determinants of sub-matrices contained in the

coefficient an according to (3).

For unitary maps it is useful to introduce the following variant of the characteristic

polynomial, the so called zeta function,

ζU(θ) = e−iNθPU(eiθ) = det
(
I− e−iθU

)
=

N∑
n=0

(−1)nane
−iθn . (6)

This is a 2π periodic function in the variable θ which vanishes exactly at the spectrum

of real eigenphases {θn}Nn=1. In terms of sub-determinants (2) one may also write

ζU(θ) =
∑

Γ

dΓe
−i(θ+π)|Γ| (7)

where the sum is over all subsets Γ ⊂ I including the empty set Γ = ∅ with |Γ| = |∅| = 0

for which we set d∅ = 1.

The functional equation (4) implies that

ZU(θ) = eiN
θ+π

2
−iφ

2 ζU(θ), (8)

usually referred to as spectral determinant, is real for real θ, i.e. ZU(θ)∗ = ZU(θ).

Another spectral function which will be discussed later is the density of states

ρ(θ) =
N∑
n=1

δ2π(θ − θn) (9)

where δ2π(x) ≡
∑∞

n=−∞ δ(x+ 2πn) is the 2π periodic δ-comb. The density of states can

be expressed as

ρ(θ) =
1

π

d

dθ
Im logZU(θ − iε) =

N

2π
+

1

π

d

dθ
Im log ζU(θ − iε) (10)

in the limit ε → 0. This expression directly leads to the trace formula which expresses

the density of states in terms of periodic orbits. We will discuss this in Sec. 2.3 together

with a novel expansion in terms of sub-determinants presented in the next section.
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2.2. A sub-determinant identity for unitary matrices

We will now give an identity between the sub-determinants dΓ for unitary matrices which

contains much more detailed information than Eq. (5). We will interpret this identity

in terms of periodic orbits and will discuss the implications for spectral measures in the

remainder of the article.

Theorem: Let U be a unitary matrix of dimension N with determinant detU = eiφ and

Γ ⊂ I ≡ {1, 2, . . . , N} with n = |Γ|. Denote the complement of Γ in I by Γ̂ ≡ I − Γ.

Then the following identity for the determinants of the submatrices UΓ and UΓ̂ holds:

detUΓ = eiφ (detUΓ̂)∗ . (11)

Proof: The identity can be proven directly by writing U , without loss of generality,

in block-form

U =

(
UΓ V

W UΓ̂

)
(12)

where V is an n × (N − n), and W an (N − n) × n matrix. Let us first consider

the case where the n × n block UΓ and the (N − n) × (N − n) block UΓ̂ are both not

singular. One then has eiφ = detU = detUΓ det
(
UΓ̂ −WU−1

Γ V
)
. Unitarity of U implies

U−1
Γ V U †

Γ̂
= −W † and UΓ̂U

†
Γ̂

+WW † = I(N−n)×(N−n) such that

eiφ =
det UΓ

det U †
Γ̂

det
(
UΓ̂U

†
Γ̂
−WU−1

Γ V U †
Γ̂

)
=

det UΓ

(det UΓ̂)∗
(13)

which proves the identity (11) for detUΓ 6= 0 and detUΓ̂ 6= 0. Continuity of detUΓ

allows us to extend the identity to singular blocks UΓ and UΓ̂. As a corollary UΓ is

singular if and only if UΓ̂ is singular.

Given that this is a very basic property of unitary matrices and that the proof is

fairly straight forward, it would surprise us if this identity had not been noted previously,

although we do not know of an explicit reference. It implies some fundamental

connections between orbits and pseudo-orbits of dynamical systems, which, in our view,

are worth exploring. We will discuss these implications in the following sections.

As a straightforward consequence, one obtains for the zeta function (7) for N odd,

ζU(θ) =
∑

Γ:|Γ|≤N/2

(
dΓe

−i(θ+π)|Γ| + d∗Γe
iφe−i(θ+π)(N−|Γ|)) . (14)

The formula remains true for N even if appropriate care is taken for contributions with

|Γ| = N/2; only half of these contributions should be counted and this half needs to

be chosen appropriately. Expression (14) resembles Riemann-Siegel look-alike formulae,

see [3, 4].

2.3. Pseudo-orbit expansions in terms of determinants

In the previous sections, we have expressed the characteristic polynomial PU(z) and

related expressions in terms of the determinants dΓ. Before we turn to express the



A sub-determinant approach for pseudo-orbit expansions of spectral determinants 6

density of states or spectral correlation functions in a similar fashion, we will consider

how the identity (11) can be interpreted in a periodic orbit language. To this end,

we briefly explain what we mean by a ’periodic orbit’ in terms of a finite matrix and

introduce some related notation. Analogous finite pseudo-orbit expansions in terms of

short orbits have recently been discussed in the context of quantum graphs [8]. We

stress here expansions in terms of sub-determinants which together with Eq. (11) give

compact expressions for spectral quantities in terms of short periodic orbits.

2.3.1. Periodic orbit representations In the present setting of a unitary N ×N matrix

a periodic orbit p = i1 . . . in of (topological) length |p| = n is a sequence of n integers

im ∈ {1, 2, . . . , N} where cyclic permutations are identified, e.g. 134 = 341. One should

think of a periodic orbit as a set of indices of the matrix U that are visited in a periodic

way. A primitive periodic orbit is a sequence p = i1 . . . in which is not a repetition of

a shorter sequence. If p is not primitive we denote its repetitions number by rp. An

irreducible periodic orbit never returns to the same index, that is, all im are different;

the length of an irreducible orbit is at most N . We also define the (quantum) amplitude

tp =
n∏

m=1

Uim+1im (15)

of a periodic orbit. If p is not irreducible one may write its amplitude as a product of

amplitudes of irreducible orbits, for instance t1213 = t12t13.

A pseudo-orbit γ = pm1
1 pm2

2 . . . pmnn with non-negative integersml is a formal product

of periodic orbits pl with length |γ| =
∑

lml|pl| and amplitude tγ =
∏

l t
ml
pl

. We will say

that a pseudo-orbit is completely reduced if it is a formal product of irreducible orbits

and irreducible if all ml are either one or zero and if any given index appears at most in

one pl with ml = 1.

These definitions allow us to write the trace tr Un =
∑

p:|p|=n
n
rp
tp as a sum over

amplitudes of periodic orbits of length n. Using log det(1− e−iθU) = tr log(1− e−iθU)

in (10) and expanding the logarithm one arrives at the trace formula

ρ(θ) =
N

2π
− 1

π

d

dθ

∑
p∈P

∞∑
r=1

1

r
trpe
−i|p|θ (16)

where sum over p extends over the set of all primitive orbits denoted by P , and the

additional sum is over all repetitions. Here, like in Eq. (10), it is always understood

that θ ≡ θ − iε and the limit ε→ 0 is taken.

Performing the sum over repetitions in the trace formula shows that it is equivalent

to an Euler-product type expansion

ζU(θ) =
∏
p∈P

(
1− tpe−i|p|θ

)
. (17)

Note that this is an infinite product which only converges for sufficiently large ε > 0

and analytical continuation is necessary to move back to the axis ε = 0. Such an

analytic continuation is of course given by the expression (6) which is by definition a
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finite polynomial in z = e−iθ. Strong correlations between the amplitudes of long and

short periodic orbits have to exist in order to reconcile both expressions. Indeed, large

cancellations can be shown to exist by expanding the product (17) and ordering the

terms with increasing orbit length such as the cycle expansion proposed in [2]. After

expressing amplitudes of reducible (arbitrarily long) orbits as product of amplitudes of

irreducible (and thus short) orbits, the cancellation mechanism emerges [6, 7].

Revisiting Eq. (7) and observing that each determinant dΓ can indeed be written

as a sum of |Γ|! irreducible pseudo-orbits γ of length |γ| = |Γ|, we obtain

dΓ =
∑
γ∈PΓ

(−1)σγ+1tγ . (18)

Here, PΓ is the set of all irreducible pseudo-orbits which cover the set Γ completely,

that is, which visit each index in Γ exactly once. There is a one-to-one correspondence

between these irreducible pseudo-orbits and permutations. Indeed any permutation of

symbols in Γ can be written uniquely as a product of cycles such that each symbol

appears exactly once (up to the ordering of the cycles which is irrelevant as they

commute). Each such product of cycles, that is, each irreducible pseudo-orbit, defines a

unique permutation. We denote the number of cycles (irreducible orbits) that make up

a given pseudo-orbit γ as σγ such that (−1)σγ+1 gives the parity of the permutation.

2.3.2. Interpretation of the identity (11) in terms of periodic orbits Everything said in

the previous subsection is valid for general, not necessarily unitary matrices. Unitarity

leads to further non-trivial relations between the amplitudes of short and long orbits

such as the functional equation (4) resulting in the relation (5) for the coefficients of the

characteristic polynomial which can in turn be written in terms of orbits.

