10 research outputs found

    A node-capacitated Okamura-Seymour theorem

    Full text link
    The classical Okamura-Seymour theorem states that for an edge-capacitated, multi-commodity flow instance in which all terminals lie on a single face of a planar graph, there exists a feasible concurrent flow if and only if the cut conditions are satisfied. Simple examples show that a similar theorem is impossible in the node-capacitated setting. Nevertheless, we prove that an approximate flow/cut theorem does hold: For some universal c > 0, if the node cut conditions are satisfied, then one can simultaneously route a c-fraction of all the demands. This answers an open question of Chekuri and Kawarabayashi. More generally, we show that this holds in the setting of multi-commodity polymatroid networks introduced by Chekuri, et. al. Our approach employs a new type of random metric embedding in order to round the convex programs corresponding to these more general flow problems.Comment: 30 pages, 5 figure

    One-Face Shortest Disjoint Paths with a Deviation Terminal

    Get PDF
    k and the sum of their lengths is minimized. This problem is a natural optimization version of the well-known k-disjoint paths problem, and its polynomial solvability is widely open. One of the best results on the shortest k-disjoint paths problem is due to Datta et al. [Datta et al., 2018], who present a polynomial-time algorithm for the case when G is planar and all the terminals are on one face. In this paper, we extend this result by giving a polynomial-time randomized algorithm for the case when all the terminals except one are on some face of G. In our algorithm, we combine the arguments of Datta et al. with some results on the shortest disjoint (A + B)-paths problem shown by Hirai and Namba [Hirai and Namba, 2018]. To this end, we present a non-trivial bijection between k disjoint paths and disjoint (A + B)-paths, which is a key technical contribution of this paper

    A face cover perspective to ā„“1\ell_1 embeddings of planar graphs

    Full text link
    It was conjectured by Gupta et al. [Combinatorica04] that every planar graph can be embedded into ā„“1\ell_1 with constant distortion. However, given an nn-vertex weighted planar graph, the best upper bound on the distortion is only O(logā”n)O(\sqrt{\log n}), by Rao [SoCG99]. In this paper we study the case where there is a set KK of terminals, and the goal is to embed only the terminals into ā„“1\ell_1 with low distortion. In a seminal paper, Okamura and Seymour [J.Comb.Theory81] showed that if all the terminals lie on a single face, they can be embedded isometrically into ā„“1\ell_1. The more general case, where the set of terminals can be covered by Ī³\gamma faces, was studied by Lee and Sidiropoulos [STOC09] and Chekuri et al. [J.Comb.Theory13]. The state of the art is an upper bound of O(logā”Ī³)O(\log \gamma) by Krauthgamer, Lee and Rika [SODA19]. Our contribution is a further improvement on the upper bound to O(logā”Ī³)O(\sqrt{\log\gamma}). Since every planar graph has at most O(n)O(n) faces, any further improvement on this result, will be a major breakthrough, directly improving upon Rao's long standing upper bound. Moreover, it is well known that the flow-cut gap equals to the distortion of the best embedding into ā„“1\ell_1. Therefore, our result provides a polynomial time O(logā”Ī³)O(\sqrt{\log \gamma})-approximation to the sparsest cut problem on planar graphs, for the case where all the demand pairs can be covered by Ī³\gamma faces

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KāŠ†VK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logā”k/logā”logā”k)O(\log k/\log \log k), where k=āˆ£Kāˆ£k = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logā”k)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Improved guarantees for Vertex Sparsification in planar graphs

    Get PDF
    Graph Sparsification aims at compressing large graphs into smaller ones while (approximately) preserving important characteristics of the input graph. In this work we study Vertex Sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. Given a weighted graph G=(V,E), and a terminal set K with |K|=k, a quality-q vertex cut sparsifier of G is a graph H with K contained in V_H that preserves the value of minimum cuts separating any bipartition of K, up to a factor of q. We show that planar graphs with all the k terminals lying on the same face admit quality-1 vertex cut sparsifier of size O(k^2) that are also planar. Our result extends to vertex flow and distance sparsifiers. It improves the previous best known bound of O(k^2 2^(2k)) for cut and flow sparsifiers by an exponential factor, and matches an Omega(k^2) lower-bound for this class of graphs. We also study vertex reachability sparsifiers for directed graphs. Given a digraph G=(V,E) and a terminal set K, a vertex reachability sparsifier of G is a digraph H=(V_H,E_H), K contained in V_H that preserves all reachability information among terminal pairs. We introduce the notion of reachability-preserving minors, i.e., we require H to be a minor of G. Among others, for general planar digraphs, we construct reachability-preserving minors of size O(k^2 log^2 k). We complement our upper-bound by showing that there exists an infinite family of acyclic planar digraphs such that any reachability-preserving minor must have Omega(k^2) vertices

    Improved guarantees for vertex sparsification in planar graphs

    Get PDF

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore