6 research outputs found

    Objective functions for probability estimation

    Get PDF
    Backpropagation was originally derived in the context of minimizing a mean-squared error (MSE) objective function. More recently there has been interest in objective functions that provide accurate class probability estimates. In this paper we derive necessary and sufficient conditions on the required form of an objective function to provide probability estimates. This leads to the definition of a general class of functions which includes MSE and cross cutropy (CE) as two of the simplest cases

    Comparison from Accuracy Time between Artificial Neural Networks (ANN) of Matlab & Iterative Resolution with Gauss Seidal to Detect the Lesion

    Get PDF
    In this paper we propose an iterative method (Gauss seidal technique (GS)) to detect the lesion  than compared with Matlab program  for neuronal network (ANN technique), where we can see clearly the high level of detection for  the both methods, but for accuracy time our propose with G S present an excellent time in front of ANN technique, The program used is Matlab.

    Objective functions for probability estimation

    Get PDF
    Backpropagation was originally derived in the context of minimizing a mean-squared error (MSE) objective function. More recently there has been interest in objective functions that provide accurate class probability estimates. In this paper we derive necessary and sufficient conditions on the required form of an objective function to provide probability estimates. This leads to the definition of a general class of functions which includes MSE and cross cutropy (CE) as two of the simplest cases

    Upravljanje dinamičkim sistemima primenom adaptivnih ortogonalnih neuronskih mreža

    Get PDF
    The goal of the research in the PhD dissertation is control of dynamical systems by using new types of orthogonal endocrine neural networks, in order to improve their performances. Standard artificial neural networks are described, as well as their historical development and basic types of learning algorithms. Further, possibilities for neural networks applicability within control logic of dynamical systems are presented, as well as the current state of the art of orthogonal and endocrine neural networks. Performance improvement of the laboratory model of a servo system by using a standard neural network with the backpropagation type of learning is analyzed. In addition, a method for selection and optimization of training data, as an efficient way of information preprocessing for the purpose of improving performances of a neural network, is presented. A detailed description of orthogonal functions and implementation methods of endocrine factors inside standard neural networks are provided. By implementation of orthogonal activation functions of neurons, verification of their applicability in control of dynamical systems was performed. The laboratory model of the magnetic levitation system was used to test the designed orthogonal neural network. Furthermore, the endocrine orthogonal neural network based on the biological processes of excitation and inhibition is designed. Network performance checkup is performed by testing its predictive abilities when working with time series data. Final dissertation researches refer to development of hybrid systems. The implemented adaptive endocrine neuro-fuzzy hybrid system is tested through modeling of a laboratory servo system. Other hybrid structure, based on a combination of an orthogonal endocrine neural network and an orthogonal endocrine neuro-fuzzy hybrid system, is designed with the aim to form symbiosis of the positive characteristics of the individual networks. Verification of this structure was performed by using it for PID controller parameters adjustments
    corecore