125,781 research outputs found

    Preloadable vector sensitive latch

    Get PDF
    A preloadable vector-sensitive latch which automatically releases when the force vector from a latch memebr reaches a specified release angle is presented. In addition, it contains means to remove clearance between the latched members and to preload the latch to prevent separation at angles less than the specified release angle. The latch comprises a triangular main link, a free link connected between a first corner of the main link and a yoke member, a housing, and an actuator connected between the yoke member and the housing. A return spring bias means connects the main link to a portion of the housing. A second corner of the main link is slidably and pivotally connected to the housing via a slot in a web portion of the housing. The latch housing has a rigid docking ring alignable with a mating locking ring which is engageable by a locking roller journalled on the third corner of the triangular main link

    Designing a dexterous reconfigurable packaging system for flexible automation

    Get PDF
    This paper presents a design for a reconfigurable packaging system that can handle cartons of different shape and sizes and is amenable to ever changing demands of packaging industries for perfumery and cosmetic products. The system takes structure of a multi-fingered robot hand, which can provide fine motions, and dexterous manipulation capability that may be required in a typical packaging-assembly line. The paper outlines advanced modeling and simulation undertaken to design the packaging system and discusses the experimental work carried out. The new packaging system is based on the principle of reconfigurability, that shows adaptability to simple as well as complex carton geometry. The rationale of developing such a system is presented with description of its human equivalent. The hardware and software implementations are also discussed together with directions for future research

    Testing of FTS fingers and interface using a passive compliant robot manipulator

    Get PDF
    This report deals with testing of a pair of robot fingers designed for the Flight Telerobotic Servicer (FTS) to grasp a cylinder type of Orbital Replaceable Unit (ORU) interface. The report first describes the objectives of the study and then the testbed consisting of a Stewart Platform-based manipulator equipped with a passive compliant platform which also serves as a force/torque sensor. Kinematic analysis is then performed to provide a closed-form solution for the force inverse kinematics and iterative solution for the force forward kinematics using the Newton's Raphson Method. Mathematical expressions are then derived to compute force/torques applied to the FTS fingers during the mating/demating with the interface. The report then presents the three parts of the experimental study on the feasibility and characteristics of the fingers. The first part obtains data of forces applied by the fingers to the interface under various misalignments, the second part determines the maximum allowable capture angles for mating, and the third part processes and interprets the obtained force/torque data

    Design and fabrication of an end effector

    Get PDF
    The construction is described of a prototype mechanical hand or 'end effector' for use on a remotely controlled robot, but with possible application as a prosthetic device. An analysis of hand motions is reported, from which it is concluded that the two most important manipulations (apart from grasps) are to be able to pick up a tool and draw it into a nested grip against the palm, and to be able to hold a pistol-grip tool such as an electric drill and pull the trigger. A model was tested and found capable of both these operations

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Grasping and Control Issues in Adaptive End Effectors

    Get PDF
    Research into robotic grasping and manipulation has led to the development of a large number of tendon based end effectors. Many are, however, developed as a research tool, which are limited in application to the laboratory environment. The main reason being that the designs requiring a large number of actuators to be controlled. Due to the space and safety requirements, very few have been developed and commissioned for industrial applications. This paper presents design of a rigid link finger operated by a minimum number of actuators, which may be suitable for a number of adaptive end effectors. The adaptive nature built into the end effector (due to limited number of actuators) presents considerable problems in grasping and control. The paper discusses the issues associated with such designs. The research can be applicable to any adaptive end effectors that are controlled by limited number of actuators and evaluates their suitability in industrial environments
    • …
    corecore