1,188,074 research outputs found

    LSMR: An iterative algorithm for sparse least-squares problems

    Full text link
    An iterative method LSMR is presented for solving linear systems Ax=bAx=b and least-squares problem \min \norm{Ax-b}_2, with AA being sparse or a fast linear operator. LSMR is based on the Golub-Kahan bidiagonalization process. It is analytically equivalent to the MINRES method applied to the normal equation A\T Ax = A\T b, so that the quantities \norm{A\T r_k} are monotonically decreasing (where rk=bAxkr_k = b - Ax_k is the residual for the current iterate xkx_k). In practice we observe that \norm{r_k} also decreases monotonically. Compared to LSQR, for which only \norm{r_k} is monotonic, it is safer to terminate LSMR early. Improvements for the new iterative method in the presence of extra available memory are also explored.Comment: 21 page

    Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations

    Full text link
    We present new interior regularity criteria for suitable weak solutions of the 3-D Navier-Stokes equations: a suitable weak solution is regular near an interior point zz if either the scaled Lx,tp,qL^{p,q}_{x,t}-norm of the velocity with 3/p+2/q23/p+2/q\leq 2, 1q1\leq q\leq \infty, or the Lx,tp,qL^{p,q}_{x,t}-norm of the vorticity with 3/p+2/q33/p+2/q\leq 3, 1q<1 \leq q < \infty, or the Lx,tp,qL^{p,q}_{x,t}-norm of the gradient of the vorticity with 3/p+2/q43/p+2/q\leq 4, 1q1 \leq q, 1p1 \leq p, is sufficiently small near zz

    Average norms of polynomials

    Get PDF
    In this paper we study the average \NL_{2\alpha}-norm over TT-polynomials, where α\alpha is a positive integer. More precisely, we present an explicit formula for the average \NL_{2\alpha}-norm over all the polynomials of degree exactly nn with coefficients in TT, where TT is a finite set of complex numbers, α\alpha is a positive integer, and n0n\geq0. In particular, we give a complete answer for the cases of Littlewood polynomials and polynomials of a given height. As a consequence, we derive all the previously known results for this kind of problems, as well as many new results.Comment: 13 pages, key words: Littlewood polynomials, Polynomials of height $h
    corecore