In Sec. 2.2, we showed that there is a much more detailed link between sub-

determinants and thus orbits. The identity (11), dΓ = eiφd∗
Γ̂
, also provides a connection

between short and long orbits, but it has in addition an interesting interpretation

in terms of linking irreducible pseudo-orbits in different parts of ’phase space’. Γ

and its complement Γ̂ are by definition disjoint and its union forms the whole set

I = {1, 2, . . . , N}. As stated in Eq. (18), dΓ, d
∗
Γ̂

consist of all irreducible orbits and

pseudo-orbits which completely cover the set Γ, Γ̂, respectively, (passing through every

index in each of the sets exactly once). The relation (11) thus implies that the sum

over all irreducible pseudo-orbits that cover Γ is equivalent in weight to the sum over

all irreducible pseudo-orbits that cover its compliment Γ̂. The two contributions from

the pseudo-orbits in Γ and the complement Γ̂ yield together a real term in the spectral

determinant, as the contributions from Γ and Γ̂ are complex conjugated to each other up

to a global phase. This has direct implications for periodic-orbit approaches to spectral

statistics in quantum graphs and quantum maps in the semiclassical regime, as discussed

in Sec. 3.3.

Given the close relationship between unitary matrices on the one hand and quantum

maps and continuous quantum systems on the other hand, this finding has potentially

far reaching consequences. It suggests that the quantum (and semiclassical) weights
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associated with periodic orbits and pseudo-orbits of classical maps and flows are spatially

correlated on all levels. In particular, summing over all orbits associated with a given

subset of the full phase space should yield a total amplitude which is equal to the

contribution from the orbits in the complement and both contributions are phase related.

We will leave it at these general remarks here and restrict the discussion again to finite

dimensional unitary matrices only.

2.3.3. Density of states and Newton identities We will now consider the density of

states and show that it can be expressed in terms of completely reduced pseudo-orbits.

Equivalently, one can write it as a sum over products of sub-determinants dΓ. The

latter has the advantage that these expressions keep track of the relation (11) between

individual determinants which is lost on the level of pseudo-orbit sums.

Making use of Eq. (10), we would like to express log ζU in terms of sub-determinants.

We do this by exploiting the identity

− log(1− x) =
1

2π

∞∑
n=1

(n− 1)!

∫ 2π

0

eiαn+xe−iαdα , (19)

which formally requires x < 1. Setting 1 − x =
∑

Γ dΓe
−i(θ+π)|Γ| and using (7), we

formally obtain log ζU on the left hand side of Eq. (19). After expanding out the

exponentials, interchanging integration and summations and carry out the integration

over α, one obtains

log ζU(θ) = −
∑

m:|m|>0

(|m| − 1)!e−i(θ+π)|mΓ|−iπ|m|
∏
j

d
mj
Γj

mj!
. (20)

Here m = (m1, . . . ,m2N−1) is a set of 2N − 1 non-negative integers and Γ1, . . . ,Γ2N−1 is

some enumeration of all non-empty subsets Γ ⊂ I. The integer mj is the multiplicities

of that subset Γj in one contribution to (20). We have also introduced the notations

|m| =
∑2N−1

j=1 mj and |mΓ| =
∑2N−1

j=1 mj|Γj|. Note that an analogous equation to (20)

can be given either in a coarser way in terms of coefficients an or in a more detailed

way in terms of products of irreducible pseudo-orbits. The expression in terms of the

determinants dΓ is the most detailed one in which the relation (11) between long and

short orbits remains explicit.

Before moving on to the density of states let us consider the well known expansion

− log ζU(θ) =
∑∞

n=1
1
n
e−iθn trUn and compare the coefficients of e−iθn with the

corresponding ones in (20). This gives us a direct way to express the n-th trace in

terms of the sub-determinants dΓ, that is,

trUn = n(−1)n
∑

m:|mΓ|=n

(|m| − 1)!
2N−1∏
j=1

(−dΓj)
mj

mj!
. (21)

This formula is reminiscent of the well-known Newton identities that express the traces

of powers of a square matrix in terms of the coefficients of the characteristic polynomial,

see for example [14]. Indeed, as mentioned above, there is an expression of the form (20)
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in terms of the coefficients an instead of the dΓ. The corresponding derivation of the

traces leads to the Newton identities. In (21), we have in fact derived a more detailed

identity; it allows us to express the (arbitrarily long) periodic orbits that add up to the

traces trUn explicitly in terms of pseudo-orbits of length smaller than the matrix size

N . Furthermore, using (11), one has an explicit expression of traces of any power in

terms of pseudo-orbits of maximal length N/2. Ordering the sequence (Γ1, . . . ,Γ2N−1)

such that it is non-decreasing in length, then

trUn = n(−1)n
∑

m:|mΓ|=n

(|m|−1)!
2N−1−1∏
j=1

(−dΓj)
mj

mj!

2N−1∏
j=2N−1

(−d∗
Γ̂j
eiφ)mj

mj!
(22)

gives the n-th trace in terms of contributions which can be computed from irreducible

orbits of length smaller than N/2. In the following it will always be understood that

products of the form appearing in (21) may be expressed analogously to (22) in terms

of short orbits.

