1,846 research outputs found

    Electronic Part Total Cost Of Ownership And Sourcing Decisions For Long Life Cycle Products

    Get PDF
    The manufacture and support of long life cycle products rely on the availability of suitable parts from competent suppliers which, over long periods of time, leaves parts susceptible to a number of possible long-term supply chain disruptions. Potential supply chain failures can be supplier-related (e.g., bankruptcy, changes in manufacturing process, non-compliance), parts-related (e.g., obsolescence, reliability, design changes), logistical (e.g., transportation mishaps, natural disasters, accidental occurrences) and political/legislative (e.g., trade regulations, embargo, national conflict). Solutions to mitigating the risk of supply chain failure include the strategic formulation of suitable part sourcing strategies. Sourcing strategies refer to the selection of a set of suppliers from which to purchase parts; sourcing strategies include sole, single, dual, second and multi-sourcing. Utilizing various sourcing strategies offer one way of offsetting or avoiding the risk of part unavailability (and its associated penalties) as well as possible benefits from competitive pricing. Although supply chain risks and sourcing strategies have been extensively studied for high-volume, short life cycle products, the applicability of existing work to long life cycle products is unknown. Existing methods used to study part sourcing decisions in high-volume consumer oriented applications are procurement-centric where cost tradeoffs on the part level focus on part pricing, negotiation practices and purchase volumes. These studies are commonplace for strategic part management for short life cycle products; however, conventional procurement approaches offer only a limited view for parts used in long life cycle products. Procurement-driven decision making provides little to no insight into the accumulation of life cycle cost (attributed to the adoption, use and support of the part), which can be significantly larger than procurement costs in long life cycle products. This dissertation defines the sourcing constraints imposed by the shortage of suppliers as a part becomes obsolete or is subject to other long-term supply chain disruptions. A life cycle approach is presented to compare the total cost of ownership of introducing and supporting a set of suppliers, for electronic parts in long life cycle products, against the benefit of reduced long-term supply chain disruption risk. The estimation of risk combines the likelihood or probability of long-term supply chain disruptions (throughout the part's procurement and support life within an OEM's product portfolio) with the consequence of the disruption (impact on the part's total cost of ownership) to determine the "expected cost" associated with a particular sourcing strategy. This dissertation focuses on comparing sourcing strategies used in long life cycle systems and provides application-specific insight into the cost benefits of sourcing strategies towards proactively mitigating DMSMS type part obsolescence

    OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY

    Get PDF
    ABSTRACT Title of Dissertation: OPTIMIZATION OF TEST/DIAGNOSIS/REWORK LOCATION(S) AND CHARACTERISTICS IN ELECTRONIC SYSTEMS ASSEMBLY Zhen Shi, Doctor of Philosophy, 2004 Dissertation directed by: Associate Professor Peter A. Sandborn Department of Mechanical Engineering For electronic systems it is not uncommon for 60% or more of the recurring cost to be associated with testing. Performing tradeoffs associated with where in a process to test and what level of test, diagnosis and rework to perform are key to optimizing the cost and yield of an electronic system's assembly. In this dissertation, a methodology that uses a real-coded genetic algorithm has been developed to minimize the yielded cost of electronic products by optimizing the locations of test, diagnosis and rework operations and their characteristics. This dissertation presents a test, diagnosis, and rework analysis model for use in electronic systems assembly. The approach includes a model of functional test operations characterized by fault coverage, false positives, and defects introduced in test; in addition, rework and diagnosis operations (diagnostic test) have variable success rates and their own defect introduction mechanisms. The model accommodates multiple rework attempts on a product instance. For use in practical assembly processes, the model has been extended by defining a general form of the relationship between test cost and fault coverage. The model is applied within a framework for optimizing the location(s) and characteristics (fault coverage/test cost and rework attempts) of Test/Diagnosis/Rework (TDR) operations in a general assembly process. A new search algorithm called Waiting Sequence Search (WSS) is applied to traverse a general process flow to perform the cumulative calculation of a yielded cost objective function. Real-Coded Genetic Algorithms (RCGAs) are used to perform a multi-variable optimization that minimizes yielded cost. Several simple cases are analyzed for validation and general complex process flows are used to demonstrate the applicability of the algorithm. A real multichip module (MCM) manufacturing and assembly process is used to demonstrate that the optimization methodology developed in this dissertation can find test and rework solutions that have lower yielded cost than solutions calculated by manually choosing the test strategies and characteristics. The optimization methodology with Monte Carlo methods included for the process flow under uncertain inputs is also addressed in this dissertation. It is anticipated that this research will improve the ability of manufacturing engineers to place TDR operations in a process flow. The ability to optimize the TDR operations can also be used as a feedback to a Design for Test (DFT) analysis of the electronic systems showing which portion of the system should be redesigned to accommodate testing for a higher level of fault coverage, and where there is less need for test

