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Abstract

We propose a flexible and computationally efficient method to solve the non-homogeneous Poisson (NHP) model
for grayscale and color images within the TV framework. The NHP model is relevant to image restoration in
several applications, such as PET, CT, MRI, etc. The proposed algorithm uses a quadratic approximation of the
negative log-likelihood function to pose the original problem as a non-negative quadratic programming problem.

The reconstruction quality of the proposed algorithm outperforms state of the art algorithms for grayscale im-
age restoration corrupted with Poisson noise. Furthermore, it places no prohibitive restriction on the forward
operator, and to best of our knowledge, the proposed algorithm is the only one that explicitly includes the NHP
model for color images within the TV framework.
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1 Introduction

Fundamentally, almost every device for image acquisition is a photon counter: Positron Emission Tomography
(PET), computed tomography (CT), magnetic resonance imaging (MRI), radiography, CCD cameras, etc. When
the count level is low, the resulting image is noisy; such noise is usually modeled via the non-homogeneous
Poisson (NHP) model, with the resulting noise being non-additive and pixel-intensity dependent.

There are several methods (e.g. Richardson-Lucy algorithm and its regularized variants, Wavelet methods,
Bayesian methods, etc.) to restore (denoise/deconvolve) non-negative grayscale images corrupted with Poisson
noise. For the scope of this paper we focus our attention to methods based on Total variation (TV).

The minimization of the TV regularized Poisson log-likelihood cost functional [10, 6, 5, 1, 15, 18, 8, 11]

T (u) = ∑
k

(Au)k−bk · log((Au)k)+

λ

q

∥∥∥∥√∑
n∈C

(Dxun)2 +(Dyun)2
∥∥∥∥q

q
(1)

where n ∈ C = {gray}, q = 1, b is the acquired image data (corrupted with Poisson noise), A is a forward
linear operator, and (Au)m is the m-th element of (Au), has been successfully employed to restore non-negative
grayscale images corrupted with Poisson noise from a number of applications, such as PET images [10], confocal
microscopy images [6], and others [5, 1, 15, 18, 8, 11]. Currently for color images, to best of our knowledge,
there is no algorithm that explicitly includes the NHP model within the TV framework.

In this paper we present a computationally efficient algorithm that uses a second order Taylor approximation
of the data fidelity term F(u) = ∑(Au)m−bm · log((Au)m) to pose (1) as a Non-negative Quadratic Programming
problem (NQP, see [17]) which can be solved with a similar approach as the IRN-NQP algorithm [14, 12]. The
resulting algorithm has the following advantages:

• does not involve the solution of a linear system, but rather multiplicative updates only,

• has the ability to handle an arbitrary number of channels in (1), including the scalar (grayscale) and vector-
valued (color) images (C = {r,g,b} as special cases,

• most of its parameters are automatically adapted to the particular input dataset, and if needed, the norm of
the regularization term (q in (1)) can be different than 1 (0 < q≤ 2 ).

2 Technicalities

We represent 2-dimensional images by 1-dimensional vectors: un (n ∈ C) is a 1-dimensional (column) or 1D
vector that represents a 2D grayscale image obtained via any ordering (although the most reasonable choices are
row-major or column-major) of the image pixel. For C = {r,g,b} we have that u = [(ur)T (ug)T (ub)T ]T is a 1D
(column) vector that represents a 2D color image.

The gradient and Hessian of the data fidelity term in (1) F(u) = ∑k(Au)k − bk · log((Au)k) can be easily
computed:

∇F(u) = AT
(

1− b
Au

)
(2)

∇
2F(u) = AT diag

(
b

(Au)2

)
A, (3)

1
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and its quadratic approximation, Q(k)
F (u), can be written as

Q(k)
F (u) = F(u(k))+g(k)T

v(k) +
1
2

v(k)T
H(k)v(k) (4)

where v(k) = u−u(k), g(k) = ∇F(u(k)) and H(k) = ∇2F(u(k)). Note that (4) remains the same for color images
(n ∈C = {r,g,b}) and scalar operations applied to a vector are considered to be applied element-wise, so that, for
example, u = v2 ⇒ u[k] = (v[k])2 and u = 1

v ⇒ u[k] = 1
v[k] .

Also, for the case of color images, the linear operator A in (1) is assumed to be decoupled, i.e. A is a diagonal
block matrix with elements An; if A is coupled (inter-channel blur) due to channel crosstalk, it is possible to
reduced it to a diagonal block matrix via a similarity transformation [9].

In the present work 1
q

∥∥∥∥√∑
n∈C

(Dxun)2 +(Dyun)2
∥∥∥∥q

q
is the generalization of TV regularization to color images

(n ∈ C = {r,g,b}) with coupled channels (see [3, Section 9], also used in [4] among others), where we note
that

√
∑
n∈C

(Dxun)2 +(Dyun)2 is the discretization of |∇u| for coupled channels (see [4, eq. (3)]), and Dx and Dy

represent the horizontal and vertical discrete derivative operators respectively.

