3,399 research outputs found

    Dysflective cones: Visual function and cone reflectivity in long-term follow-up of acute bilateral foveolitis.

    Get PDF
    PURPOSE:Confocal adaptive optics scanning laser ophthalmoscope (AOSLO) images provide a sensitive measure of cone structure. However, the relationship between structural findings of diminished cone reflectivity and visual function is unclear. We used fundus-referenced testing to evaluate visual function in regions of apparent cone loss identified using confocal AOSLO images. METHODS:A patient diagnosed with acute bilateral foveolitis had spectral-domain optical coherence tomography (SD-OCT) (Spectralis HRA + OCT system [Heidelberg Engineering, Vista, CA, USA]) images indicating focal loss of the inner segment-outer segment junction band with an intact, but hyper-reflective, external limiting membrane. Five years after symptom onset, visual acuity had improved from 20/80 to 20/25, but the retinal appearance remained unchanged compared to 3 months after symptoms began. We performed structural assessments using SD-OCT, directional OCT (non-standard use of a prototype on loan from Carl Zeiss Meditec) and AOSLO (custom-built system). We also administered fundus-referenced functional tests in the region of apparent cone loss, including analysis of preferred retinal locus (PRL), AOSLO acuity, and microperimetry with tracking SLO (TSLO) (prototype system). To determine AOSLO-corrected visual acuity, the scanning laser was modulated with a tumbling E consistent with 20/30 visual acuity. Visual sensitivity was assessed in and around the lesion using TSLO microperimetry. Complete eye examination, including standard measures of best-corrected visual acuity, visual field tests, color fundus photos, and fundus auto-fluorescence were also performed. RESULTS:Despite a lack of visible cone profiles in the foveal lesion, fundus-referenced vision testing demonstrated visual function within the lesion consistent with cone function. The PRL was within the lesion of apparent cone loss at the fovea. AOSLO visual acuity tests were abnormal, but measurable: for trials in which the stimulus remained completely within the lesion, the subject got 48% correct, compared to 78% correct when the stimulus was outside the lesion. TSLO microperimetry revealed reduced, but detectible, sensitivity thresholds within the lesion. CONCLUSIONS AND IMPORTANCE:Fundus-referenced visual testing proved useful to identify functional cones despite apparent photoreceptor loss identified using AOSLO and SD-OCT. While AOSLO and SD-OCT appear to be sensitive for the detection of abnormal or absent photoreceptors, changes in photoreceptors that are identified with these imaging tools do not correlate completely with visual function in every patient. Fundus-referenced vision testing is a useful tool to indicate the presence of cones that may be amenable to recovery or response to experimental therapies despite not being visible on confocal AOSLO or SD-OCT images

    Optical coherence tomography-based consensus definition for lamellar macular hole.

    Get PDF
    BackgroundA consensus on an optical coherence tomography definition of lamellar macular hole (LMH) and similar conditions is needed.MethodsThe panel reviewed relevant peer-reviewed literature to reach an accord on LMH definition and to differentiate LMH from other similar conditions.ResultsThe panel reached a consensus on the definition of three clinical entities: LMH, epiretinal membrane (ERM) foveoschisis and macular pseudohole (MPH). LMH definition is based on three mandatory criteria and three optional anatomical features. The three mandatory criteria are the presence of irregular foveal contour, the presence of a foveal cavity with undermined edges and the apparent loss of foveal tissue. Optional anatomical features include the presence of epiretinal proliferation, the presence of a central foveal bump and the disruption of the ellipsoid zone. ERM foveoschisis definition is based on two mandatory criteria: the presence of ERM and the presence of schisis at the level of Henle's fibre layer. Three optional anatomical features can also be present: the presence of microcystoid spaces in the inner nuclear layer (INL), an increase of retinal thickness and the presence of retinal wrinkling. MPH definition is based on three mandatory criteria and two optional anatomical features. Mandatory criteria include the presence of a foveal sparing ERM, the presence of a steepened foveal profile and an increased central retinal thickness. Optional anatomical features are the presence of microcystoid spaces in the INL and a normal retinal thickness.ConclusionsThe use of the proposed definitions may provide uniform language for clinicians and future research

