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Abstract

We present an explicit formula for the average,-norm over all the polynomials of degree
with coefficients inT', whereT is a finite set of complex numbers aads a positive integer.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

There are many old research questions concerning sets of polynomials with special
coefficients. A number of these questions were suggested liysErt Szekeres; Hilbert;
Littlewood; and Prouhet, Tarry, and Escott (§88, pp. 5-7]). For example, Prouhet, Tarry,
and Escott asked for a polynomial with integer coefficients that is divisibleg byl)"” and
has the smallest possible sum of the absolute values of the coefficierts.dfrdl Szekeres
asked for the minimum oﬂ]‘[’]’-zl(l — 2%)|ls0, Where thea; are positive integers, for
a givenn. The problem to find the maximum and the minimum norms of polynomials
with restricted coefficients is an old and difficult problem. In #yenorm this problem is
often called Golay’s “Merit Factor” problem. In the supremum norm this problem is due to
Littlewood. These problems are at least fifty years old and still unsolved. In this paper we
give a complete solution to the following problem (for particular cases, see [B3, p. 35]):
find the averag€,,-norm over polynomials of degreewith coefficients in a given finite
setT, wherex is a positive integer.

Let T = {x1,x2,..., x4} be any finite set of complex numbers. A polynompak) =
anz" + -+ -+ a1z + ap is said to be & -polynomialif a; € T for all i, 0 <i < n. We denote
by 1 (n) the set of allT -polynomials of degree. For example, ifl = {0, 1, 2} then the
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set of T-polynomials of degree 1 is given 84 (1) = {z,2z,z+ 1,2z + 1,z + 2,27 + 2}.
The cardinality of the seX 7 (n) is denoted by (n). Clearly, for alln > 0,

(d—1)d" 0eT andn>1,

Nr(n) = [ !
r(m dnti otherwise

A T-polynomial p(z) is said to be d.ittlewood polynomiaif 7 = {—1, 1}, and p(z) is
apolynomial of height if 7 = {—h, —h+1, ..., h—1, h}). For examplep(z) = z2—z+1
is a Littlewood polynomial of degree 2, apdz) = z° — 272 — 1 is a polynomial of height 2
and degree 3.

Let p(z) be anyT -polynomial of degrea. For any positive integer, the £,-normon
the boundary of the unit disk is defined by

npna=< /| |de)

Let f, g, h be any threeR-polynomials. The( f, g, h)-averageover T-polynomials of
degreen is defined by

O(

2n

Ern: f.g.h) = M() z / hE) f (p(€)s(p(e ) b, (1)

for anyn > 1. We denote byr(n; s, t, m) the (z%, 7, z™)-average over -polynomials of
degreer, wherem € Z ands, ¢, n > 0. We define thaveragel,-normoverT -polynomials
of degreen by

1
%(n)=er(n;a/2,a/2,0)= ——— @
KT r(n;a/2,a/ N E;(n) Ipll

27TNT(71) 2 /|” [, @

peZT(n)

for any positive integer. In the casex = 0, we defineuc}(n) =1 for all n > 0. For
simplicity, we definer*(n) = “?-1,1}(”) and ¢; (n) = I’L({X—h,—h-i-l,...,h—l,h}(n)' for all
n,o,h >0.

We would like to find an explicit formula fom%“(n), where T is a finite set of
complex numbers and is a positive integer (for particular cases, see [B3, p. 35]). While
the Littlewood polynomials and polynomials of heighthave attracted much attention
(for example, see [B3,BC,NB]), the case of other sgtdhas not been treated. The
Littlewood polynomials have been considdrby several authors. In 1990, Newman and
Byrnes [NB] foundr*(n) = 2n2 4+ 3n 4+ 1 and in 2002, Borwein and Choi [BC] proved



700 T. Mansour / Advances in Applied Mathematics 32 (2004) 698—-708

28(n) = 6n3 + 92 + 4n + 1 anda8(n) = 24n* + 3003 + 4n? + 5n + 4 — 3(=1)". In the
case of polynomials of height 1, Borwein [B2] proved

2 2

pim=Z0+D. ¢l =5(4n°+ T +3). and
2

o2(n) = 5(8}13 + 1812 + 131 + 3).

More generally, Borwein [B2] found for any > 0,

r(n) = h(h;_ b (n+1) and
o(n) = At +1) (101(h + Dn® + (19h% + 19 — 3)n + 3(3h% 4 3h — 1)).

45

In this paper we suggest a general approach to the study of the av&agerm over
T-polynomials of degree, for any positive integetr and any finite sef” of complex
numbers, which allows one to get an explicit formula p:ﬁ?(n). More precisely, we
find an explicit formula for the generating functien (x, u, v, w). Using this generating
function we get explicit formulas farr (n; s, t, m) in general, anqh%"‘ (n)=er(n;a,a,0)
in particular, wheren € Z, s,t,n > 0, « is a positive integer, and is a finite set of
complex numbers.

