158 research outputs found

    Variable Time Step Method of DAHLQUIST, LINIGER and NEVANLINNA (DLN) for a Corrected Smagorinsky Model

    Full text link
    Turbulent flows strain resources, both memory and CPU speed. The DLN method has greater accuracy and allows larger time steps, requiring less memory and fewer FLOPS. The DLN method can also be implemented adaptively. The classical Smagorinsky model, as an effective way to approximate a (resolved) mean velocity, has recently been corrected to represent a flow of energy from unresolved fluctuations to the (resolved) mean velocity. In this paper, we apply a family of second-order, G-stable time-stepping methods proposed by Dahlquist, Liniger, and Nevanlinna (the DLN method) to one corrected Smagorinsky model and provide the detailed numerical analysis of the stability and consistency. We prove that the numerical solutions under any arbitrary time step sequences are unconditionally stable in the long term and converge at second order. We also provide error estimate under certain time step condition. Numerical tests are given to confirm the rate of convergence and also to show that the adaptive DLN algorithm helps to control numerical dissipation so that backscatter is visible

    Convergence of second-order in time numerical discretizations for the evolution Navier-Stokes equations

    Get PDF
    We prove the convergence of certain second-order numerical methods to weak solutions of the Navier-Stokes equations satisfying in addition the local energy inequality, and therefore suitable in the sense of Scheffer and Caffarelli-Kohn-Nirenberg. More precisely, we treat the space-periodic case in three space-dimensions and we consider a full discretization in which the the classical Crank-Nicolson method (heta heta-method with heta=1/2 heta=1/2) is used to discretize the time variable, while in the space variables we consider finite elements. The convective term is discretized in several implicit, semi-implicit, and explicit ways. In particular, we focus on proving (possibly conditional) convergence of the discrete solutions towards weak solutions (satisfying a precise local energy balance), without extra regularity assumptions on the limit problem. We do not prove orders of convergence, but our analysis identifies some numerical schemes providing also alternate proofs of existence of ``physically relevant'' solutions in three space dimensions

    Robust stabilised finite element solvers for generalised Newtonian fluid flows

    Get PDF
    Various materials and solid-fluid mixtures of engineering and biomedical interest can be modelled as generalised Newtonian fluids, as their apparent viscosity depends locally on the flow field. Despite the particular features of such models, it is common practice to combine them with numerical techniques originally conceived for Newtonian fluids, which can bring several issues such as spurious pressure boundary layers, unsuitable natural boundary conditions and coupling terms spoiling the efficiency of nonlinear solvers and preconditioners. In this work, we present a finite element framework dealing with such issues while maintaining low computational cost and simple implementation. The building blocks of our algorithm are (i) an equal-order stabilisation method preserving consistency even for lowest-order discretisations, (ii) robust extrapolation of velocities in the time-dependent case to decouple the rheological law from the overall system, (iii) adaptive time step selection and (iv) a fast physics-based preconditioned Krylov subspace solver, to tackle the relevant range of discretisation parameters including highly varying viscosity. Selected numerical experiments are provided demonstrating the potential of our approach in terms of robustness, accuracy and efficiency for problems of practical interest