Eventually the density of states follows directly from (20):

ρ(θ) =
N

2π
− Im

∑
m:|m|>0

(|m| − 1)!
|mΓ|
π

e−i(θ+π)|mΓ|−iπ|m|
∏
j

d
mj
Γj

mj!
. (23)

3. Spectral fluctuations in terms of sub-determinants and short orbits

There is a wide variety of measures for spectral fluctuations which have been considered

in the past. We will focus here on expressing spectral measures in terms of

sub-determinants and show how the relation (11) can be used to understand the

contributions of long orbits. We will in particular consider ensembles of unitary matrices

where the ensemble average corresponds to an average over system parameters or

disorder. In Sec. 3.3 we will also discuss applications which only involve a spectral

average for a fixed physical system.

3.1. Spectral fluctuations

For a given ensemble of unitary matrices we denote the ensemble average of some

quantity f(U) by 〈f(U)〉U . In the following, we will consider cross- or auto-correlation

functions for the spectral determinant, the density of states and other quantities. We

start by giving some general definitions.

3.1.1. The auto-correlation function of the spectral determinant This auto-correlation

function has previously been considered from a RMT-perspective in Refs. [15, 16] and

semiclassically in diagonal approximation [16, 17, 18] and beyond [19]. It is defined in

terms of Z(θ) given in (8) as

A(s) =

〈
1

2π

∫
dθ ZU

(
θ +

sπ

N

)
ZU

(
θ − sπ

N

)〉
U
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= eisπ
N∑
n=0

〈
|an|2

〉
U
e−i

2πsn
N . (24)

In particular, A(s) is the generating function for the variance 〈|an|2〉 of the coefficients

of the characteristic polynomial. Note that |an|2 = |aN−n|2 ensures that A(s) is a real

function. In terms of sub-determinants we find〈
|an|2

〉
=

∑
Γ,Γ′:|Γ|=|Γ′|=n

〈dΓd
∗
Γ′〉U . (25)

We will show below that this reduces to the diagonal sum Γ = Γ′ for some specific

ensembles.

3.1.2. Parametric cross correlation for the spectral determinant Let U be a fixed

unitary matrix and define Uτ := eiτPvU where τ is a real parameter and Pv is the

projector onto the v-th basis state; the corresponding matrix is zero everywhere apart

from one unit entry at the v-th diagonal position. Physically one may think of the

parameter τ as a variation of a local magnetic field. Denoting the corresponding

coefficients of the characteristic polynomial as

an(τ) =
∑

Γ:|Γ|=n,
v/∈Γ

dΓ + eiτ
∑

Γ:|Γ|=n,
v∈Γ

dΓ , (26)

we consider the following parametric correlation function for the spectral determinant:

B(τ) =

〈
1

2π

∫
dθ ZU(τ) (θ)ZU (θ)

〉
U

= e−iτ/2
N∑
n=0

〈an(τ)an(0)∗〉U . (27)

The above expression reduces the problem to the parametric correlations of the

coefficients an(τ) which can be expressed as

〈an(τ)an(0)∗〉U =
∑

Γ′:|Γ′|=n

 ∑
Γ:|Γ|=n,
v/∈Γ

〈dΓd
∗
Γ′〉+ eiτ

∑
Γ:|Γ|=n,
v∈Γ

〈dΓd
∗
Γ′〉

 . (28)

The two inner sums are here restricted to sets Γ of size |Γ| = n such that the marked

v-th basis state is not in Γ for the first inner sum and the marked basis state is an

element of Γ for the second inner sum. The outer sum over Γ′ is only restricted by

|Γ′| = n.

For the quantity B(τ) we can now reduce the number of terms to n ≤ N/2 by using

the relation dΓ(τ) = ei(φ+τ)d∗
Γ̂
(τ), Eq. (11). Note that the relation for the an in Eq. (5)

would not be sufficient here, as the different components contributing to an are exposed

to different magnetic fields.

As a side remark let us mention here that one can give an independent proof of the

identity (11) in 2.2 using the reality of expressions of the type ZU(τ) if one replaces Pv
in UτU

† = eiτPv by a unitary diagonal matrix with N independent diagonal entries and

expands the expression into a multinomial.
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3.1.3. The spectral two-point correlation function and the form factor The spectral

two-point correlation function is defined as

R2(s) := ∆
2
〈

1

2π

∫ 2π

0

dθρ(θ + ∆s/2)ρ(θ −∆s/2)

〉
U

− 1 (29)

where ∆ =
(

1
2π

∫ 2π

0
ρ(θ)

)−1

= 2π/N is the mean spacing between eigenphases.