The main result of this paper can berfilated as follows. We denote by (x, u, v, w)
the generating function for the sequerieg(n; s, t, m)},.5.¢.m, that is,

eT(x,u,v,w)zz Z er(n; s, t,m)x"usv'w™.

meZ p,q,n=0

Theorem 1.1. Let T = {x1,x2,...,x4} be a finite set of complex numbers. Then the
generating functiorr (x, u, v, w) is given by

d
1 - - —
Z|:d_” Z X" 1/((1_x.i1”_szuw 1—---—xj~nuw ”+1)

nzl J1seesjn=1

X (1—)§v—x_j2vw—~~—mvwn_l)):|.

Moreoverer (n; s, t, m) is given by

1 d n+1 s P
=D DD SUNED DN | (50| (R R
J1yews Jnp1=1s,1>0 Kyt =5 a=1 15005 Kp41 1seees b4l

Lyt ALy 1=t
Y a—1) (La—ka)=m
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The paper is organized as follows. The proof of our main result, Theorem 1.1, is
presented in Section 2. In Section 3 we presegeneral application for our results. In
particular, we give explicit formulas up w= 4 where}_,_, ¢ = 0. Finally, in Section 4
we suggest several directions to generatlze results of the previous sections.

2. Proofs

Let us start by introducing a quantity that plays a crucial role in the proof of
Theorem 1.1.

Theorem 2.1. Let T = {x1, x2, ..., x4} be a set of complex numbers, be any integer,
n>1,ands,t > 0. Then

t
er(n;s, t,m)= ZZZ)C k_’ e( )(z)er(n —Lklm+k—20). 3)
j=1k=0¢=0
Proof. Let z = €% and f;,..(p(2)) = z"p*(z)p'(z), where p(z) is the conjugate
polynomial of the polynomiap(z) € Tr(n). If p(z) € Tr(n) then there exists a unique

polynomialg (z) € Tr(n—1) and auniqueindex, 1 < j < d, suchthap(z) = zg(z) +x;.
So we have

d
Yo fum(p@)=") > (a@+x))' (28 +55)".

p()eZr(n) J=1q(@)€Tr(n-1)
k _ Nk k k—
Using (x +y)* =37} O(j)x/y Jandz =z71 we get
_ sk 1= t

S @)= Y LYY (3) () frmse-staco.
p()eZT(n) q(z2)eTr(n—1) j=1k=0¢=0
Therefore, using (1) we get the desired resuttl

To presentrecurrence (3) in terms of generating functions we need the following lemma.

Lemma 2.2. Let F(x,y) = 3_ ,>odsx°y" be a generating function for the sequence
{ds.t}s,1>0. Then

s t
Syt s—kpt—t s ! _ 1 X y
5 (350 (1)) = s ()

5,620 k=0¢=0




702 T. Mansour / Advances in Applied Mathematics 32 (2004) 698—-708

Proof. By direct calculations we have

1 x y o (ax)*(by)!
F , = Sh'd, .
L—ax)(1—by) <1—ax 1—by) stz>0a ‘S’t(l—ax)5+1(1—by)t+1

Usingx"/(1—x)" =3_,50(;)x" we get

1 ( x y ) < k=s pt— Y (6) .k yt
F , =Y (D dvd,, xyE )
(I—ax)(1—by) \1—ax 1-by 5,020 Nk, 020 SN

equivalently,

(2 ) - Z (ST ()
(1—ax)(1—by)F<l—ax’1—by>_ny(ZZ“ e\ ) )

as claimed. O

Now we are ready to prove our main result, namely Theorem 1.1.

Theorem 2.3. Let T = {x1,x2,...,x4} be a finite set of complex numbers. Then the
generating functior7 (x, v, u, w) is given by

d

Z |:din Z (L= xpu = xjpuw™ =g uw ™)

n=1 JtsesJn=1

X (1—)§v—x_j2vw—~~—mvw”l)):|.

Proof. If we multiply Eq. (3) byx"u*v'w™, and sum over alh € Z, s,t > 0, andn > 1,
using Lemma 2.2, then we arrive at

er(x,u,v, w) — Z Z e(0, s, t,m)u*v' w™

meZs,t >0
d
X 1 u wv
- E;[(l—xju)(l—m) eT<x’ wd—xju)’ 1—x—,~u’w)]

On the other hand, by the definitions we have #hal0, s, t, m) = (1/d) Zle amxjx_j’
foranym € Z ands, r > 0, wheres,, = 1 if m =0, otherwises,,, = 0. So

1 1
0,s,1, Solaym — = )
E E er(0,s,t,m)u” v w p E A—x0d—5v)

meZs,t =20 j=1
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Therefore, by combining the above two equations we get that

d
1 1 u wv
,U, W) = — —1 , , , .
er (x, u, v, w) dj;(l—xju)(l—xjv)[ +xeT(x w(l—xju)’ 1—xjv w)j|

(4)
An infinite number of applications of this identity completes the proaf.

