6,287 research outputs found

    The first version Buffered Large Analog Bandwidth (BLAB1) ASIC for high luminosity collider and extensive radio neutrino detectors

    Full text link
    Future detectors for high luminosity particle identification and ultra high energy neutrino observation would benefit from a digitizer capable of recording sensor elements with high analog bandwidth and large record depth, in a cost-effective, compact and low-power way. A first version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. A prototype has been designed and fabricated with 65k deep sampling at multi-GSa/s operation. We present test results and directions for future evolution of this sampling technique.Comment: 15 pages, 26 figures; revised, accepted for publication in NIM

    Computation using Noise-based Logic: Efficient String Verification over a Slow Communication Channel

    Full text link
    Utilizing the hyperspace of noise-based logic, we show two string verification methods with low communication complexity. One of them is based on continuum noise-based logic. The other one utilizes noise-based logic with random telegraph signals where a mathematical analysis of the error probability is also given. The last operation can also be interpreted as computing universal hash functions with noise-based logic and using them for string comparison. To find out with 10^-25 error probability that two strings with arbitrary length are different (this value is similar to the error probability of an idealistic gate in today's computer) Alice and Bob need to compare only 83 bits of the noise-based hyperspace.Comment: Accepted for publication in European Journal of Physics B (November 10, 2010

    A solid-state digital temperature recorder for space use

    Get PDF
    A solid-state, digital, temperature recorder has been developed for use in space experiments. The recorder is completely self-contained and includes a temperature sensor; all necessary electronics for signal conditioning, processing, storing, control and timing; and a battery power supply. No electrical interfacing with the particular spacecraft on which the unit is used is required. The recorder is small, light, and sturdy, and has no moving parts. It uses only biocompatible materials and has passed vibration and shock spaceflight qualification tests. The unit is capable of storing 2048, -10 to +45 C, 8-bit temperature measurements taken at intervals selectable by factors of 2 from 1.875 to 240 min; data can be retained for at least 6 months. The basic recorder can be simplified to accommodate a variety of applications by adding memory to allow more data to be recorded, by changing the front end to permit measurements other than temperature to be made, and by using different batteries to realize various operating periods. Stored flight data are read out from the recorder by means of a ground read-out unit

    16-bit Digital Adder Design in 250nm and 64-bit Digital Comparator Design in 90nm CMOS Technologies

    Get PDF
    High speed, low power, and area efficient adders and comparators continue to play a key role in hardware implementation of digital signal processing applications. Adders based on Complimentary Pass Transistor Logic (CPL) are power and area efficient, but are slower compared to Square Root Carry Select (SQRT-CS) based adders. This thesis demonstrates a unique custom designed 16-bit adder in 250-nm CMOS technology to obtain fast and power/area efficient features by combining CPL and CS logic. Comparing the results obtained for proposed 16-bit Linear CPL/CS adder with the BEC (Binary Excess-1 Code) based low power SQRT-CS adder, the delay is reduced by approximately one thirds, power is reduced by 19.2%, and the number of transistors is reduced by 23.4%. Also, new tree-based 64-bit static and dynamic digital comparators are presented in this thesis to perform high speed and low power operations. This tree-based architecture combines a new approach of designing dynamic comparator using a low duty cycle clock to reduce the short circuit power consumption in pre-charge (or pre-discharge) mode. This work also introduces a new sizing strategy and load balancing techniques to improve self-pipelining tendency of a tree based design. A resource sharing technique is also integrated in both static and dynamic comparator designs. At 1.2V power supply in CMOS 90nm technology, worst path delay and worst power are 374ps and 822µW, respectively for low cost static design with 1244 (768+476) transistors in total. 768 transistors are used for resource sharing. The proposed full and partially dynamic designs show superior power efficiency compared to recent state of art designs. The worst power consumptions at 5GHz and 25% (50ps) duty cycle clock for the 64-bit full and partially dynamic comparator designs are 5.00mW and 2.78mW, respectively. 769 (320+449) transistors includes 320 transistors for resource sharing, and 1217 (768+449) includes 768 transistors for resource sharing for full and partial dynamic comparators, respectively

    Synchronization trigger control system for flow visualization

    Get PDF
    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described
    • …
    corecore