    State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices

    Get PDF
    Raffaele Nuzzi, Luca Brusasco Department of Surgical Sciences, Eye Clinic, University of Torino, Turin, Italy Background: Robot-assisted surgery has revolutionized many surgical subspecialties, mainly where procedures have to be performed in confined, difficult to visualize spaces. Despite advances in general surgery and neurosurgery, in vivo application of robotics to ocular surgery is still in its infancy, owing to the particular complexities of microsurgery. The use of robotic assistance and feedback guidance on surgical maneuvers could improve the technical performance of expert surgeons during the initial phase of the learning curve. Evidence acquisition: We analyzed the advantages and disadvantages of surgical robots, as well as the present applications and future outlook of robotics in neurosurgery in brain areas related to vision and ophthalmology. Discussion: Limitations to robotic assistance remain, that need to be overcome before it can be more widely applied in ocular surgery. Conclusion: There is heightened interest in studies documenting computerized systems that filter out hand tremor and optimize speed of movement, control of force, and direction and range of movement. Further research is still needed to validate robot-assisted procedures. Keywords: robotic surgery related to vision, robots, ophthalmological applications of robotics, eye and brain robots, eye robot

    What is the impact of intraoperative microscope-integrated oct in ophthalmic surgery? Relevant applications and outcomes. a systematic review

    Get PDF
    Background: Optical coherence tomography (OCT) has recently been introduced in the operating theatre. The aim of this review is to present the actual role of microscope-integrated optical coherence tomography (MI-OCT) in ophthalmology. Method: A total of 314 studies were identified, following a literature search adhering to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. After full-text evaluation, 81 studies discussing MI-OCT applications in ophthalmology were included. Results: At present, three microscope-integrated optical coherence tomography systems are commercially available. MI-OCT can help anterior and posterior segment surgeons in the decision-making process, providing direct visualization of anatomic planes before and after surgical manoeuvres, assisting in complex cases, and detecting or confirming intraoperative complications. Applications range from corneal transplant to macular surgery, including cataract surgery, glaucoma surgery, paediatric examination, proliferative diabetic retinopathy surgery, and retinal detachment surgery. Conclusion: The use of MI-OCT in ophthalmic surgery is becoming increasingly prevalent and has been applied in almost all procedures. However, there are still limitations to be overcome and the technology involved remains difficult to access and use

    Endoscopic Optical Coherence Tomography: Design and Application

    Get PDF
    This thesis presents an investigation on endoscopic optical coherence tomography (OCT). As a noninvasive imaging modality, OCT emerges as an increasingly important diagnostic tool for many clinical applications. Despite of many of its merits, such as high resolution and depth resolvability, a major limitation is the relatively shallow penetration depth in tissue (about 2∼3 mm). This is mainly due to tissue scattering and absorption. To overcome this limitation, people have been developing many different endoscopic OCT systems. By utilizing a minimally invasive endoscope, the OCT probing beam can be brought to the close vicinity of the tissue of interest and bypass the scattering of intervening tissues so that it can collect the reflected light signal from desired depth and provide a clear image representing the physiological structure of the region, which can not be disclosed by traditional OCT. In this thesis, three endoscope designs have been studied. While they rely on vastly different principles, they all converge to solve this long-standing problem. A hand-held endoscope with manual scanning is first explored. When a user is holding a hand- held endoscope to examine samples, the movement of the device provides a natural scanning. We proposed and implemented an optical tracking system to estimate and record the trajectory of the device. By registering the OCT axial scan with the spatial information obtained from the tracking system, one can use this system to simply ‘paint’ a desired volume and get any arbitrary scanning pattern by manually waving the endoscope over the region of interest. The accuracy of the tracking system was measured to be about 10 microns, which is comparable to the lateral resolution of most OCT system. Targeted phantom sample and biological samples were manually scanned and the reconstructed images verified the method. Next, we investigated a mechanical way to steer the beam in an OCT endoscope, which is termed as Paired-angle-rotation scanning (PARS). This concept was proposed by my colleague and we further developed this technology by enhancing the longevity of the device, reducing the diameter of the probe, and shrinking down the form factor of the hand-piece. Several families of probes have been designed and fabricated with various optical performances. They have been applied to different applications, including the collector channel examination for glaucoma stent implantation, and vitreous remnant detection during live animal vitrectomy. Lastly a novel non-moving scanning method has been devised. This approach is based on the EO effect of a KTN crystal. With Ohmic contact of the electrodes, the KTN crystal can exhibit a special mode of EO effect, termed as space-charge-controlled electro-optic effect, where the carrier electron will be injected into the material via the Ohmic contact. By applying a high voltage across the material, a linear phase profile can be built under this mode, which in turn deflects the light beam passing through. We constructed a relay telescope to adapt the KTN deflector into a bench top OCT scanning system. One of major technical challenges for this system is the strong chromatic dispersion of KTN crystal within the wavelength band of OCT system. We investigated its impact on the acquired OCT images and proposed a new approach to estimate and compensate the actual dispersion. Comparing with traditional methods, the new method is more computational efficient and accurate. Some biological samples were scanned by this KTN based system. The acquired images justified the feasibility of the usage of this system into a endoscopy setting. My research above all aims to provide solutions to implement an OCT endoscope. As technology evolves from manual, to mechanical, and to electrical approaches, different solutions are presented. Since all have their own advantages and disadvantages, one has to determine the actual requirements and select the best fit for a specific application.</p