3 The Poisson IRN-NQP Algorithm

In this section we succinctly describe of previous works (within the TV framework) that also use a second order
Taylor approximation of the data fidelity term F(u) to solve (1). We continue to summarized the derivation of
the Poisson IRN-NQP (Iteratively Reweighted Norm, non-negative quadratic programming) algorithm, where we
also provide a brief description of the NQP [17] problem to finally list the Poisson IRN-NQP algorithm.

3.1 Previous Related Work

Within the TV framework, there are several papers [1, 15, 18] that use a second order Taylor approximation of the
data fidelity term F(u) to make (1) a tractable problem, but they differ in the constrained optimization algorithm
used to carry out the actual minimization and in whether the true Hessian of F(u) or an approximation is used.

We must stress that all the above mentioned algorithms involve the solution of a linear system. Moreover,
in [1] the minimization is carried out via a non-negatively constrained, projected quasi-Newton minimization
algorithm; ∇2F(u) is used. In [18] a constrained TV algorithm, described in [2], plus the approximation
∇2F(u) ≈ ηkI,ηk > 0 are used. In [15] a Expectation-Maximization TV approach is used; only the denoising
problem is addressed.

3.2 Non-negative Quadratic Programming (NQP)

Recently [17] an interesting and quite simple algorithm has been proposed to solve the NQP problem:

min
v

1
2

vT
Φv+ cT v s.t. 0≤ v≤ vmax, (5)

where the matrix Φ is assumed to be symmetric and positive defined, and vmax is some positive constant. The
multiplicative updates for the NQP are summarized as follows (see [17] for details on derivation and conver-
gence):

Φ
+
nl =

{
Φnl if Φnl > 0
0 otherwise and Φ

-
nl =

{
|Φnl | if Φnl < 0
0 otherwise,

2
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v(k+1) = min

{
v(k)

[
−c+

√
c2 +υυυ(k)ννν(k)

2υυυ(k)

]
, vmax

}
(6)

where υυυ(k) = Φ+v(k), ννν(k) = Φ-v(k) and all algebraic operations in (6) are to be carried out element wise. The
NQP is quite efficient and has been used to solve interesting problems such as statistical learning [17] among
others.

3.3 The Poisson IRN-NQP Algorithm

Our aim is to express (1) as a quadratic functional in order to solve a NQP problem. First we note that after
algebraic manipulation, Q(k)

F (u) (see (4)) can be written as

Q(k)
F (u) =

1
2

uTH(k)u+ c(k)u+ζF , (7)

where ζF is a constant with respect to u, and c(k) =
(

g(k)−H(k)Tu(k)
)

= AT
(

1−2 b
Au(k)

)
.

While not derived so here, the `q norm of the regularization term in (1) can be represented by a equivalent
weighted `2 norm (see [14, 12] for details):

R(k)(u) =
λ

2

∥∥∥∥W (k)
R

1/2
Du
∥∥∥∥2

2
+ζR =

λ

2
uT DTW (k)

R Du, (8)

where ζR is a constant with respect to u, IN is a N ×N identity matrix, ⊗ is the Kronecker product, C =
{gray}, N = 1 or C = {r,g,b},N = 3 and

D = IN ⊗ [DxT DyT ]T W (k)
R = I2N ⊗Ω

(k), (9)

Ω
(k) = diag

(
τR,εR

(
∑
n∈C

(Dxu(k)
n )2 +(Dyu(k)

n )2

))
. (10)

Following a common strategy in IRLS type algorithms [16], the function

τR,εR(x) =

{
|x|(q−2)/2 if |x|> εR

ε
(q−2)/2
R if |x| ≤ εR,

(11)

is defined to avoid numerical problems when q < 2 and ∑
n∈C

(Dxu(k)
n )2 +(Dyu(k)

n )2 has zero-valued components.

Combining (7) and (8) we can write the quadratic approximation of (1) as (the constant terms are left out)

T (k)(u) =
1
2

uT
(

H(k) +λDTW (k)
R D

)
u+ c(k)T

u, (12)

to finally note that by using Φ(k) = H(k) +λDTW (k)
R D and c(k) = AT

(
1−2 b

Au(k)

)
we can iteratively solve (1) via

(6).

It is easy to check that Φ(k) is symmetric and positive define. Furthermore, we note that the proposed algorithm
does not involve any matrix inversion: the fraction in the term c(k) = AT

(
1−2 b

Au(k)

)
is a point-wise division (a

check for zero must be performed to avoid numerical problems) as well as in the term H(k) = AT diag
(

b
(Au)2

)
A;

also, there is no prohibitive restriction for the forward operator A (e.g. An,k ≥ 0, see [8] and references therein).
Two other key aspects of the Poisson IRN-NQP algorithm is that it can auto-adapt the threshold value εR and
that it includes the NQP tolerance (ε(k)

NQP), used to terminate the inner loop in Algorithm 1 (see [12] for details).
Experimentally, α ∈ [1 ..0.5], γ ∈ [1e-3 ..5e-1], and L = 35 give a good compromise between computational and
reconstruction performance.