Expanding the density of states in terms of traces and performing the integral over

θ, one obtains the standard expression

R2(s) =
2

N

∞∑
n=1

cos

(
s

2πn

N

)
Kn , (30)

where

Kn =
1

N

〈
|trUn|2

〉
U

(31)

is known as the form factor. The form factor played an important role in understanding

universal and non-universal aspects of spectral statistics; here we give a new

representation in terms of sub-determinants, that is,

Kn =
n2

N

∑
m,m′:|mΓ|=|m′Γ|=n

〈
(|m| − 1)!(|m′| − 1)!

2N−1∏
j=1

(−dΓj)
mj(−d∗Γ′j)

m′j

mj!m′j!

〉
U

.

(32)

This is an exact expression for the form factor for any ensemble of unitary matrices.

We will show below that for some standard models, the double sum over multiplicities

m and m′ can be restricted further.

3.2. Random-matrix theory

Let us now consider unitary N ×N matrices U which are distributed according to the

Circular Unitary Ensemble (CUE) – in other words U has a uniform distribution with

respect to the Haar-measure on the unitary group U(N). The spectral fluctuations of

this ensemble are very well understood with explicit results for a large number of relevant

measures. These known results have many implications for the statistical properties of

the sub-determinants.

One obtains, for instance, for the correlations of the coefficients an of the

characteristic polynomial [15]

〈ana∗n′〉CUE = δnn′ 〈anan′〉CUE = 0 ; (33)

it is straight forward to extend this result to the correlations between sub-determinants.

Indeed, any average over CUE is necessarily invariant with respect to conjugation, left

multiplication, and right multiplication, that is, U 7→ V UV †, V U, UV with a unitary

matrix V . Choosing V diagonal implies

〈dΓdΓ′〉CUE = 0 (34)
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and

〈dΓd
∗
Γ′〉CUE = δΓΓ′cΓ . (35)

Note that ∑
Γ:|Γ|=n

cΓ = 〈|an|2〉CUE = 1 (36)

where the sum extends over
(
N
n

)
contributions. Moreover, if Γ and Γ′ have the same

size, that is, |Γ| = |Γ′| = n, invariance of the ensemble average under conjugation with

a permutation matrix implies

cΓ = cΓ′ ≡ cn cn =

(
N

n

)−1

. (37)

Let us now consider the parametric correlation B(τ) defined in (27). Note that it will

not depend on the marked basis state, as the double sum over Γ and Γ′ in Eq. (28) only

contains diagonal expressions after the CUE-average. Moreover among the
(
N
n

)
subsets

Γ of a given size |Γ| = n > 0 there are
(
N−1
n−1

)
subsets which contain the marked basis

state and all give the same contribution such that

〈an(τ)a∗n〉CUE =
neiτ +N − n

N
(38)

and

B(τ)CUE = (N + 1) cos(τ/2) . (39)

Let us finally look at the form factor; the CUE result is

Kn,CUE =


n

N
if n ≤ N

1 if n > N .
(40)

We may compare this to the CUE average of the form factor expressed in terms of sub-

determinants (32). Invariance of the CUE ensemble with respect to group multiplication

and unitary conjugation restricts the double sum over multiplicities m and m′ in (32).

For example, invariance with respect to multiplication with diagonal unitary matrices

implies that only those pairs can survive, for which the corresponding product of sub-

determinants
∏2N−1

j=1 d
mj
Γj

and
∏2N−1

j=1 d
m′j
Γj

visit each basis state with the same multiplicity;

here, the multiplicity of a basis state is the number of times a given index appears in

any pseudo-orbit of the product
∏

j d
mj
Γj

. Note that this does not imply mj = m′j as

there may be many choices for the multiplicities mj of the subsets Γj that result in the

same multiplicities of a basis state. Comparing the resulting expression with the exact

CUE result (40) one may obtain a large set of identities that have to be obeyed by the

correlations among the sub-determinants.
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3.3. Quantum graphs

3.3.1. Star graphs - an introduction A quantum graph is a model for a quantum particle

that is confined to a metric graph. To keep the discussion simple we will only discuss star

graphs which consist of one central vertex and N peripheral vertices. Each peripheral

vertex is connected to the center by a bond (or edge) of finite length 0 < Lb < ∞. By

L = diag(L1, . . . , LN) we denote the diagonal matrix that contains the lengths on its

diagonal. On a given bond b we denote by xb ∈ (0, Lb) the distance from the central

vertex. A scalar wave function on the graph is a collection of N complex (square-

integrable) functions Ψ(x) = (ψ1(x1), . . . , ψN(xN)). The wave function is required to

solve the free stationary Schrödinger equation on each bond, at given energy E = k2.

This implies ψb(xb) = ab
(
eikxb + e−ikxb+2ikLb

)
where ab is the amplitude of the outgoing

wave from the central vertex and we have imposed Neumann boundary conditions at

the peripheral vertices (at xb = Lb). The matching conditions at the central vertex are

given in terms of a unitary N×N scattering matrix S which relates the amplitudes ab of

outgoing waves to the amplitudes abe
2ikLb of incoming waves by ab =

∑
b′ Sbb′e

2ikLb′ab′ .

