8,328 research outputs found

    A Nitsche-based cut finite element method for a fluid--structure interaction problem

    Full text link
    We present a new composite mesh finite element method for fluid--structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh which is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation which allows us to establish stability and optimal order \emph{a priori} error estimates, see~\cite{MassingLarsonLoggEtAl2013}. We consider here a steady state fluid--structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples.Comment: Revised version, 18 pages, 7 figures. Accepted for publication in CAMCo

    An adaptive fixed-mesh ALE method for free surface flows

    Get PDF
    In this work we present a Fixed-Mesh ALE method for the numerical simulation of free surface flows capable of using an adaptive finite element mesh covering a background domain. This mesh is successively refined and unrefined at each time step in order to focus the computational effort on the spatial regions where it is required. Some of the main ingredients of the formulation are the use of an Arbitrary-Lagrangian–Eulerian formulation for computing temporal derivatives, the use of stabilization terms for stabilizing convection, stabilizing the lack of compatibility between velocity and pressure interpolation spaces, and stabilizing the ill-conditioning introduced by the cuts on the background finite element mesh, and the coupling of the algorithm with an adaptive mesh refinement procedure suitable for running on distributed memory environments. Algorithmic steps for the projection between meshes are presented together with the algebraic fractional step approach used for improving the condition number of the linear systems to be solved. The method is tested in several numerical examples. The expected convergence rates both in space and time are observed. Smooth solution fields for both velocity and pressure are obtained (as a result of the contribution of the stabilization terms). Finally, a good agreement between the numerical results and the reference experimental data is obtained.Postprint (published version

    Time integration for diffuse interface models for two-phase flow

    Full text link
    We propose a variant of the θ\theta-scheme for diffuse interface models for two-phase flow, together with three new linearization techniques for the surface tension. These involve either additional stabilizing force terms, or a fully implicit coupling of the Navier-Stokes and Cahn-Hilliard equation. In the common case that the equations for interface and flow are coupled explicitly, we find a time step restriction which is very different to other two-phase flow models and in particular is independent of the grid size. We also show that the proposed stabilization techniques can lift this time step restriction. Even more pronounced is the performance of the proposed fully implicit scheme which is stable for arbitrarily large time steps. We demonstrate in a Taylor flow application that this superior coupling between flow and interface equation can render diffuse interface models even computationally cheaper and faster than sharp interface models

    POD model order reduction with space-adapted snapshots for incompressible flows

    Full text link
    We consider model order reduction based on proper orthogonal decomposition (POD) for unsteady incompressible Navier-Stokes problems, assuming that the snapshots are given by spatially adapted finite element solutions. We propose two approaches of deriving stable POD-Galerkin reduced-order models for this context. In the first approach, the pressure term and the continuity equation are eliminated by imposing a weak incompressibility constraint with respect to a pressure reference space. In the second approach, we derive an inf-sup stable velocity-pressure reduced-order model by enriching the velocity reduced space with supremizers computed on a velocity reference space. For problems with inhomogeneous Dirichlet conditions, we show how suitable lifting functions can be obtained from standard adaptive finite element computations. We provide a numerical comparison of the considered methods for a regularized lid-driven cavity problem
    • …
    corecore