    Approximating fast, viscous fluid flow in complicated domains

    Get PDF
    Typical industrial and biological flows often occur in complicated domains that are either infeasible or impossible to resolve. Alternatives to solving the Navier-Stokes equations (NSE) for the fluid velocity in the pores of these problems must be considered. We propose and analyze a finite element discretization of the Brinkman equation for modeling non-Darcian fluid flow by allowing the Brinkman viscosity tends to infinity and permeability K tends to 0 in solid obstacles, and K tends to infinity in fluid domain. In this context, the Brinkman parameters are generally highly discontinuous. Furthermore, we consider inhomogeneous Dirichlet boundary conditions and non-solenoidal velocity (to model sources/sinks). Coupling between these two conditions makes even existence of solutions subtle. We establish conditions for the well-posedness of the continuous and discrete problem. We also establish convergence as Brinkman viscosity tends to infinity and K tends to 0 in solid obstacles, as K tends to infinity in fluid region, and as the mesh width vanishes. We prove similar results for time-dependent Brinkman equations for backward-Euler (BE) time-stepping. We provide numerical examples confirming theory including convergence of velocity, pressure, and drag/lift.We also investigate the stability and convergence of the fully-implicit, linearly extrapolated Crank-Nicolson (CNLE) time-stepping for finite element spatial discretization of the Navier-Stokes equations. Although presented in 1976 by Baker and applied and analyzed in various contexts since then, all known convergence estimates of CNLE require a time-step restriction. We show herein that no such restriction is required. Moreover, we propose a new linear extrapolation of the convecting velocity for CNLE so that the approximating velocities converge without without time-step restriction in l^{infty}(H^1) along with the discrete time derivative of the velocity in l^2(L^2). The new extrapolation ensures energetic stability of CNLE in the case of inhomogeneous boundary data. Such a result is unknown for conventional CNLE (usual techniques fail!). Numerical illustrations are provided showing that our new extrapolation clearly improves upon stability and accuracy from conventional CNLE

    High-order hybridizable discontinuous Galerkin method for viscous compressible flows