Remark 2.4. It follows from Theorem 2.3 that the gene@ting funct_iqr(x, u,v,w) is
symmetric under the translatiam, v, w, T) — (v, u, w™1, T), whereT = {x1, ..., %3},
thatis,er (x, u, v, w) = ez (x, v, u, w1,

Theorem 2.3 can be presented as follows.

Corollary 2.5. Let T = {x1,x2,...,x4} be a finite set of complex numbers. Then the
generating functior7 (x, v, u, w) is given by

>y Y e, )

n21j1,.... jn=1s,t20 kgt tkn=s a=1
Lyt =t

x=1ys ! w(Zﬁzl(a—l) (ra—ta))

dn

X

Proof. Using Theorem 2.3 we get that the generating functiptx, v, u, w) is given by

d
Z|: Z Z (le + x.,'zw—l +--+xj, w—n.l,_l)s

n21L j1,j2,.... jn=1s,t 20

n—1s.1t
— . — -1t X uv
x (X +Xw+ - +xj,w" ) y .

The rest is easy to check by using the identity

n
) s kj
(@14 +ap) = E < >| |a.]. O
" kiokn) S5

Ky tkn=s

We denote byu% (x) the generating function for the sequenge;.(n)},>o, that is,
g (x) = Z@o ug (n)x". Corollary 2.5 gives the generating functipﬁ* (x) forany given
finite setT and positive integeas.



704 T. Mansour / Advances in Applied Mathematics 32 (2004) 698—-708

Example 2.6. Using Corollary 2.5 forx = 1 we get that

) d n 2 xn—l 1 d ) xn—l
o= Y (Shal) =X (e )
n21j1,....jn=1 \k=1 n>1 j=1
S0 it is easy to see that
1 n
Wr () = ———" " |x;,[*+ xpuf (x),

d(l—x) P

hence

d
n+1 n
u%(x)zz( y j§:l|xj|2>x.

n=>0
- _ 2,1 _ 2
In particular, we have that?(n) =n + 1 andg?(n) = 5(n + 1).

Corollary 2.5 provides a finite algorithm for finding the avera&jé(n) for givenn, T,
andw. This algorithm has been implemented in MAPLE (see [M, Procedure genmu()]).

Remark 2.7. To apply Corollary 2.5 we have to considéf possibilities for j; and

(”+Z*1)2 possibilities fork; and¢;, namely we have to considef (”J“g‘*l)2 possibilities.
Thus, the approach in Corollary 2.5 would be very slowrfdarge.

3. Exact formulas

In this section we suggest an another approach for finding an explicit formula for
u%“(n). First of all, we denote by;’(x, w) the (s +¢)-derivative of the generating function
er(x,u, v, w) with respect ta: exactlys times and then with respect toexactlys times
atu =v =0, thatis,

s+t

ousov!

er(x,u,v, w)
u=v=0

st 5.t
ep =ep (x,w)=

For anys, t > 0, we defineA’ = Z;l:l x4x;". Now let us consider Eq. (4). This equation

provides a finite algorithm, which we call the-algorithm, for finding ey (n; s, ¢, m) in
general, ancﬁ%"‘(n) in particular, sinces!tler(n; s, t,m) is the coefficient ofw”x" in
eST’t(x, w), and ;L%“(n) = er(n; o, «, 0). Therefore, theu-algorithm with inpute and
outputu%*(x) can be carried out as follows:

(1) Apply the derivative operator with respectitaexactlys times and then with respect
to v exactlyr times on Eg. (4) for alb, ¢, where 0< 5,7 < «.
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(2) Finde;t foralls,z,0< s, t < «, by solving the system which is obtained from step (1).
3) Flndu (x), which is the free coefficient ab in eT Y(x, w).

This algorithm has been implemented in MAPLE (see [M, Procedure findav()]), and
yields explicit results for giverr. Below we present several explicit calculations.

3.1. Formula foru2 (n)

Let us start by apply thg-algorithm fora = 1. The first step of th@-algorithm gives

1
0,0 0,0 0,1 01 0,0 1
ep  =1+xer”, ey EA +dAT T +
1
1,0 10 0,0 10
ey dA +dAT T +

1
ekl= EA +dA112°+7A1°°1+d—A°11°+xe}’1.

