895,957 research outputs found

    Self Attention based multi branch Network for Person Re-Identification

    Get PDF
    2noRecent progress in the field of person re-identification have shown promising improvement by designing neural networks to learn most discriminative features representations. Some efforts utilize similar parts from different locations to learn better representation with the help of soft attention, while others search for part based learning methods to enhance consecutive regions relationships in the learned features. However, only few attempts have been made to learn non-local similar parts directly for the person re-identification problem. In this paper, we propose a novel self attention based multi branch(classifier) network to directly model long-range dependencies in the learned features. Multi classifiers assist the model to learn discriminative features while self attention module encourages the learning to be independent of the feature map locations. Spectral normalization is applied in the whole network to improve the training dynamics and for the better convergence of the model. Experimental results on two benchmark datasets have shown the robustness of the proposed work.openopenMunir A.; Micheloni C.Munir, A.; Micheloni, C

    Absorption features in the spectra of X-ray bursting neutron stars

    Full text link
    The discovery of photospheric absorption lines in XMM-Newton spectra of the X-ray bursting neutron star in EXO0748-676 by Cottam and collaborators allows us to constrain the neutron star mass-radius ratio from the measured gravitational redshift. A radius of R=9-12km for a plausible mass range of M=1.4-1.8Msun was derived by these authors. It has been claimed that the absorption features stem from gravitationally redshifted (z=0.35) n=2-3 lines of H- and He-like iron. We investigate this identification and search for alternatives. We compute LTE and non-LTE neutron-star model atmospheres and detailed synthetic spectra for a wide range of effective temperatures (effective temperatures of 1 - 20MK) and different chemical compositions. We are unable to confirm the identification of the absorption features in the X-ray spectrum of EXO0748-676 as n=2-3 lines of H- and He-like iron (Fe XXVI and Fe XXV). These are subordinate lines that are predicted by our models to be too weak at any effective temperature. It is more likely that the strongest feature is from the n=2-3 resonance transition in Fe XXIV with a redshift of z=0.24. Adopting this value yields a larger neutron star radius, namely R=12-15km for the mass range M=1.4-1.8Msun, favoring a stiff equation-of-state and excluding mass-radius relations based on exotic matter. Combined with an estimate of the stellar radius R>12.5km from the work of Oezel and collaborators, the z=0.24 value provides a minimum neutron-star mass of M>1.48Msun, instead of M>1.9Msun, when assuming z=0.35.Comment: 8 pages, 17 figure

    Optical flow tracking method for vibration identification of out-of-plane vision

    Get PDF
    Vibration measurement based on computer vision has been extensively studied and considered as a wide-range, non-contact measurement method. In this paper, the principle of vibration measurement using out-of-plane vision has been investigated under conventional imaging condition. A measurement model for out-of-plane vision has also been demonstrated. Combined the out-of-plane vision measurement model with the optical flow motion estimation principle, a novel model of optical flow tracking method for vibration detection based on out-of-plane vision has been proposed. It enables the identification of vibration parameters without image feature extraction. Visual vibration detection experiment has been conducted with a cantilever beam and a motor cover. Experimental results have been rigorously compared with finite element simulation to verify the efficacy of the proposed method. It shows that this method can effectively identify vibration parameters of the structure without image feature extraction

    Feature Fusion of Raman Chemical Imaging and Digital Histopathology using Machine Learning for Prostate Cancer Detection

    Get PDF
    The diagnosis of prostate cancer is challenging due to the heterogeneity of its presentations, leading to the over diagnosis and treatment of non-clinically important disease. Accurate diagnosis can directly benefit a patient’s quality of life and prognosis. Towards addressing this issue, we present a learning model for the automatic identification of prostate cancer. While many prostate cancer studies have adopted Raman spectroscopy approaches, none have utilised the combination of Raman Chemical Imaging (RCI) and other imaging modalities. This study uses multimodal images formed from stained Digital Histopathology (DP) and unstained RCI. The approach was developed and tested on a set of 178 clinical samples from 32 patients, containing a range of non-cancerous, Gleason grade 3 (G3) and grade 4 (G4) tissue microarray samples. For each histological sample, there is a pathologist labelled DP - RCI image pair. The hypothesis tested was whether multimodal image models can outperform single modality baseline models in terms of diagnostic accuracy. Binary non-cancer/cancer models and the more challenging G3/G4 differentiation were investigated. Regarding G3/G4 classification, the multimodal approach achieved a sensitivity of 73.8% and specificity of 88.1% while the baseline DP model showed a sensitivity and specificity of 54.1% and 84.7% respectively. The multimodal approach demonstrated a statistically significant 12.7% AUC advantage over the baseline with a value of 85.8% compared to 73.1%, also outperforming models based solely on RCI and median Raman spectra. Feature fusion of DP and RCI does not improve the more trivial task of tumour identification but does deliver an observed advantage in G3/G4 discrimination. Building on these promising findings, future work could include the acquisition of larger datasets for enhanced model generalization

