9,555 research outputs found

    Avaliação da evolução do índice de vegetação de teledetecção usando de técnicas de processamento de imagens

    Get PDF
    Vegetation has a substantial role as an indicator of anthropic effects, specifically in cases where urban planning is required. This is especially the case in the management of coastal cities, where vegetation exerts several effects that heighten the quality of life (alleviation of unpleasant weather conditions, mitigation of erosion, aesthetics, among others). For this reason, there is an increased interest in the development of automated tools for studying the temporal and spatial evolution of the vegetation cover in wide urban areas, with an adequate spatial and temporal resolution. We present an automated image processing workflow for computing the variation of vegetation cover using any publicly available satellite imagery (ASTER, SPOT, LANDSAT, MODIS, among others) and a set of image processing algorithms specifically developed. The automatic processing methodology was developed to evaluate the spatial and temporal evolution of vegetation cover, including the Normalized Difference Vegetation Index (NDVI), the vegetation cover percentage and the vegetation variation. A prior urban area digitalization is required. The methodology was applied in Monte Hermoso city, Argentina. The vegetation cover per city block was computed and three transects over the city were outlined to evaluate the changes in NDVI values. This allows the computation of several information products, like NDVI profiles, vegetation variation assessment, and classification of city areas regarding vegetation. The information is available in GIS-readable formats, making it useful as support for urban planning decisions.A vegetação tem um papel importante como indicador de efeitos antrópicos, especificamente nos casos em que o planejamento urbano é necessário. Este é especialmente o caso na gestão de cidades costeiras, onde a vegetação exerce diversos efeitos que elevam a qualidade de vida (alívio de condições climáticas desagradáveis, mitigação da erosão, estética, entre outras). Por essa razão, há um interesse crescente no desenvolvimento de ferramentas automatizadas para o estudo da evolução temporal e espacial da cobertura vegetal em grandes áreas urbanas, com adequada resolução espacial e temporal. Apresentamos um fluxo de trabalho automatizado de processamento de imagens para calcular a variação da cobertura vegetal usando qualquer imagem de satélite publicamente disponível (ASTER, SPOT, LANDSAT, MODIS, entre outros) e um conjunto de algoritmos de processamento de imagem desenvolvidos especificamente. A metodologia de processamento automático foi desenvolvida para avaliar a evolução espacial e temporal da cobertura vegetal, incluindo o Índice de Vegetação da Diferença Normalizada (NDVI), o percentual de cobertura vegetal e a variação da vegetação. Uma digitalização prévia da área urbana foi necessária. A metodologia foi aplicada na cidade de Monte Hermoso, na Argentina. A cobertura vegetal por quarteirão foi computada e três transectos sobre a cidade foram delineados para avaliar as mudanças nos valores de NDVI. Isso permite o cálculo de vários produtos de informação, como perfis de NDVI, avaliação da variação da vegetação e classificação das áreas da cidade em relação à vegetação. A informação está disponível em formatos legíveis pelo GIS, tornando-a útil como suporte para decisões de planejamento urbano.Fil: Revollo Sarmiento, Natalia Veronica. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Revollo Sarmiento, Gisela Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages". Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Instituto de Investigaciones en Ingeniería Eléctrica "Alfredo Desages"; ArgentinaFil: Huamantinco Cisneros, María Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Piccolo, Maria Cintia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Geografía y Turismo; Argentin

    Field Study for Remote Sensing: An instructor's manual

    Get PDF
    The need for and value of field work (surface truthing) in the verification of image identification from high atitude infrared and multispectral space sensor images are discussed in this handbook which presents guidelines for developing instructional and research procedures in remote sensing of the environment

    Functional design for operational earth resources ground data processing

    Get PDF
    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum

    Applications of ISES for vegetation and land use

    Get PDF
    Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    An investigative study of multispectral data compression for remotely-sensed images using vector quantization and difference-mapped shift-coding

    Get PDF
    A study is conducted to investigate the effects and advantages of data compression techniques on multispectral imagery data acquired by NASA's airborne scanners at the Stennis Space Center. The first technique used was vector quantization. The vector is defined in the multispectral imagery context as an array of pixels from the same location from each channel. The error obtained in substituting the reconstructed images for the original set is compared for different compression ratios. Also, the eigenvalues of the covariance matrix obtained from the reconstructed data set are compared with the eigenvalues of the original set. The effects of varying the size of the vector codebook on the quality of the compression and on subsequent classification are also presented. The output data from the Vector Quantization algorithm was further compressed by a lossless technique called Difference-mapped Shift-extended Huffman coding. The overall compression for 7 channels of data acquired by the Calibrated Airborne Multispectral Scanner (CAMS), with an RMS error of 15.8 pixels was 195:1 (0.41 bpp) and with an RMS error of 3.6 pixels was 18:1 (.447 bpp). The algorithms were implemented in software and interfaced with the help of dedicated image processing boards to an 80386 PC compatible computer. Modules were developed for the task of image compression and image analysis. Also, supporting software to perform image processing for visual display and interpretation of the compressed/classified images was developed

    Monitoring global vegetation

    Get PDF
    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    Canopy reflectance modeling in a tropical wooded grassland

    Get PDF
    Geometric/optical canopy reflectance modeling and spatial/spectral pattern recognition are used to study the form and structure of savanna in West Africa. An invertible plant canopy reflectance model is tested for its ability to estimate the amount of woody vegetation cover in areas of sparsely wooded grassland from remotely sensed data. Dry woodlands and wooded grasslands, commonly referred to as savannas, are important ecologically and economically in Africa, and cover approximately forty percent of the continent by some estimates. The Sahelian and Sudanian savanna make up the important and sensitive transition zone between the tropical forests and the arid Saharan region. The depletion of woody cover, used for fodder and fuel in these regions, has become a very severe problem for the people living there. LANDSAT Thematic Mapper (TM) data is used to stratify woodland and wooded grassland into areas of relatively homogeneous canopy cover, and then by applying an invertible forest canopy reflectance model to estimate directly the height and spacing of the trees in the stands. Since height and spacing are proportional to biomass in some cases, a successful application of the segmentation/modeling techniques will allow direct estimation of woody biomass, as well as cover density, over significant areas of these valuable and sensitive ecosystems. Sahelian savanna sites in the Gourma area of Mali being used by the NASA/GIMMS project (Global Inventory Modeling and Monitoring System, at Goddard Space Flight Center), in conjunction with CIPEA/Mali (Centre International pour l'Elevage en Afrique) will be used for testing the canopy model. The model will also be tested in a Sudanian zone crop/woodland area in the Region of Segou, Mali
    corecore