2,554 research outputs found

    Chaotic image encryption using hopfield and hindmarsh–rose neurons implemented on FPGA

    Get PDF
    Chaotic systems implemented by artificial neural networks are good candidates for data encryption. In this manner, this paper introduces the cryptographic application of the Hopfield and the Hindmarsh–Rose neurons. The contribution is focused on finding suitable coefficient values of the neurons to generate robust random binary sequences that can be used in image encryption. This task is performed by evaluating the bifurcation diagrams from which one chooses appropriate coefficient values of the mathematical models that produce high positive Lyapunov exponent and Kaplan–Yorke dimension values, which are computed using TISEAN. The randomness of both the Hopfield and the Hindmarsh–Rose neurons is evaluated from chaotic time series data by performing National Institute of Standard and Technology (NIST) tests. The implementation of both neurons is done using field-programmable gate arrays whose architectures are used to develop an encryption system for RGB images. The success of the encryption system is confirmed by performing correlation, histogram, variance, entropy, and Number of Pixel Change Rate (NPCR) tests

    A Novel Encryption Method for Dorsal Hand Vein Images on a Microcomputer

    Get PDF
    In this paper, a Lorenz-like chaotic system was developed to encrypt the dorsal hand patterns on a microcomputer. First, the dorsal hand vein images were taken from the subjects via an infrared camera. These were subjected to two different processes called contrast enhancement and segmentation of vein regions. Second, the pre- and post-processed images were encrypted with a new encryption algorithm in the microcomputer environment. For the encryption process, random numbers were generated by the chaotic system. These random numbers were subjected to NIST-800-22 test which is the most widely accepted statistical test suite. The speeded up robust feature (SURF) matching algorithm was utilized in the initial condition sensitivity analysis of the encrypted images. The results of the analysis have shown that the proposed encryption algorithm can be used in identification and verification systems. The encrypted images were analyzed with histogram, correlation, entropy, pixel change rate (NPCR), initial condition sensitivity, data loss, and noise attacks which are frequently used for security analyses in the literature. In addition, the images were analyzed after noise attacks by means of peak signal-to-noise ratio (PSNR), mean square error (MSE), and the structural similarity index (SSIM) tests. It has been shown that the dorsal hand vein images can be used in identification systems safely with the help of the proposed method on microcomputers.This work was supported by the Qatar National-LibraryScopu

    Symmetric encryption relying on chaotic henon system for secure hardware-friendly wireless communication of implantable medical systems

    Get PDF
    Healthcare remote devices are recognized as a promising technology for treating health related issues. Among them are the wireless Implantable Medical Devices (IMDs): These electronic devices are manufactured to treat, monitor, support or replace defected vital organs while being implanted in the human body. Thus, they play a critical role in healing and even saving lives. Current IMDs research trends concentrate on their medical reliability. However, deploying wireless technology in such applications without considering security measures may offer adversaries an easy way to compromise them. With the aim to secure these devices, we explore a new scheme that creates symmetric encryption keys to encrypt the wireless communication portion. We will rely on chaotic systems to obtain a synchronized Pseudo-Random key. The latter will be generated separately in the system in such a way that avoids a wireless key exchange, thus protecting patients from the key theft. Once the key is defined, a simple encryption system that we propose in this paper will be used. We analyze the performance of this system from a cryptographic point of view to ensure that it offers a better safety and protection for patients. 2018 by the authors.Acknowledgments: This publication was made possible by NPRP grant #8-408-2-172 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
    • …
    corecore