    Improving the process of laser retinal eye surgery using electro static micro mirrors

    Get PDF
    This thesis describes an improved system for laser eye surgery. The system incorporates hardware based image matching and MEMS micromirrors for feedback control of laser positioning on the eye. Many benefits are described in this thesis, such as nulling out eye movement, tracking laser firing history, enabling precise control of laser firing locations and preventing firing accidents. The aim of this work is to frame this improved laser surgery concept and prove the principle of various components of the system. A featured accomplishment is the modeling and simulation of a prototype microcontroller using VHDL that may be incorporated as part of the improved system

    Penta-Modal Imaging Platform with OCT- Guided Dynamic Focusing for Simultaneous Multimodal Imaging

    Get PDF
    Complex diseases, such as Alzheimer’s disease, are associated with sequences of changes in multiple disease-specific biomarkers. These biomarkers may show dynamic changes at specific stages of disease progression. Thus, testing/monitoring each biomarker may provide insight into specific disease-related processes, which can result in early diagnosis or even development of preventive measures. Obtaining a comprehensive information of biological tissues requires imaging of multiple optical contrasts, which is not typically offered by a single imaging modality. Thus, combining different contrast mechanisms to achieve simultaneous multimodal imaging is desirable. However, this process is highly challenging due to specific optical and hardware requirements for each optical imaging system. The objective of this dissertation is to develop a novel Penta-modal optical imaging system integrating photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT), OCT angiography (OCTA) and confocal fluorescence microscopy (CFM) in one platform providing comprehensive structural, functional, and molecular information of living biological tissues. The system can simultaneously image different biomarkers with a large field-of-view (FOV) and high-speed imaging. The large FOV and the high imaging speed is achieved by combining optical and mechanical scanning mechanisms. To compensate for an uneven surface of biological samples, which result in images with non-uniform resolution and low signal to noise ratio (SNR), we further develop a novel OCT-guided surface contour scanning methodology, a technique for adjusting objective lens focus to follow the contour of the sample surface, to provide a uniform spatial resolution and SNR across the region of interest (ROI). The imaging system was tested by imaging phantoms, ex vivo biological samples, and in vivo. The OCT-guided surface contour scanning methodology was utilized for imaging a leaf of purple queen plant, which resulted in a significant contrast improvement of 41% and 38% across a large imaging area for CFM and PAM, respectively. The nuclei and cells walls were also clearly observed in both images. In an in vivo imaging of the Swiss Webster mouse ear, our multimodal imaging system was able to provide images with uniform resolution in an FOV of 10 mm x 10 mm with an imaging time of around 5 minutes. In addition to measuring the blood flow in the mouse ear, the system also successfully imaged mouse ear blood vessels, sebaceous glands, as well as several tissue structures. We further conducted a comparative study of OCTA for rodent retinal imaging by evaluating the performance of three OCTA algorithms, namely the phase variance (PV), improved speckle contrast (ISC), and optical microangiography (OMAG). It was concluded that the OMAG algorithm provided statistically significant higher mean values of BVD and VPI compared to the ISC algorithm (0.27±0.07 vs. 0.24±0.05 for BVD; 0.09±0.04 and 0.08±0.04 for VPI), while no statistically significant difference was observed for VDI and VCI among the algorithms. Results showed that both the ISC and OMAG algorithms are more robust than PV, and they can reveal similar vasculature features. Lastly, we utilized the proposed imaging system to monitor, for the first time, the invasion process of malaria parasites in the mosquito midgut. The system shows a promising potential to detect parasite motion as well as structural changes inside the mosquito midgut. The multimodal imaging system outlined in this dissertation can be useful in a variety of applications thanks to the specific optical contrast offered by each employed modality, including retinal and brain imaging

    Advances in Vitreoretinal Surgery

    Get PDF
    Vitreoretinal surgery has been radically changed over the past 10 years by the development of new techniques, smaller gauge instrumentation, and improvements in vitrectomy machines. The indications for vitrectomy have expanded dramatically, and inoperable conditions have become amenable to surgical treatment. In addition to improvements in intraocular instruments, various dyes become available and enable better visualization and a more complete removal of vitreous and membranes. In this chapter, we issued latest developments in the surgical field of retina that enable improved surgical outcomes and less complications
    • …
    corecore