1,852 research outputs found

    Radar cross section studies

    Get PDF
    The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets

    Interferometry and Laser Control with Solid Fabry-Perot Etalons

    Get PDF
    The use and analysis of solid Fabry-Perot etalons for interferometry and laser control are discussed and supported with experimental data. Low angle scattering is found to be an important factor influencing finesse and peak transmission. Thermal tuning sensitivity and wedge-angle control with thermal gradients are analyzed and illustrated. Control of laser oscillations using a solid-state etalon as a laser cavity end mirror is discussed. The use of the solid etalon as an optical cavity coupler is applied to the problem. of sideband energy removal from an internally modulated laser

    Radar Cross Section Studies/Compact Range Research

    Get PDF
    A summary is given of the achievements of NASA Grant NsG-1613 by Ohio State University from May 1, 1987 to April 30, 1988. The major topics covered are as follows: (1) electromagnetic scattering analysis; (2) indoor scattering measurement systems; (3) RCS control; (4) waveform processing techniques; (5) material scattering and design studies; (6) design and evaluation of design studies; and (7) antenna studies. Major progress has been made in each of these areas as verified by the numerous publications produced

    Integrated reflector antenna design and analysis

    Get PDF
    Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter

    Advanced microwave radiometer antenna system study

    Get PDF
    The practicability of a multi-frequency antenna for spaceborne microwave radiometers was considered in detail. The program consisted of a comparative study of various antenna systems, both mechanically and electronically scanned, in relation to specified design goals and desired system performance. The study involved several distinct tasks: definition of candidate antennas that are lightweight and that, at the specified frequencies of 5, 10, 18, 22, and 36 GHz, can provide conical scanning, dual linear polarization, and simultaneous multiple frequency operation; examination of various feed systems and phase-shifting techniques; detailed analysis of several key performance parameters such as beam efficiency, sidelobe level, and antenna beam footprint size; and conception of an antenna/feed system that could meet the design goals. Candidate antennas examined include phased arrays, lenses, and optical reflector systems. Mechanical, electrical, and performance characteristics of the various systems were tabulated for ease of comparison

    A Cassegrain reflector system for compact range applications

    Get PDF
    An integral part of a compact range is the means of providing a uniform plane wave. A Cassegrain reflector system is one alternative for achieving this goal. Theoretically, this system offers better performance than a simple reflector system. The longer pathlengths in the Cassegrain system lead to a more uniform field in the plane of interest. The addition of the subreflector creates several problems, though. System complexity is increased both in terms of construction and performance analysis. The subreflector also leads to aperture blockage and the orientation of the feed now results in spillover illuminating the target areas as well as the rest of the range. Finally, the addition of the subreflector leads to interaction between the two reflectors resulting in undesired field variations in the plane of interest. These difficulties are addressed and through the concept of blending the surfaces, a Cassegrain reflector system is developed that will provide a uniform plane wave that offers superior performance over large target areas for a given size reflector system. Design and analysis is implemented by considering the main reflector and subreflector separately. Then the system may be put together and the final design and system analysis completed

    Low-frequency Antennas, Transparent Ground Planes, and Transponders for Communication Enhancement in Unfavorable Environments

    Full text link
    The communication environment has a major influence on the performance of wireless networks. Unlike antennas, receivers, processors, and other components of a typical wireless system, the designer has almost no control over the communication channel. Therefore, it is imminent that the adverse effects of the communication channel such as path-loss, multi-path, lack of a clear line of sight, and interference are among the most limiting factors in designing and operating wireless networks. Recent investments in infrastructures such as cell-phone towers, communication satellites, routers, and networking devices have been aimed at reducing the aforementioned adverse effects. However, wireless ad hoc networks (WANET) cannot rely on pre-existing infrastructures such as access points or routers. In this thesis, a number of solutions are presented to enhance communication and navigation in harsh environments. 1) At lower frequencies, the defects of the communication channel are less prominent, which has led militaries to use UHF and VHF frequency bands for communication. A number of optically transparent UHF antennas are developed and embedded in the windows of military vehicles to reduce their visual signature. 2) Direction finding at low frequencies using baseline method results in an exorbitantly large array of sensors. However, a vector sensor consisting of three orthogonal two-port loop antennas can be used. A simple and accurate circuit model for the two-port loop antenna is developed for the first time that can be used for direction of arrival estimation over a wide range of frequencies and angles. 3) Using a conventional radio repeater with ad-hoc systems requires a communication protocol and decreases the throughput by a factor of two for every repeater in the chain. A full-duplex repeater, capable of simultaneously transmitting and receiving at the same frequency, is developed for the 2.4 GHz ISM band.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143898/1/manikafa_1.pd

    Analysis and design of linear-to-circular polarising reflector antennas exploiting periodic metallodielectric arrays

    Get PDF
    This thesis presents an efficient way to analyse and design linear-to-circular polarising reflector antennas comprising doubly periodic metallodielectric arrays. These type of structures, used in conjunction with subreflectors, has risen as a promising solution to reduce the number of reflectors in multi-beam antennas in single-feed-per beam architectures while providing circular polarisation for the downlink/uplink. The first part of the thesis is concerned with the analysis of single reflector antennas, focusing on their depolarisation properties. MATLAB® codes are developed to obtain the far-field from the reflector and are successfully compared against the preferred tool in the market for the analysis and design of reflector antennas, i.e.,TICRA’s GRASP. This analysis tool is used in conjunction with a Floquet analysis of periodic structures to obtain the far-field from doubly periodic metallodielectric arrays. An efficient way to extract the fundamental modes from the near-field of the feed is introduced for cases where the the reflector is placed at the near-field of the feed. A design procedure to reduce the cross-polarisation of the polarising reflector far-field is included. This procedure is based on physical insight rather than brute-force optimisation, leading to computational efficiencies. Design examples are shown are compared against the original uniform unit-cell array design. Improvements up to 16 dB in the cross-polarisation levels across a wide bandwidth are achieved. The procedure is validated experimentally. The design procedure is also applied to a multi-beam case where three ideal sources are used to feed the reflector. Compared with the uniform unit-cell array, improvements up to 10 dB are obtained in the cross-polarisation performance for the whole bandwidth and the three feeds at the same time

    A photonic crystal nanocavity laser in an optically very thick slab

    Get PDF
    A photonic crystal (PhC) nanocavity formed in an optically very thick slab can support reasonably high-Q modes for lasing. Experimentally, we demonstrate room-temperature pulsed lasing operation from the PhC dipole mode emitting at 1324 nm, which is fabricated in an InGaAsP slab with thickness (T) of 606 nm. Numerical simulation reveals that, when T > 800 nm, over 90% of the laser output power couples to the PhC slab modes, suggesting a new route towards an efficient in-plane laser for photonic integrated circuits.Comment: 3 pages, 4 figure
    corecore