10 research outputs found

    A Noise-tolerant Approach to Fuzzy-Rough Feature Selection

    Get PDF
    In rough set based feature selection, the goal is to omit attributes (features) from decision systems such that objects in different decision classes can still be discerned. A popular way to evaluate attribute subsets with respect to this criterion is based on the notion of dependency degree. In the standard approach, attributes are expected to be qualitative; in the presence of quantitative attributes, the methodology can be generalized using fuzzy rough sets, to handle gradual (in)discernibility between attribute values more naturally. However, both the extended approach, as well as its crisp counterpart, exhibit a strong sensitivity to noise: a change in a single object may significantly influence the outcome of the reduction procedure. Therefore, in this paper, we consider a more flexible methodology based on the recently introduced Vaguely Quantified Rough Set (VQRS) model. The method can handle both crisp (discrete-valued) and fuzzy (real-valued) data, and encapsulates the existing noise-tolerant data reduction approach using Variable Precision Rough Sets (VPRS), as well as the traditional rough set model, as special cases

    Ordered Weighted Average Based Fuzzy Rough Sets

    Get PDF
    Traditionally, membership to the fuzzy-rough lower, resp. upper approximation is determined by looking only at the worst, resp. best performing object. Consequently, when applied to data analysis problems, these approximations are sensitive to noisy and/or outlying samples. In this paper, we advocate a mitigated approach, in which membership to the lower and upper approximation is determined by means of an aggregation process using ordered weighted average operators. In comparison to the previously introduced vaguely quantified rough set model, which is based on a similar rationale, our proposal has the advantage that the approximations are monotonous w.r.t. the used fuzzy indiscernibility relation. Initial experiments involving a feature selection application confirm the potential of the OWA-based model

    Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier

    Get PDF
    We propose a computer aided detection (CAD) system for the detection and classification of suspicious regions in mammographic images. This system combines a dimensionality reduction module (using principal component analysis), a feature extraction module (using independent component analysis), and a feature subset selection module (using rough set model). Rough set model is used to reduce the effect of data inconsistency while a fuzzy classifier is integrated into the system to label subimages into normal or abnormal regions. The experimental results show that this system has an accuracy of 84.03% and a recall percentage of 87.28%

    Faculty of Sciences

    Get PDF
    A comprehensive study of fuzzy rough sets and their application in data reductio

    A semantical and computational approach to covering-based rough sets

    Get PDF
    corecore