9 research outputs found

    Analyzing training dependencies and posterior fusion in discriminant classification of apnoea patients based on sustained and connected speech

    Get PDF
    We present a novel approach using both sustained vowels and connected speech, to detect obstructive sleep apnea (OSA) cases within a homogeneous group of speakers. The proposed scheme is based on state-of-the-art GMM-based classifiers, and acknowledges specifically the way in which acoustic models are trained on standard databases, as well as the complexity of the resulting models and their adaptation to specific data. Our experimental database contains a suitable number of utterances and sustained speech from healthy (i.e control) and OSA Spanish speakers. Finally, a 25.1% relative reduction in classification error is achieved when fusing continuous and sustained speech classifiers. Index Terms: obstructive sleep apnea (OSA), gaussian mixture models (GMMs), background model (BM), classifier fusion

    Feature Reduction for Product Recommendation in Internet Shopping Malls

    Get PDF
    One of the widely used methods for product recommendation in Internet shopping malls is matching product features against customers’ profiles. In this method, it is very important to choose suitable set of features for recommendation efficiency and performance, which has, however, not been rigorously researched so far. In this paper, we build a data set collected from a virtual Internet shopping experiment and adapt and apply feature reduction techniques from pattern matching and information retrieval fields to the data to analyze recommendation performance. The analysis shows that the application of SVD (Singular Value Decomposition) can be the best among the applied methods for recommendation performance

    Swarm Intelligence In Myoelectric Control: Particle Swarm Based Dimensionality Reduction

    Full text link
    The myoelectric signals (MES) from human muscles have been utilized in many applications such as prosthesis control. The identification of various MES temporal structures is used to control the movement of prosthetic devices by utilizing a pattern recognition approach. Recent advances in this field have shown that there are a number of factors limiting the clinical availability of such systems. Several control strategies have been proposed but deficiencies still exist with most of those strategies especially with the Dimensionality Reduction (DR) part. This paper proposes using Particle Swarm Optimization (PSO) algorithm with the concept of Mutual Information (MI) to produce a novel hybrid feature selection algorithm. The new algorithm, called PSOMIFS, is utilized as a DR tool in myoelectric control problems. The PSOMIFS will be compared with other techniques to prove the effectiveness of the proposed method. Accurate results are acquired using only a small subset of the original feature set producing a classification accuracy of 99% across a problem of ten classes based on tests done on six subjects MES datasets

    Intelligent artificial ants based feature extraction from wavelet packet coefficients for biomedical signal classification

    Full text link
    In this paper, a new feature extraction method utilizing ant colony optimization in the selection of wavelet packet transform (WPT) best basis is presented and adopted in classifying biomedical signals. The new algorithm, termed Intelligent Artificial Ants (IAA), searches the wavelet packet tree for subsets of features that best interact together to produce high classification accuracies. While traversing the WPT tree, the IAA takes into account existing correlation between features thus avoiding information redundancy. The IAA method is a mixture of filter and wrapper approaches in feature subset selection. The pheromone that the ants lay down is updated by means of an estimation of the information contents of a single feature or feature subset. The significance of the subsets selected by the ants is measured using linear discriminant analysis (LDA) classifier. The IAA method is tested on one of the most important biosignal driven applications, which is the Brain Computer Interface (BCI) problem with 56 EEG channels. Practical results indicate the significance of the proposed method achieving a maximum accuracy of 83%. ©2008 IEEE

    A novel swarm based feature selection algorithm in multifunction myoelectric control

    Full text link
    Accurate and computationally efficient myoelectric control strategies have been the focus of a great deal of research in recent years. Although many attempts exist in literature to develop such strategies, deficiencies still exist. One of the major challenges in myoelectric control is finding an optimal feature set that can best discriminate between classes. However, since the myoelectric signal is recorded using multi channels, the feature vector size can become very large. Hence a dimensionality reduction method is needed to identify an informative, yet small size feature set. This paper presents a new feature selection method based on modifying the Particle Swarm Optimization (PSO) algorithm with the inclusion of Mutual Information (MI) measure. The new method, called BPSOMI, is a mixture of filter and wrapper approaches of feature selection. In order to prove its efficiency, the proposed method is tested against other dimensionality reduction techniques proving powerful classification accuracy. © 2009 - IOS Press and the authors. All rights reserved

    Exploring differences between phonetic classes in Sleep Apnoea Syndrome Patients using automatic speech processing techniques

    Get PDF
    This work is part of an on-going collaborative project between the medical and signal processing communities to promote new research efforts on automatic OSA (Obstructive Apnea Syndrome) diagnosis. In this paper, we explore the differences noted in phonetic classes (interphoneme) across groups (control/apnoea) and analyze their utility for OSA detectio

    From 'tree' based Bayesian networks to mutual information classifiers : deriving a singly connected network classifier using an information theory based technique

    Get PDF
    For reasoning under uncertainty the Bayesian network has become the representation of choice. However, except where models are considered 'simple' the task of construction and inference are provably NP-hard. For modelling larger 'real' world problems this computational complexity has been addressed by methods that approximate the model. The Naive Bayes classifier, which has strong assumptions of independence among features, is a common approach, whilst the class of trees is another less extreme example. In this thesis we propose the use of an information theory based technique as a mechanism for inference in Singly Connected Networks. We call this a Mutual Information Measure classifier, as it corresponds to the restricted class of trees built from mutual information. We show that the new approach provides for both an efficient and localised method of classification, with performance accuracies comparable with the less restricted general Bayesian networks. To improve the performance of the classifier, we additionally investigate the possibility of expanding the class Markov blanket by use of a Wrapper approach and further show that the performance can be improved by focusing on the class Markov blanket and that the improvement is not at the expense of increased complexity. Finally, the two methods are applied to the task of diagnosing the 'real' world medical domain, Acute Abdominal Pain. Known to be both a different and challenging domain to classify, the objective was to investigate the optiniality claims, in respect of the Naive Bayes classifier, that some researchers have argued, for classifying in this domain. Despite some loss of representation capabilities we show that the Mutual Information Measure classifier can be effectively applied to the domain and also provides a recognisable qualitative structure without violating 'real' world assertions. In respect of its 'selective' variant we further show that the improvement achieves a comparable predictive accuracy to the Naive Bayes classifier and that the Naive Bayes classifier's 'overall' performance is largely due the contribution of the majority group Non-Specific Abdominal Pain, a group of exclusion

    A new mutual information based measure for feature selection

    Full text link
    In this paper, we discuss the problem of feature selection and the importance of using mutual information in evaluating the discrimination ability of feature subsets between class labels. Because of the difficulties associated with estimating the exact value of mutual information, we propose a new evaluation measure that is based on the information gain and takes into consideration the interaction between features. The proposed measure is integrated into a robust feature selection scheme and compared with the well-known mutual information feature selection (MIFS) algorithm using the problems of texture classification, speech segment classification and speaker identification. © 2003-IOS Press. All rights reserved
    corecore