3
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4 Experimental Results

For the case of grayscale images, we compared the Poisson IRN-NQP algorithm with two state of the art methods:
PIDAL-FA [8] and DFS [7]. We use the mean absolute error (MAE = ‖û−u‖1/n) as the reconstruction quality
metric to match the results presented in [8, 7]. For vector-valued (color) images, to best of our knowledge, there
is no other algorithm that explicitly includes the NHP model within the TV framework; due to space limitations
we only present results based on the Poisson IRN-NQP algorithm for this case.

All simulations have been carried out using Matlab-only code on a 1.73GHz Intel core i7 CPU (L2: 6144K,
RAM: 6G). Results corresponding to the Poisson IRN-NQP algorithm presented here may be reproduced using
the the NUMIPAD (v. 0.30) distribution [13], an implementation of IRN and related algorithms.

The Cameraman and Peppers images (Fig. 4a and 4b respectively) were scaled to a maximum value M ∈
{5, 30, 100, 255}, then blurred by a 7× 7 uniform filter and by a 7× 7 out-of-focus kernel (2D pill-box fil-
ter) respectively and then Poisson noise was finally added; this matches experiment VI.C setup of [8] for the
Cameraman case.

(a) (b)
Figure 1: Input test images: (a) Cameraman (grayscale 256×256), (b) Peppers (color 512×512).

Image Cameraman Peppers
MAE MAE

Poisson-IRN-NQP PIDAL-FA [8](∗) DFS [7](∗) Poisson-IRN-NQP

M

5 0.25 0.26 0.35 0.55
30 1.21 1.22 1.47 2.56
100 3.59 3.63 4.31 7.57
255 8.34 8.45 10.26 17.53

Table I: Ten-trial average Cameraman’s MAE for Poisson-IRN-NQP (8 outer loops) and the PIDAL-FA [8] and
DFS [7] algorithms, and Peppers’ MAE for Poisson-IRN-NQP. Cameraman and Peppers deconvolution elapsed
11.6s and 190s in average. (∗) Results are taken from [8, Table II].

In Table I we show the ten-trial average Cameraman’s MAE for the Poisson IRN-NQP, PIDAL-FA [8] and
DFS [7] algorithms and the ten-trial average Peppers’ MAE for the Poisson IRN-NQP. The quality reconstruction
of the proposed algorithm outperforms DFS algorithm and has a slightly better performance than the PIDAL-FA
algorithm. The Poisson IRN-NQP algorithm performed 8 outer loops (with L = 35) requiring 11.6s and 190s in
average (for all cases), for the Cameraman and Peppers deconvolution respectively.

4
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Initialize
u(0) = b

for k = 0,1, ...

W (k)
F = diag

(
b

(Au(k))2

)
, H(k) = ATW (k)

F A

Ω
(k)
R = diag

(
τR,εR

(
(Dxu(k))2 +(Dyu(k))2

))
W (k)

R =

(
Ω

(k)
R 0
0 Ω

(k)
R

)

Φ
(k) = H(k) +λDTW (k)

R D, c(k)=-AT
(

1−2τF,εF

(
b

Au(k)

))
u(k,0) = u(k)

ε
(k)
NQP = γ ·

(
‖Φ(k)u(k,0)+c(k)‖2

‖c(k)‖2

)α

(NQP tolerance)

for l = 0,1, ..,L

υυυ
(k,l) = Φ

+(k)u(k,l), ννν
(k,l) = Φ

-(k)u(k,l)

u(k,l+1) = min

{
u(k,l)

[
−c(k)+

√
c(k)

2
+υυυ(k,l)ννν(k,l)

2υυυ(k,l)

]
,vmax

}

if
(
‖Φ(k)u(k,l+1)+c(k)‖2

‖c(k)‖2
<ε

(k)
NQP

)
break;

end m= 0,1, ..,M

u(k+1) = u(k,l+1)

end k = 0,1, ... Algorithm 1: Poisson IRN-NQP algorithm.

5 Conclusions

The reconstruction quality of the proposed algorithm outperforms state of the art algorithms [8, 7] for grayscale
image deconvolution corrupted with Poisson noise. One of the main features of this recursive algorithm is that it
is based on multiplicative updates only and does not involves any matrix inversion, and to best of our knowledge,
the proposed algorithm is the only one that explicitly includes the NHP model for color images within the TV
framework.

(a) (b)
Figure 2: Blurred (7× 7 uniform filter) Cameraman (a) with M=30 (SNR=4.6dB), and deconvolved version (b)
via the Poisson-IRN-NQP (SNR=10.4dB, MAE=1.209).

5
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(a) (b)
Figure 3: Blurred (7×7 out-of-focus kernel ) Peppers (a) with M=5 (SNR=-1.2dB), and deconvolved version (b)
via the Poisson-IRN-NQP (SNR=13.3dB, MAE=0.558).
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Analyse non linéaire, 13(4):485–528, 1996.

[4] X. Bresson and T. Chan. Fast dual minimization of the vectorial total variation norm and applications to
color image processing. J. of Inverse Problems and Imaging, 2(4):455–484, 2008.

[5] R. Chan and K. Chen. Multilevel algorithm for a Poisson noise removal model with total-variation regular-
ization. Int. J. Comput. Math., 84:1183–1198, August 2007.
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