Equivalently

a = U(k)a (41)

for the quantum map

U(k) = T (k)S where T (k) = e2ikL . (42)

The condition (41) is only satisfied at discrete values of the wave number which form

the (wave number) spectrum of the graph. As a side remark let us also note that the

above defined quantum map for a star graph also describes the quantum evolution on

directed graphs with first-order (Dirac-type) wave operators and bond lengths 2Lb [17].

A more general quantum graph requires a description in terms of a 2N × 2N matrix

[12].

Spectra of quantum graphs and spectra of the associate unitary quantum maps

U(k) have formed a paradigm of quantum chaos due to the conceptual simplicity of

the models. In fact, both types of spectra are to a large extent equivalent [20] and we

will focus the present discussion on the spectrum of the quantum map U(k). It can be

considered as an ensemble of unitary matrices parametrised by k. The corresponding

average will be denoted by

〈F (U(k))〉k = lim
K→∞

1

K

∫ K

0

dkF (U(k)) . (43)

Note that the wave number k enters the quantum map U(k) = T (k)S only through the

diagonal factor T (k) = e2iLk.

The sets Γ ⊂ I in this model are one-to-one related to sub-graphs spanned by the

corresponding bonds. The sub-determinants dΓ of U(k) can thus be written as

dΓ = eikLΓ d̃Γ (44)

where LΓ = 2
∑

b∈Γ Lb is twice the metric length of the sub-graph connected to Γ

and d̃Γ = detSΓ is the corresponding sub-determinant of the scattering matrix S.
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A generic choice of lengths Lb implies that the lengths are rationally independent

(incommensurate), which will be assumed in the following. Incommensurability implies

that
〈
eik

∑N
b=1 mbLb

〉
k

does vanish except for mb = 0 for all b = 1, . . . , N .

3.3.2. Results for general star graphs It is straight forward to implement the averages

for the spectral fluctuation measures introduced in Sec. 3.1. Let us start with the

variance of the coefficients of the characteristic polynomial, Eq. (25), which build up

the auto-correlation function A(s). Due to the difference in the metric lengths of the

corresponding sub-graphs only diagonal entries in the double sum of Eq. (25) survive

the average, that is,〈
|an|2

〉
k

=
∑

Γ:|Γ|=n

∣∣∣d̃Γ

∣∣∣2 . (45)

Note that the expression can not reduce further due to averaging. Contributions from

different sets Γ contain orbits of different length, so non-diagonal contributions made

up of products of orbits from different sub-graphs Γ do not survive the average; orbits

and pseudo-orbits contained in d̃Γ cover the same sub-graph Γ, and thus have all the

same lengths [21]. In full analogy, we find

〈an(τ)an(0)∗〉k =
∑

Γ:|Γ|=n,
v/∈Γ

∣∣∣d̃Γ

∣∣∣2 + eiτ
∑

Γ:|Γ|=n,
v∈Γ

∣∣∣d̃Γ

∣∣∣2 (46)

for the parametric correlations (28). In contrast to the CUE result this will generally

depend on the marked v-th basis state.

Furthermore, for the spectral two-point correlations, the form factor reduces to

Kn =
n2

N

∑
L∈Ln

∑
m,m′:

LmΓ=Lm′Γ=L

(|m| − 1)!(|m′| − 1)!
2N−1∏
j=1

(−d̃Γj)
mj(−d̃∗Γj)

m′j

mj!m′j!

(47)

where the Ln is the set of all lengths that are a sum of n (not necessarily different) bond

lengths of the graph. We have used the short-hand notation LmΓ =
∑N

j=1mjLΓj . Note

that equality of metric length LmΓ = Lm′Γ implies equality of the topological length

|mΓ| = |m′Γ| while the opposite is not true. Eq. (47) expresses the form factor as a sum

over all possible metric lengths with a fixed number n of bonds and a sum over pairs of

completely reduced pseudo-orbits of topological length n of the same metric length.

3.3.3. The two-star graph It is instructive to work out the simplest non-trivial case

N = 2 in more detail. In this case the only choices for Γ are the empty set, Γ1 = {1},
Γ2 = {2} and Γ3 = {1, 2} with lengths LΓ1 = 2L1, LΓ2 = 2L2, and LΓ3 = 2(L1 + L2),

see Fig. 1. The zeta function can be described in terms of the sub-determinant

d̃Γ1 = S11 which is just the reflection amplitude from the first bond and the determinant

d̃Γ3 = detS = eiφ alone; without loss of generality we set detS = 1. The remaining

relevant sub-determinant is given by d̃Γ2 = S22 = d̃∗Γ1
due to (11) and detS = 1.
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Figure 1. The 2-orbit graph consists of one vertex and two bonds labeled 1 and 2.

