49 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Co-existence of wireless communication systems in ISM bands: An analytical study

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Bluetooth performance in the presence of 802.11b WLAN

    Full text link

    Spectrum control and iterative coding for high capacity multiband OFDM

    Get PDF
    The emergence of Multiband Orthogonal Frequency Division Modulation (MB-OFDM) as an ultra-wideband (UWB) technology injected new optimism in the market through realistic commercial implementation, while keeping promise of high data rates intact. However, it has also brought with it host of issues, some of which are addressed in this thesis. The thesis primarily focuses on the two issues of spectrum control and user capacity for the system currently proposed by the Multiband OFDM Alliance (MBOA). By showing that line spectra are still an issue for new modulation scheme (MB-OFDM), it proposes a mechanism of scrambling the data with an increased length linear feedback shift register (compared to the current proposal), a new set of seeds, and random phase reversion for the removal of line spectra. Following this, the thesis considers a technique for increasing the user capacity of the current MB-OFDM system to meet the needs of future wireless systems, through an adaptive multiuser synchronous coded transmission scheme. This involves real time iterative generation of user codes, which are generated over time and frequency leading to increased capacity. With the assumption of complete channel state information (CSI) at the receiver, an iterative MMSE algorithm is used which involves replacement of each users s signature with its normalized MMSE filter function allowing the overall Total Squared Correlation (TSC) of the system to decrease until the algorithm converges to a fixed set of signature vectors. This allows the system to be overloaded and user\u27s codes to be quasi-orthogonal. Simulation results show that for code of length nine (spread over three frequency bands and three time slots), ten users can be accommodated for a given QoS and with addition of single frequency sub-band which allows the code length to increase from nine to twelve (four frequency sub-bands and three time slots), fourteen users with nearly same QoS can be accommodated in the system. This communication is overlooked by a central controller with necessary functionalities to facilitate the process. The thesis essentially considers the uplink from transmitting devices to this central controller. Furthermore, analysis of this coded transmission in presence of interference is carried to display the robustness of this scheme through its adaptation by incorporating knowledge of existing Narrowband (NB) Interference for computing the codes. This allows operation of sub-band coexisting with NB interference without substantial degradation given reasonable interference energy (SIR=-l0dB and -5dB considered). Finally, the thesis looks at design implementation and convergence issues related to code vector generation whereby, use of Lanczos algorithm is considered for simpler design and faster convergence. The algorithm can be either used to simplify design implementation by providing simplified solution to Weiner Hopf equation (without requiring inverse of correlation matrix) over Krylov subspace or can be used to expedite convergence by updating the signature sequence with eigenvector corresponding to the least eigenvalue of the signature correlation matrix through reduced rank eigen subspace search

    A Smart Electric Wheelchair Using UPnP

    Get PDF
    People with disabilities in general, and wheelchair users in particular, are one of the groups of people that may benefit more from Ambient Intelligent (AmI) Systems, enhancing their autonomy and quality of life. However, current wheelchairs are usually not equipped with devices capable of accessing services in AmI environments. In this paper, we describe how an electric wheelchair is equipped with an UPnP based module that allows the integration in AmI systems.Ministerio de Ciencia y Tecnología TIC2001-1868-C03-0

    A Review on Requirement of Wireless Sensor Network in Healthcare Applications

    Get PDF
    An assortment of uses depend on Wireless AdHoc and Sensor Networks (WASN) which has pulled in individuals from a wide number of regions demonstrating its utility extents from protection to farming, climate guaging to pre-fiasco discovery, geography to mineralogy, catastrophe alleviation frameworks to medicinal care, vehicle following to territory checking, and a considerable measure many. In the field of therapeutic sciences the uses of WASN are new however have left an incredible effect on the psyches of the two analysts and specialists. Medicinal determination and test examination like observing the patients, detecting exceptional and basic indications physically and rationally should be possible utilizing sensor systems for the therapeutic care. The potential restorative utilizations of WASN are 'Constant, nonstop patient observing', 'Home checking for interminable and elderly patients', 'Gathering of long haul databases of clinical information'. Alternate applications can be giving therapeutic supervision to individuals in remote zones and for detecting vast mischances, fires, fear based oppressor assaults and remote crucial sign checking facilitating the activity of specialists. In this paper we have attempted to make an overview of all the conceivable utilizations of WASN in the field of therapeutic Sciences

    Wireless Sensor Technology Selection for I4.0 Manufacturing Systems

    Get PDF
    The term smart manufacturing has surfaced as an industrial revolution in Germany known as Industry 4.0 (I4.0); this revolution aims to help the manufacturers adapt to turbulent market trends. Its main scope is implementing machine communication, both vertically and horizontally across the manufacturing hierarchy through Internet of things (IoT), technologies and servitization concepts. The main objective of this research is to help manufacturers manage the high levels of variety and the extreme turbulence of market trends through developing a selection tool that utilizes Analytic Hierarchy Process (AHP) techniques to recommend a suitable industrial wireless sensor network (IWSN) technology that fits their manufacturing requirements.In this thesis, IWSN technologies and their properties were identified, analyzed and compared to identify their potential suitability for different industrial manufacturing system application areas. The study included the identification and analysis of different industrial system types, their application areas, scenarios and respective communication requirements. The developed tool’s sensitivity is also tested to recommend different IWSN technology options with changing influential factors. Also, a prioritizing protocol is introduced in the case where more than one IWSN technology options are recommended by the AHP tool.A real industrial case study with the collaboration of SPM Automation Inc. is presented, where the industrial systems’ class, communication traffic types, and communication requirements were analyzed to recommend a suitable IWSN technology that fits their requirements and assists their shift towards I4.0 through utilizing AHP techniques. The results of this research will serve as a step forward, in the transformation process of manufacturing towards a more digitalized and better connected cyber-physical systems; thus, enhancing manufacturing attributes such as flexibility, reconfigurability, scalability and easing the shift towards implementing I4.0