Equivalently (the second step of thealgorithm),

1,0 0,1
00 _ 1 L0 _ A7 0L Ay
r 71y T 7dl-x)1—xw1)’ T 7dl-x)1—-xw)’
1 xw xw L
1,1 1,0 ,0,1
— = Ak AL0401
T T aa—x2T +(d2(1 21— xw) d2(1—x)2(1—xw1)> ror

Therefore the third step of the-algorithm givesuT(x), which is the free coefficient ab
in eT (x w). Hence, we get the following result.

Coroallary 3.1. We have

1 1

d
1
1 2
— A7 —_72 |x <.
_ 2T — )2 J
dl—x) d(l—x) o

12 (x) =

3.2. Formula foru7 (n)

Again, using theu-algorithm (see [M, Procedure findav()]) fer = 2 we get the
following result.

Coroallary 3.2. We have

1 2.2 4x 112
— AT+ (A7
d1—x)2" T +d2(1—x)3( r)

2x2(1+ x)?
d3(1_x2)3[(A10) A01 (A(%,l)ZA:;,O:I

p3(x) =
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8x° 1,012/ 40,12
T I 0i ) (A7) (4r)"

For example,

h(h+1)
45

o*n) = (101 (h + Dn? + (19h? + 19 — 3)n + 3(3h? + 3h — 1))

andi*(n) =2n%+3n + 1, foralln > 0.
3.3. Formula for% (n) whereA:° = 0

Similarly to the previous subsection, our results can be extended to the ca$enf
Since the answers become very cumbersome, we present here only the simplest case when
A7%=Y9_1x; =0. Thus, if we apply our approach for finding? (n) whereA° =0
(so A(}’l = 0), then we get the following results.

Corollary 3.3. LetT = {x1, x2, . .., x4} be such thaE‘j:lxj —0. Then

1
; 2 11

= Ak
- Ax 2

4 _ A22 Al,l
(i) p7(x) 2T +d2(1—x)3( 7))
18x 36x?

6 3,3 1,1,22 1,1\3

= AT AT7TAT — (A7
) 170 = a2 AT+ T AT+ Ea s AT )

1 32x 36x2
: 8 4.4 11,33 2,.2\2
iv = A7 AT+ e (AT
W) wr ) =TJa— A g e AT +d2(1—x)4( )
432x2 22/, . 11\2
—— A7 (A7
+d3(1_.x)4 T ( T)
72x4(3— 2x — 2x2 + 3x3 — x%) (A92)2(429)2 4 576v° (ALY
d*(1—x)*(1+x) r r dA1—x)5VT
48x3 0,3,20,21 , 430,02 ,12
P Ra A AT AT AT AT AT AT
72x2 1,212 ,2.0 21,2 ,0,2
A7) AT A7) AL
+d3(1—x)2(1—x2)(( 1) AT+ (A77) A7)
6x2 0

+

B vy (A7) A7+ (479°47).
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4, Further results

In this section we suggest several direnos to generalize the results of the previous
sections. The first of these directions is to obtain an exact formula for the avésage
norm overT -polynomials of degree with weightz™ for givenc, n, andm. Let us define

ug(nsm)=er(n; a/2,a/2,m)= 2N 00 (n) Z /e‘m9| )|ad9. (5)

‘In 0

Clearly, u%.(n) = u7.(n; 0) for all n, anda > 0. Using Theorem 1.1 we get the following
result.

Theorem 4.1. Let T = {x1,x2,...,x4} be any finite set of complex numbers. The
generating functio", - Y",,cz 15" (n: m)x"w™ is given by

>y r e ) )

n>l]l .]ll—l ki Fhp=a 4=
O+ =a

1y (Cam1@=D(ra—ta))
dl‘l °
By the definitions, it is clear that!2.2* 7% (n; m) is the coefficient ofc"w™ in ET (x, w)

(see Section 3). Therefore, in a way simita that in Section 3 we obtain the following
result.

Corollary 4.2. LetT = {x1, x2, ..., x4} be any finite set of complex numbers. Then

n+1—1Im| 01,10

72 A7ATT m#0, —n<m < m,
M%(n;m): l’l+1A1,1 —0
a T m=s
0 otherwise

The second of these directions is to consitier general case to find an explicit formula
forer(n, s, t, m) for any givens, t. For example, the following is true.

Corollary 4.3. LetT = {x1, x2, ..., x4} be any finite set of complex numbers. Then for any
n>0andm eZ,

1 12
er(n;1,2,m) = EAT O<m<n, and

0 otherwise
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1
er(n;2,L,m)y=14 ¢4
0 otherwise

A%l —-n<m<0,
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