    Combining business process and failure modelling to increase yield in electronics manufacturing

    Get PDF
    The prediction and capturing of defects in low-volume assembly of electronics is a technical challenge that is a prerequisite for design for manufacturing (DfM) and business process improvement (BPI) to increase first-time yields and reduce production costs. Failures at the component-level (component defects) and system-level (such as defects in design and manufacturing) have not been incorporated in combined prediction models. BPI efforts should have predictive capability while supporting flexible production and changes in business models. This research was aimed at the integration of enterprise modelling (EM) and failure models (FM) to support business decision making by predicting system-level defects. An enhanced business modelling approach which provides a set of accessible failure models at a given business process level is presented in this article. This model-driven approach allows the evaluation of product and process performance and hence feedback to design and manufacturing activities hence improving first-time yield and product quality. A case in low-volume, high-complexity electronics assembly industry shows how the approach leverages standard modelling techniques and facilitates the understanding of the causes of poor manufacturing performance using a set of surface mount technology (SMT) process failure models. A prototype application tool was developed and tested in a collaborator site to evaluate the integration of business process models with the execution entities, such as software tools, business database, and simulation engines. The proposed concept was tested for the defect data collection and prediction in the described case study

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Complex low volume electronics simulation tool to improve yield and reliability

    Get PDF
    Assembly of Printed Circuit Boards (PCB) in low volumes and a high-mix requires a level of manual intervention during product manufacture, which leads to poor first time yield and increased production costs. Failures at the component-level and failures that stem from non-component causes (i.e. system-level), such as defects in design and manufacturing, can account for this poor yield. These factors have not been incorporated in prediction models due to the fact that systemfailure causes are not driven by well-characterised deterministic processes. A simulation and analysis support tool being developed that is based on a suite of interacting modular components with well defined functionalities and interfaces is presented in this paper. The CLOVES (Complex Low Volume Electronics Simulation) tool enables the characterisation and dynamic simulation of complete design; manufacturing and business processes (throughout the entire product life cycle) in terms of their propensity to create defects that could cause product failure. Details of this system and how it is being developed to fulfill changing business needs is presented in this paper. Using historical data and knowledge of previous printed circuit assemblies (PCA) design specifications and manufacturing experiences, defect and yield results can be effectively stored and re-applied for future problem solving. For example, past PCA design specifications can be used at design stage to amend designs or define process options to optimise the product yield and service reliability

    Component-Level Electronic-Assembly Repair (CLEAR) System Architecture

    Get PDF
    This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process

    Approach to In Situ Component Level Electronics Assembly Repair (CLEAR) for Constellation

