2,129 research outputs found

    Group Leaders Optimization Algorithm

    Full text link
    We present a new global optimization algorithm in which the influence of the leaders in social groups is used as an inspiration for the evolutionary technique which is designed into a group architecture. To demonstrate the efficiency of the method, a standard suite of single and multidimensional optimization functions along with the energies and the geometric structures of Lennard-Jones clusters are given as well as the application of the algorithm on quantum circuit design problems. We show that as an improvement over previous methods, the algorithm scales as N^2.5 for the Lennard-Jones clusters of N-particles. In addition, an efficient circuit design is shown for two qubit Grover search algorithm which is a quantum algorithm providing quadratic speed-up over the classical counterpart

    Particle In Cell Simulation of Combustion Synthesis of TiC Nanoparticles

    Full text link
    A coupled continuum-discrete numerical model is presented to study the synthesis of TiC nanosized aggregates during a self-propagating combustion synthesis (SHS) process. The overall model describes the transient of the basic mechanisms governing the SHS process in a two-dimensional micrometer size geometry system. At each time step, the continuum (micrometer scale) model computes the current temperature field according to the prescribed boundary conditions. The overall system domain is discretized with a desired number of uniform computational cells. Each cell contains a convenient number of computation particles which represent the actual particles mixture. The particle-in-cell (discrete) model maps the temperature field from the (continuum) cells to the respective internal particles. Depending on the temperature reached by the cell, the titanium particles may undergo a solid-liquid transformation. If the distance between the carbon particle and the liquid titanium particles is within a certain tolerance they will react and a TiC particle will be formed in the cell. Accordingly, the molecular dynamic method will update the location of all particles in the cell and the amount of transformation heat accounted by the cell will be entered into the source term of the (continuum) heat conduction equation. The new temperature distribution will progress depending on the cells which will time-by-time undergo the chemical reaction. As a demonstration of the effectiveness of the overall model some paradigmatic examples are shown.Comment: submitted to Computer Physics Communication

    A simple non-equilibrium, statistical-physics toy model of thin-film growth

    Full text link
    We present a simple non-equilibrium model of mass condensation with Lennard-Jones interactions between particles and the substrate. We show that when some number of particles is deposited onto the surface and the system is left to equilibrate, particles condense into an island if the density of particles becomes higher than some critical density. We illustrate this with numerically obtained phase diagrams for three-dimensional systems. We also solve a two-dimensional counterpart of this model analytically and show that not only the phase diagram but also the shape of the cross-sections of three-dimensional condensates qualitatively matches the two-dimensional predictions. Lastly, we show that when particles are being deposited with a constant rate, the system has two phases: a single condensate for low deposition rates, and multiple condensates for fast deposition. The behaviour of our model is thus similar to that of thin film growth processes, and in particular to Stranski-Krastanov growth.Comment: 26 pages, 16 figure
    • …
    corecore