4 research outputs found

    Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations

    Get PDF
    In this paper, a reliability aware multi-objective predictive control strategy for wind farm based on machine learning and heuristic optimizations is proposed. A wind farm model with wake interactions and the actuator health informed wind farm reliability model are constructed. The wind farm model is then represented by training a relevance vector machine (RVM), with lower computational cost and higher efficiency. Then, based on the RVM model, a reliability aware multi-objective predictive control approach for the wind farm is readily designed and implemented by using five typical state of the art meta-heuristic evolutionary algorithms including the third evolution step of generalized differential evolution (GDE3), the multi-objective evolutionary algorithm based on decomposition (MOEA/D), the multi-objective particle swarm optimization (MOPSO), the multi-objective grasshopper optimization algorithm (MOGOA), and the non-dominated sorting genetic algorithm III (NSGA-III). The computational experimental results using the FLOw Redirection and Induction in Steady-state (FLORIS) and under different inflow wind speeds and directions demonstrate that the relative accuracy of the RVM model is more than 97%, and that the proposed control algorithm can largely reduce thrust loads (by around 20% on average) and improve the wind farm reliability while maintaining similar level of power production in comparison with a conventional predictive control approach. In addition, the proposed control method allows a trade-off between these objectives and its computational load can be properly reduced

    Multi-objective volleyball premier league algorithm

    Get PDF
    This paper proposes a novel optimization algorithm called the Multi-Objective Volleyball Premier League (MOVPL) algorithm for solving global optimization problems with multiple objective functions. The algorithm is inspired by the teams competing in a volleyball premier league. The strong point of this study lies in extending the multi-objective version of the Volleyball Premier League algorithm (VPL), which is recently used in such scientific researches, with incorporating the well-known approaches including archive set and leader selection strategy to obtain optimal solutions for a given problem with multiple contradicted objectives. To analyze the performance of the algorithm, ten multi-objective benchmark problems with complex objectives are solved and compared with two well-known multiobjective algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Computational experiments highlight that the MOVPL outperforms the two state-of-the-art algorithms on multi-objective benchmark problems. In addition, the MOVPL algorithm has provided promising results on well-known engineering design optimization problems

    Enhanced Harris's Hawk algorithm for continuous multi-objective optimization problems

    Get PDF
    Multi-objective swarm intelligence-based (MOSI-based) metaheuristics were proposed to solve multi-objective optimization problems (MOPs) with conflicting objectives. Harris’s hawk multi-objective optimizer (HHMO) algorithm is a MOSIbased algorithm that was developed based on the reference point approach. The reference point is determined by the decision maker to guide the search process to a particular region in the true Pareto front. However, HHMO algorithm produces a poor approximation to the Pareto front because lack of information sharing in its population update strategy, equal division of convergence parameter and randomly generated initial population. A two-step enhanced non-dominated sorting HHMO (2SENDSHHMO) algorithm has been proposed to solve this problem. The algorithm includes (i) a population update strategy which improves the movement of hawks in the search space, (ii) a parameter adjusting strategy to control the transition between exploration and exploitation, and (iii) a population generating method in producing the initial candidate solutions. The population update strategy calculates a new position of hawks based on the flush-and-ambush technique of Harris’s hawks, and selects the best hawks based on the non-dominated sorting approach. The adjustment strategy enables the parameter to adaptively changed based on the state of the search space. The initial population is produced by generating quasi-random numbers using Rsequence followed by adapting the partial opposition-based learning concept to improve the diversity of the worst half in the population of hawks. The performance of the 2S-ENDSHHMO has been evaluated using 12 MOPs and three engineering MOPs. The obtained results were compared with the results of eight state-of-the-art multi-objective optimization algorithms. The 2S-ENDSHHMO algorithm was able to generate non-dominated solutions with greater convergence and diversity in solving most MOPs and showed a great ability in jumping out of local optima. This indicates the capability of the algorithm in exploring the search space. The 2S-ENDSHHMO algorithm can be used to improve the search process of other MOSI-based algorithms and can be applied to solve MOPs in applications such as structural design and signal processing
    corecore