    Get PDF
    Computational Fluid Dynamics (CFD) is an essential tool for engineering design and analysis, especially in applications like aerospace, automotive and energy industries. Nowadays most commercial codes are based on Finite Volume (FV) methods, which are second order accurate, and simulation of viscous compressible flow around complex geometries is still very expensive due to large number of low-order elements required. One the other hand, some sophisticated physical phenomena, like aeroacoustics, vortex dominated flows and turbulence, need very high resolution methods to obtain accurate results. High-order methods with their low spatial discretization errors, are a possible remedy for shortcomings of the current CFD solvers. Discontinuous Galerkin (DG) methods have emerged as a successful approach for non-linear hyperbolic problems and are widely regarded very promising for next generation CFD solvers. Their efficiency for high-order discretization makes them suitable for advanced physical models like DES and LES, while their stability in convection dominated regimes is also a merit of them. The compactness of DG methods, facilitate the parallelization and their element-by-element discontinuous nature is also helpful for adaptivity. This PhD thesis focuses on the development of an efficient and robust high-order Hybridizable Discontinuous Galerkin (HDG) Finite Element Method (FEM) for compressible viscous flow computations. HDG method is a new class of DG family which enjoys from merits of DG but has significantly less globally coupled unknowns compared to other DG methods. Its features makes HDG a possible candidate to be investigated as next generation high-order tools for CFD applications. The first part of this thesis recalls the basics of high-order HDG method. It is presented for the two-dimensional linear convection-diffusion equation, and its accuracy and features are investigated. Then, the method is used to solve compressible viscous flow problems modelled by non-linear compressible Navier-Stokes equations; and finally a new linearized HDG formulation is proposed and implemented for that problem, all using high-order approximations. The accuracy and efficiency of high-order HDG method to tackle viscous compressible flow problems is investigated, and both steady and unsteady solvers are developed for this purpose. The second part is the core of this thesis, proposing a novel shock-capturing method for HDG solution of viscous compressible flow problems, in the presence of shock waves. The main idea is to utilize the stabilization of numerical fluxes, via a discontinuous space of approximation inside the elements, to diminish or remove the oscillations in the vicinity of discontinuity. This discontinuous nodal basis functions, leads to a modified weak form of the HDG local problem in the stabilized elements. First, the method is applied to convection-diffusion problems with Bassi-Rebay and LDG fluxes inside the elements, and then, the strategy is extended to the compressible Navier-Stokes equations using LDG and Lax-Friedrichs fluxes. Various numerical examples, for both convection-diffusion and compressible Navier-Stokes equations, demonstrate the ability of the proposed method, to capture shocks in the solution, and its excellent performance in eliminating oscillations is the vicinity of shocks to obtain a spurious-free high-order solution.Dinámica de Fluidos Computacional (CFD) es una herramienta esencial para el diseño y análisis en ingeniería, especialmente en aplicaciones de ingeniería aeroespacial, automoción o energía, entre otros. Hoy en día, la mayoría de los códigos comerciales se basan en el método de Volúmenes Finitos (FV), con precisión de segundo orden. Sin embargo, la simulación del flujo compresible y viscoso alrededor de geometrías complejas mediante estos métodos es todavía muy cara, debido al gran número de elementos de orden bajo requeridos. Algunos fenómenos físicos sofisticados, por ejemplo en aeroacústica, presentan vórtices y turbulencias, y necesitan métodos de muy alta resolución para obtener resultados precisos. Los métodos de alto orden, con bajos errores de discretización espacial, pueden superar las deficiencias de los actuales códigos de CFD. Los métodos Galerkin discontinuos (DG) han surgido como un enfoque exitoso para problemas hiperbólicos no lineales, y son ampliamente considerados muy prometedores para la próxima generación de códigos de CFD. Su eficiencia de alto orden los hace adecuados para modelos físicos avanzados como DES (Direct Numerial Simulation) y LES (Large Eddy Simulation), mientras que su estabilidad en problemas de convención dominante es también un mérito de ellos. La compacidad de los métodos DG facilita la paralelización, y su naturaleza discontinua es también útil para la adaptabilidad. Esta tesis doctoral se centra en el desarrollo de un método de alto orden, eficiente y robusto, basado en el método de elementos finitos Hybridizable Discontinuous Galerkin (HDG), para cálculos de flujo viscoso y compresible. HDG es un método novedoso, con los méritos de los métodos DG, pero con significativamente menos grados de libertad a nivel global en comparación con otros métodos discontinuos. Sus características hacen de HDG un candidato prometedor a ser investigado como una herramienta de alto orden de próxima generación para aplicaciones de CFD. La primera parte de esta tesis, recuerda los fundamentos del método HDG. Se presenta la aplicación del método para la ecuación de convección-difusión lineal en dos dimensiones, y se investiga su precisión y sus características. Posteriormente, el método se utiliza para resolver problemas de flujo viscoso compresible modelados por las ecuaciones de Navier-Stokes compresibles no lineales. Por último, se propone una nueva formulación HDG linealizada de alto orden y se implementa para este tipo de problemas. También se estudia su precisión y su eficiencia para problemas estacionarios y transitorios. La segunda parte es el núcleo de esta tesis. Se propone un nuevo método de captura de choque para la solución HDG de problemas de compresibles y viscosos, en presencia de choques o frentes verticales pronunciados. La idea principal es utilizar la estabilización que proporcionan los flujos numéricos, considerando un espacio discontinuo de aproximación en interior de los elementos, para disminuir o eliminar las oscilaciones en la proximidad de la discontinuidad o el frente. Las funciones de base nodales discontinuas, requieren una forma débil modificada del problema local de HDG en los elementos estabilizados. En primer lugar, el método se aplica a problemas de convección-difusión, con flujos numéricos de Bassi-Rebay y de LDG (Local Discontinuous Galerkin) dentro de los elementos. A continuación, la estrategia se extiende a las ecuaciones de Navier-Stokes compresibles utilizando flujos numéricos de LDG y de Lax-Friedrichs. Finalmente, varios ejemplos numéricos, tanto para convección-difusió, como para las ecuaciones de Navier-Stokes compresibles, demuestran la capacidad del método propuesto para capturar los choques o frentes verticales en la solución. Su excelente rendimiento, elimina o atenúa significativamente las oscilaciones alrededor de los choques, obteniendo una solución estable.Postprint (published version
    corecore