7,176 research outputs found

    Disparity and Optical Flow Partitioning Using Extended Potts Priors

    Full text link
    This paper addresses the problems of disparity and optical flow partitioning based on the brightness invariance assumption. We investigate new variational approaches to these problems with Potts priors and possibly box constraints. For the optical flow partitioning, our model includes vector-valued data and an adapted Potts regularizer. Using the notation of asymptotically level stable functions we prove the existence of global minimizers of our functionals. We propose a modified alternating direction method of minimizers. This iterative algorithm requires the computation of global minimizers of classical univariate Potts problems which can be done efficiently by dynamic programming. We prove that the algorithm converges both for the constrained and unconstrained problems. Numerical examples demonstrate the very good performance of our partitioning method

    Linear convergence of accelerated conditional gradient algorithms in spaces of measures

    Full text link
    A class of generalized conditional gradient algorithms for the solution of optimization problem in spaces of Radon measures is presented. The method iteratively inserts additional Dirac-delta functions and optimizes the corresponding coefficients. Under general assumptions, a sub-linear O(1/k)\mathcal{O}(1/k) rate in the objective functional is obtained, which is sharp in most cases. To improve efficiency, one can fully resolve the finite-dimensional subproblems occurring in each iteration of the method. We provide an analysis for the resulting procedure: under a structural assumption on the optimal solution, a linear O(ζk)\mathcal{O}(\zeta^k) convergence rate is obtained locally.Comment: 30 pages, 7 figure

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    New Algebraic Formulation of Density Functional Calculation

    Full text link
    This article addresses a fundamental problem faced by the ab initio community: the lack of an effective formalism for the rapid exploration and exchange of new methods. To rectify this, we introduce a novel, basis-set independent, matrix-based formulation of generalized density functional theories which reduces the development, implementation, and dissemination of new ab initio techniques to the derivation and transcription of a few lines of algebra. This new framework enables us to concisely demystify the inner workings of fully functional, highly efficient modern ab initio codes and to give complete instructions for the construction of such for calculations employing arbitrary basis sets. Within this framework, we also discuss in full detail a variety of leading-edge ab initio techniques, minimization algorithms, and highly efficient computational kernels for use with scalar as well as shared and distributed-memory supercomputer architectures
    • …
    corecore