    Feature Fusion of Raman Chemical Imaging and Digital Histopathology using Machine Learning for Prostate Cancer Detection

    Get PDF
    The diagnosis of prostate cancer is challenging due to the heterogeneity of its presentations, leading to the over diagnosis and treatment of non-clinically important disease. Accurate diagnosis can directly benefit a patient's quality of life and prognosis. Towards addressing this issue, we present a learning model for the automatic identification of prostate cancer. While many prostate cancer studies have adopted Raman spectroscopy approaches, none have utilised the combination of Raman Chemical Imaging (RCI) and other imaging modalities. This study uses multimodal images formed from stained Digital Histopathology (DP) and unstained RCI. The approach was developed and tested on a set of 178 clinical samples from 32 patients, containing a range of non-cancerous, Gleason grade 3 (G3) and grade 4 (G4) tissue microarray samples. For each histological sample, there is a pathologist labelled DP - RCI image pair. The hypothesis tested was whether multimodal image models can outperform single modality baseline models in terms of diagnostic accuracy. Binary non-cancer/cancer models and the more challenging G3/G4 differentiation were investigated. Regarding G3/G4 classification, the multimodal approach achieved a sensitivity of 73.8% and specificity of 88.1% while the baseline DP model showed a sensitivity and specificity of 54.1% and 84.7% respectively. The multimodal approach demonstrated a statistically significant 12.7% AUC advantage over the baseline with a value of 85.8% compared to 73.1%, also outperforming models based solely on RCI and median Raman spectra. Feature fusion of DP and RCI does not improve the more trivial task of tumour identification but does deliver an observed advantage in G3/G4 discrimination. Building on these promising findings, future work could include the acquisition of larger datasets for enhanced model generalization.Comment: 19 pages, 8 tables, 18 figure

    On the 3D point cloud for human-pose estimation

    Get PDF
    This thesis aims at investigating methodologies for estimating a human pose from a 3D point cloud that is captured by a static depth sensor. Human-pose estimation (HPE) is important for a range of applications, such as human-robot interaction, healthcare, surveillance, and so forth. Yet, HPE is challenging because of the uncertainty in sensor measurements and the complexity of human poses. In this research, we focus on addressing challenges related to two crucial components in the estimation process, namely, human-pose feature extraction and human-pose modeling. In feature extraction, the main challenge involves reducing feature ambiguity. We propose a 3D-point-cloud feature called viewpoint and shape feature histogram (VISH) to reduce feature ambiguity by capturing geometric properties of the 3D point cloud of a human. The feature extraction consists of three steps: 3D-point-cloud pre-processing, hierarchical structuring, and feature extraction. In the pre-processing step, 3D points corresponding to a human are extracted and outliers from the environment are removed to retain the 3D points of interest. This step is important because it allows us to reduce the number of 3D points by keeping only those points that correspond to the human body for further processing. In the hierarchical structuring, the pre-processed 3D point cloud is partitioned and replicated into a tree structure as nodes. Viewpoint feature histogram (VFH) and shape features are extracted from each node in the tree to provide a descriptor to represent each node. As the features are obtained based on histograms, coarse-level details are highlighted in large regions and fine-level details are highlighted in small regions. Therefore, the features from the point cloud in the tree can capture coarse level to fine level information to reduce feature ambiguity. In human-pose modeling, the main challenges involve reducing the dimensionality of human-pose space and designing appropriate factors that represent the underlying probability distributions for estimating human poses. To reduce the dimensionality, we propose a non-parametric action-mixture model (AMM). It represents high-dimensional human-pose space using low-dimensional manifolds in searching human poses. In each manifold, a probability distribution is estimated based on feature similarity. The distributions in the manifolds are then redistributed according to the stationary distribution of a Markov chain that models the frequency of human actions. After the redistribution, the manifolds are combined according to a probability distribution determined by action classification. Experiments were conducted using VISH features as input to the AMM. The results showed that the overall error and standard deviation of the AMM were reduced by about 7.9% and 7.1%, respectively, compared with a model without action classification. To design appropriate factors, we consider the AMM as a Bayesian network and propose a mapping that converts the Bayesian network to a neural network called NN-AMM. The proposed mapping consists of two steps: structure identification and parameter learning. In structure identification, we have developed a bottom-up approach to build a neural network while preserving the Bayesian-network structure. In parameter learning, we have created a part-based approach to learn synaptic weights by decomposing a neural network into parts. Based on the concept of distributed representation, the NN-AMM is further modified into a scalable neural network called NND-AMM. A neural-network-based system is then built by using VISH features to represent 3D-point-cloud input and the NND-AMM to estimate 3D human poses. The results showed that the proposed mapping can be utilized to design AMM factors automatically. The NND-AMM can provide more accurate human-pose estimates with fewer hidden neurons than both the AMM and NN-AMM can. Both the NN-AMM and NND-AMM can adapt to different types of input, showing the advantage of using neural networks to design factors
    • …
    corecore