    Get PDF
    Maintenance resupply is a significant issue for long duration space missions. Currently, the International Space Station (ISS) approaches maintenance primarily around replaceable modules called Orbital Replacement Units (ORU). While swapping out ORUs has served the ISS well keeping crew time for maintenance to a minimum, this approach assumes a substantial logistics capacity to provide replacement ORUs and return ORUs to Earth for repair. The ORUs used for ISS require relatively large blocks of replacement hardware even though the actual failed component may be several orders of magnitude smaller. The Component Level Electronics Assembly Repair (CLEAR) task was created to explore electronics repair down to the component level for future space missions. From 2006 to 2009, CLEAR was an activity under the Supportability project of the Exploration Technology Development Program. This paper describes the activities of CLEAR including making a case for component-level electronics repair, examination of current terrestrial repair hardware, and potential repair needs. Based on those needs, the CLEAR team proposes an architecture for an in-situ repair capability aboard a spacecraft or habitat. Additionally, this paper discusses recent progress toward developing in-space repair capabilities--including two spaceflight experiments-- and presents technology concepts which could help enable or benefit the same

    Modeling and analysis of performance of the steering angle sensor development project

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; and, (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, 2000.Also available online at the MIT Theses Online homepage .Includes bibliographical references (leaf 83).In the highly competitive automotive industry, OEM and tier-I suppliers face the problem of determining costs and creating accurate and rapid schedules for current and future product developments. Successful companies in this industry are those that are able to forecast and meet important deadlines, satisfy performance requirements and reduce costs to keep development within budget. But frequently one or two factors are achieved at the expense of the others. Sometimes, for example, suppliers are able to cut costs, but only at the expense of quality. Or they can increase quality at expense of costs. Both scenarios are of concern, especially when competitors are attempting to capture market share. Engineers and program managers require powerful techniques to have better estimates of completion time versus expenditures. Unfortunately, though, there are not yet such tools available that are capable of incorporating both dimensions of product quality and cost. Moreover, it would be desirable to incorporate product performance with those two dimensions in order to obtain a broad perspective of the entire design. The main goal of this thesis is the investigation, evaluation and application of the research reported in the Ph.D. thesis "Modeling and Analyzing Cost, Schedule, and Performance in Complex System Product Development" (Browning 1998) in two product platforms of Valeo, Electronics. The two product platforms selected for this purpose were the steering angle sensor (SAS) and the ultrasonic park assist sensor (UPAS). The research for this project was conducted at Valeo, Electronics, located in Bietigheim-Bissingen, Germany. First, data were collected concerning development costs, timing and performance of the steering angle sensor. Second, the software was modified and applied to obtain a joint probability distribution of cost and schedule for this platform. Third, the model was tracked and validated. The tracking of the model was performed within the same platform by running the software at various times. The validation of the model consisted of applying the same methodology for the UPAS and other areas of the SAS. Monte Carlo simulation, optimization, design structure matrices, feedback among activities, and concurrency in product development systems, along with three software tools (Visual Basic, Excel and MATLAB) were used extensively in this work. Finally, the model and the results were presented to the company, with recommendations for future applications.by Miguel A. Hurtado.S.M

    Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept

    Get PDF
    This Component-Level Electronic-Assembly Repair (CLEAR) Operational Concept document was developed as a first step in developing the Component-Level Electronic-Assembly Repair (CLEAR) System Architecture (NASA/TM-2011-216956). The CLEAR operational concept defines how the system will be used by the Constellation Program and what needs it meets. The document creates scenarios for major elements of the CLEAR architecture. These scenarios are generic enough to apply to near-Earth, Moon, and Mars missions. The CLEAR operational concept involves basic assumptions about the overall program architecture and interactions with the CLEAR system architecture. The assumptions include spacecraft and operational constraints for near-Earth orbit, Moon, and Mars missions. This document addresses an incremental development strategy where capabilities evolve over time, but it is structured to prevent obsolescence. The approach minimizes flight hardware by exploiting Internet-like telecommunications that enables CLEAR capabilities to remain on Earth and to be uplinked as needed. To minimize crew time and operational cost, CLEAR exploits offline development and validation to support online teleoperations. Operational concept scenarios are developed for diagnostics, repair, and functional test operations. Many of the supporting functions defined in these operational scenarios are further defined as technologies in NASA/TM-2011-216956
    • …
    corecore