1,007 research outputs found

    Genetic embedded matching approach to ground states in continuous-spin systems

    Full text link
    Due to an extremely rugged structure of the free energy landscape, the determination of spin-glass ground states is among the hardest known optimization problems, found to be NP-hard in the most general case. Owing to the specific structure of local (free) energy minima, general-purpose optimization strategies perform relatively poorly on these problems, and a number of specially tailored optimization techniques have been developed in particular for the Ising spin glass and similar discrete systems. Here, an efficient optimization heuristic for the much less discussed case of continuous spins is introduced, based on the combination of an embedding of Ising spins into the continuous rotators and an appropriate variant of a genetic algorithm. Statistical techniques for insuring high reliability in finding (numerically) exact ground states are discussed, and the method is benchmarked against the simulated annealing approach.Comment: 17 pages, 12 figures, 1 tabl

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Spatial Interactions of Peers and Performance of File Sharing Systems

    Get PDF
    We propose a new model for peer-to-peer networking which takes the network bottlenecks into account beyond the access. This model allows one to cope with key features of P2P networking like degree or locality constraints or the fact that distant peers often have a smaller rate than nearby peers. We show that the spatial point process describing peers in their steady state then exhibits an interesting repulsion phenomenon. We analyze two asymptotic regimes of the peer-to-peer network: the fluid regime and the hard--core regime. We get closed form expressions for the mean (and in some cases the law) of the peer latency and the download rate obtained by a peer as well as for the spatial density of peers in the steady state of each regime, as well as an accurate approximation that holds for all regimes. The analytical results are based on a mix of mathematical analysis and dimensional analysis and have important design implications. The first of them is the existence of a setting where the equilibrium mean latency is a decreasing function of the load, a phenomenon that we call super-scalability.Comment: No. RR-7713 (2012

    Mathematic Models for Quality of Service Purposes in Ad Hoc Networks

    Get PDF

    The random K-satisfiability problem: from an analytic solution to an efficient algorithm

    Full text link
    We study the problem of satisfiability of randomly chosen clauses, each with K Boolean variables. Using the cavity method at zero temperature, we find the phase diagram for the K=3 case. We show the existence of an intermediate phase in the satisfiable region, where the proliferation of metastable states is at the origin of the slowdown of search algorithms. The fundamental order parameter introduced in the cavity method, which consists of surveys of local magnetic fields in the various possible states of the system, can be computed for one given sample. These surveys can be used to invent new types of algorithms for solving hard combinatorial optimizations problems. One such algorithm is shown here for the 3-sat problem, with very good performances.Comment: 38 pages, 13 figures; corrected typo

    Quadratic Regularization of Unit-Demand Envy-Free Pricing Problems and Application to Electricity Markets

    Full text link
    We consider a profit-maximizing model for pricing contracts as an extension of the unit-demand envy-free pricing problem: customers aim to choose a contract maximizing their utility based on a reservation bill and multiple price coefficients (attributes). A classical approach supposes that the customers have deterministic utilities; then, the response of each customer is highly sensitive to price since it concentrates on the best offer. A second approach is to consider logit model to add a probabilistic behavior in the customers' choices. To circumvent the intrinsic instability of the former and the resolution difficulties of the latter, we introduce a quadratically regularized model of customer's response, which leads to a quadratic program under complementarity constraints (QPCC). This allows to robustify the deterministic model, while keeping a strong geometrical structure. In particular, we show that the customer's response is governed by a polyhedral complex, in which every polyhedral cell determines a set of contracts which is effectively chosen. Moreover, the deterministic model is recovered as a limit case of the regularized one. We exploit these geometrical properties to develop an efficient pivoting heuristic, which we compare with implicit or non-linear methods from bilevel programming. These results are illustrated by an application to the optimal pricing of electricity contracts on the French market.Comment: 37 pages, 9 figures; adding a section on the pricing of electricity contract

    Decision making and problem solving with computer assistance

    Get PDF
    In modern guidance and control systems, the human as manager, supervisor, decision maker, problem solver and trouble shooter, often has to cope with a marginal mental workload. To improve this situation, computers should be used to reduce the operator from mental stress. This should not solely be done by increased automation, but by a reasonable sharing of tasks in a human-computer team, where the computer supports the human intelligence. Recent developments in this area are summarized. It is shown that interactive support of operator by intelligent computer is feasible during information evaluation, decision making and problem solving. The applied artificial intelligence algorithms comprehend pattern recognition and classification, adaptation and machine learning as well as dynamic and heuristic programming. Elementary examples are presented to explain basic principles

    Locating and Protecting Facilities Subject to Random Disruptions and Attacks

    Get PDF
    Recent events such as the 2011 Tohoku earthquake and tsunami in Japan have revealed the vulnerability of networks such as supply chains to disruptive events. In particular, it has become apparent that the failure of a few elements of an infrastructure system can cause a system-wide disruption. Thus, it is important to learn more about which elements of infrastructure systems are most critical and how to protect an infrastructure system from the effects of a disruption. This dissertation seeks to enhance the understanding of how to design and protect networked infrastructure systems from disruptions by developing new mathematical models and solution techniques and using them to help decision-makers by discovering new decision-making insights. Several gaps exist in the body of knowledge concerning how to design and protect networks that are subject to disruptions. First, there is a lack of insights on how to make equitable decisions related to designing networks subject to disruptions. This is important in public-sector decision-making where it is important to generate solutions that are equitable across multiple stakeholders. Second, there is a lack of models that integrate system design and system protection decisions. These models are needed so that we can understand the benefit of integrating design and protection decisions. Finally, most of the literature makes several key assumptions: 1) protection of infrastructure elements is perfect, 2) an element is either fully protected or fully unprotected, and 3) after a disruption facilities are either completely operational or completely failed. While these may be reasonable assumptions in some contexts, there may exist contexts in which these assumptions are limiting. There are several difficulties with filling these gaps in the literature. This dissertation describes the discovery of mathematical formulations needed to fill these gaps as well as the identification of appropriate solution strategies
    corecore