Let us consider how an expansion of the zeta function in terms of periodic orbits and

pseudo-orbits as discussed in Sec. 2.3 would look like. By expanding the product (17)

and reordering the terms according to a cycle expansion [2], one obtains, for example,

ζU(k)(θ) = 1− (t1 + t2)e−iθ − (t12 − t1t2)e−2iθ (48)

− (t112 − t1t12 + t122 − t12t2)e−3iθ − . . . .

Writing this out in terms of determinants yields instead

ζU(k)(θ) = 1− ei2L1k−iθd̃{1} − ei2L2k−iθd̃∗{1} + ei2(L1+L2)k−2iθ (49)

= 2ei(L1+L2)k−iθ
(

cos(2k(L1 + L2)− θ)−<
(
ei(L1−L2)kd̃{1}

))
.

The cancellation of contributions from longer pseudo-orbits |p| > 2 appearing in

the expansion, Eq. (48), becomes obvious when writing periodic orbits as completely

reduced pseudo-orbits. For example, the contribution t122 from the orbit {122} is exactly

canceled by t12t2 from the pseudo-orbit {12}{2} contributing just with opposite sign.

By applying this cancellation mechanism recursively, i.e. reducing the orbits step by

step, also the cancellation of contributions from longer pseudo-orbits can be understood.

A similar cancellation argument is also used by the cycle expansion. This is however

different for the contributions t12− t1t2 in (48). In this case a reduction of the connected

orbit leading to cancellation is not possible.

The equivalence between pseudo-orbits on a subset Γ and its complements can be

made more explicit. The first and the last term in Eq. (49) resulting from pseudo-orbits

of zero length and the length of the full graph, respectively, both have modulus of order

1 and yield a real contribution to ζU(k)(θ) when the phase factor ei(L1+L2)k−iθ is taken

out. The same holds for the second and the third contributions to Eq. (49) from the

orbits on the set Γ = {1} and Γ = {2}, respectively. Here, the identity (11) comes in to

yield a real contribution (up to an overall pre-factor).

For this simple example, we can calculate the spectral measures discussed in Sec.

3.1 explicitly. For the auto-correlation function, Eq. (24), one obtains

A(s) = 2 cos(πs) + 2|d̃Γ1|2 . (50)

For the parametric correlation function, Eq. (27), we consider U(k; τ) = diag(eiτ , 1)U(k).
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One then obtains

B(τ) = 2
(

1 + |d̃Γ1|2
)

cos(τ/2) . (51)

Eventually, let us consider the form factor Kn for a given n as presented in (47). It

contains a sum over pairs of multiplicities m = (m1,m2,m3) and m′ = (m′1,m
′
2,m

′
3).

Both sums are restricted to have the same topological length |mΓ| = |m′Γ| = n which

implies two restrictions, namely m1 + m2 + 2m3 = n = m′1 + m′2 + 2m′3. Furthermore

only pairs of multiplicities contribute that have the same metric length LmΓ = Lm′Γ or

L1(m1−m′1+m3−m′3)+L2(m2−m′2+m3−m′3) = 0. The latter impliesm1+m3 = m′1+m′3
and m2 + m3 = m′2 + m′3. Only three of these four restrictions on pairs of orbits are

independent. The form factor can then be written as

Kn =
n2

2

∑
0≤m3≤n/2
0≤m′3≤n/2

∑
0≤m2≤n−2m3
0≤m′2≤n−2m′3

δm2+m3,m′2+m′3
(n−m3 − 1)!(n−m′3 − 1)!×

(
n− 2m3

m2

)(
n− 2m′3
m′2

)
(−1)m3+m′3|d̃Γ1|2(n−m3−m′3)

m3!m′3!(n− 2m3)!(n− 2m′3)!
. (52)

Writing the Kronecker as

δm2+m3,m′2+m′3
=

1

2π

∫ 2π

0

dα eiα(m2−m′2+m3−m′3)

makes it possible to sum over m2 and m′2 independently. With

n−2m3∑
m2=0

eiα(m2+m3)

(
n− 2m3

m2

)
= (2 cos(α/2))n−2m3eiαn/2

and
n−2m′3∑
m′2=0

e−iα(m′2+m′3)

(
n− 2m′3
m′2

)
= (2 cos(α/2))n−2m′3e−iαn/2,

we obtain

Kn =
n2

2

∫ 2π

0

dα
∑

0≤m3≤n/2
0≤m′3≤n/2

(
n−m3

m3

)(
n−m′3
m′3

)
(−1)m3+m′3|d̃Γ1 |2(n−m3−m′3)

(n−m3) (n−m′3)
×

(
2 cos

α

2

)2(n−m3−m′3)

. (53)

The sums with respect to m3 and m′3 can be performed by using [22]∑
0≤m3≤n/2

(−1)m3

(n−m3)

(
n−m3

m3

)
x2m3 =

1

2nn

[(
1 +
√

1− 4x2
)n

+

(
1−
√

1− 4x2
)n]

. (54)
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This yields for Kn

Kn =
1

4π

∫ 2π

0

dα

(cos
α

2

∣∣∣d̃Γ1

∣∣∣+

√
cos2

α

2

∣∣∣d̃Γ1

∣∣∣2 − 1

)2n

+

(
cos

α

2

∣∣∣d̃Γ1

∣∣∣−√cos2
α

2

∣∣∣d̃Γ1

∣∣∣2 − 1

)2n

+ 2

 . (55)

The constant term at the end describes the behavior for n � 1, the other two

contributions describe oscillations around the asymptotic value Kn = 1. By taking

into account that the arguments of the square roots above are negative, we can rewrite

the expression as

Kn = 1 +
1

2π

∫ 2π

0

dα cos
[
2n arccos

(∣∣∣d̃Γ1

∣∣∣ cos
α

2

)]
. (56)

The expression in Eq. (56), which we obtained from periodic-orbit expansions, coincides

for all d̃Γ1 with the result obtained in [23] starting from the eigenvalues of the quantum

scattering map. This is the first derivation of the result (56) from periodic-orbit

expressions for general d̃Γ1 . In [23], a derivation based on periodic-orbit expressions

was only done for
∣∣∣d̃Γ1

∣∣∣ = 1/
√

2.

Note that in contrast to [24] we also take into account contributions beyond the

diagonal approximation. Due to the factor (−1)m3+m′3 appearing in the Eqs. (52, 53)

the ones with m3−m′3 odd contribute with negative signs leading together with the ones

with m3 −m′3 even to a form factor smaller than expected in diagonal approximation;

as expected it tends to K = 1 for n→∞.

4. Conclusions

The goal of this article is two-fold: first of all, we advocate considering sub-determinant

expansions for spectral functions and statistical measures such the density of states or

various correlation functions. This makes it possible to separate out contributions which

vanish after averaging and those whose non-diagonal contributions survive averaging.

Secondly, we introduced a sub-determinant identity due to unitarity which makes it

possible to give detailed relations between short and long orbits on a graph. In

particular, this identity implies that contributions to the characteristic polynomial

originating from irreducible pseudo-orbits of a given sub-graph have the same weight as

the irreducible pseudo-orbits of the complement of that sub-graph and are additionally

linked through a common phase factor. The identity leads to simplified expressions

for the characteristic polynomial, the Newton identities and the spectral density.

Furthermore we study the effect of this identity on spectral correlation functions such

as the auto-correlation function of the characteristic polynomial, the parametric cross

correlation function and the spectral form factor.

We derive explicit expressions using sub-determinant expansions for a simple model,

star graphs consisting of N bonds connected by a single vertex. We then work out
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in more detail the simplest case N = 2. The new identity is essential to obtained

the behaviour of correlation functions for small energy differences or large times. It

captures additional correlations between orbits of different length and needs to be taken

into account when singling out correlated orbits which survive averaging.

In this context several potentially interesting extensions arise: taking the

semiclassical limit on both sides of Eq. (22), the two expressions are semiclassically

not obviously identical. The left-hand side leads to the Gutzwiller trace formula which

contains orbits of arbitrary length while the right-hand side contains pseudo-orbits of

finite length (and their repetitions). For short orbits n � N , one may argue that the

two expressions have a semiclassically small difference, for longer orbits this is far less

obvious.

A second point concerns the exponential proliferation of the number of orbits in the

standard trace formulae. It is tamed to a certain degree when using sub-determinants

by the fact that different contributions contribute with different signs. Thus the sub-

determinant expressions contain large fluctuations. Understanding overall cancellations

is an interesting task. For example, the form factor for the two-star graph for large n

contains positive and negative contributions which on their own grow as n →∞ while

their difference remains O(1) as can be checked from the expressions for Kn given above.

The analysis of spectral correlations focused here on the general unitary case. It

would be interesting to include the effect of self crossings of orbits that allow for partners

traversing parts of the diagram in different directions. This would capture effects arising

due to time reversal symmetry.

For graphs the supersymmetry technique gives an alternative approach to obtain

universal results [25]. With supersymmetry one may derive universality under

sufficiently nice conditions, however, rigorous proofs are still not available. The main

obstacle for the supersymmetric approach seems to be repetitions which are difficult to

incorporate correctly [26]. The proposed approach may help us understanding the effect

repetitions on spectral correlation functions.
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