    Applications for wireless sensor networks : tracking with binary proximity sensors

    Get PDF
    El interés cada vez mayor por las redes de sensores inalámbricos pueden ser entendido simplemente pensando en lo que esencialmente son: un gran número de pequeños nodos sensores autoalimentados que recogen información o detectan eventos especiales y se comunican de manera inalámbrica, con el objetivo final de entregar sus datos procesados a una estación base. Los nodos sensores están densamente desplegados dentro del área de interés, se pueden desplegar al azar y tienen capacidad de cooperación. Por lo general, estos dispositivos son pequeños y de bajo costo, de modo que pueden ser producidos y desplegados en gran numero aunque sus recursos en términos de energía, memoria, velocidad de cálculo y ancho de banda están enormemente limitados. Detección, tratamiento y comunicación son tres elementos clave cuya combinación en un pequeño dispositivo permite lograr un gran número de aplicaciones. Las redes de sensores proporcionan oportunidades sin fin, pero al mismo tiempo plantean retos formidables, tales como lograr el máximo rendimiento de una energía que es escasa y por lo general un recurso no renovable. Sin embargo, los recientes avances en la integración a gran escala, integrado de hardware de computación, comunicaciones, y en general, la convergencia de la informática y las comunicaciones, están haciendo de esta tecnología emergente una realidad. Del mismo modo, los avances en la nanotecnología están empezando a hacer que todo gire entorno a las redes de pequeños sensores y actuadores distribuidos. Hay diferentes tipos de sensores tales como sensores de presión, acelerómetros, cámaras, sensores térmicos o un simple micrófono. Supervisan las condiciones presentes en diferentes lugares tales como la temperatura, humedad, el movimiento, la luminosidad, presión, composición del suelo, los niveles de ruido, la presencia o ausencia de ciertos tipos de objetos, los niveles de tensión mecánica sobre objetos adheridos y las características momentáneas tales como la velocidad , la dirección y el tamaño de un objeto, etc. Se comprobara el estado de las Redes Inalámbricas de Sensores y se revisaran los protocolos más famosos. Así mismo, se examinara la identificación por radiofrecuencia (RFID) ya que se está convirtiendo en algo actual y su presencia importante. La RFID tiene un papel crucial que desempeñar en el futuro en el mundo de los negocios y los individuos por igual. El impacto mundial que ha tenido la identificación sin cables está ejerciendo fuertes presiones en la tecnología RFID, los servicios de investigación y desarrollo, desarrollo de normas, el cumplimiento de la seguridad y la privacidad y muchos más. Su potencial económico se ha demostrado en algunos países mientras que otros están simplemente en etapas de planificación o en etapas piloto, pero aun tiene que afianzarse o desarrollarse a través de la modernización de los modelos de negocio y aplicaciones para poder tener un mayor impacto en la sociedad. Las posibles aplicaciones de redes de sensores son de interés para la mayoría de campos. La monitorización ambiental, la guerra, la educación infantil, la vigilancia, la micro-cirugía y la agricultura son solo unos pocos ejemplos de los muchísimos campos en los que tienen cabida las redes mencionadas anteriormente. Estados Unidos de América es probablemente el país que más ha investigado en esta área por lo que veremos muchas soluciones propuestas provenientes de ese país. Universidades como Berkeley, UCLA (Universidad de California, Los Ángeles) Harvard y empresas como Intel lideran dichas investigaciones. Pero no solo EE.UU. usa e investiga las redes de sensores inalámbricos. La Universidad de Southampton, por ejemplo, está desarrollando una tecnología para monitorear el comportamiento de los glaciares mediante redes de sensores que contribuyen a la investigación fundamental en glaciología y de las redes de sensores inalámbricos. Así mismo, Coalesenses GmbH (Alemania) y Zurich ETH están trabajando en diversas aplicaciones para redes de sensores inalámbricos en numerosas áreas. Una solución española será la elegida para ser examinada más a fondo por ser innovadora, adaptable y polivalente. Este estudio del sensor se ha centrado principalmente en aplicaciones de tráfico, pero no se puede olvidar la lista de más de 50 aplicaciones diferentes que ha sido publicada por la firma creadora de este sensor específico. En la actualidad hay muchas tecnologías de vigilancia de vehículos, incluidos los sensores de bucle, cámaras de video, sensores de imagen, sensores infrarrojos, radares de microondas, GPS, etc. El rendimiento es aceptable, pero no suficiente, debido a su limitada cobertura y caros costos de implementación y mantenimiento, especialmente este ultimo. Tienen defectos tales como: línea de visión, baja exactitud, dependen mucho del ambiente y del clima, no se puede realizar trabajos de mantenimiento sin interrumpir las mediciones, la noche puede condicionar muchos de ellos, tienen altos costos de instalación y mantenimiento, etc. Por consiguiente, en las aplicaciones reales de circulación, los datos recibidos son insuficientes o malos en términos de tiempo real debido al escaso número de detectores y su costo. Con el aumento de vehículos en las redes viales urbanas las tecnologías de detección de vehículos se enfrentan a nuevas exigencias. Las redes de sensores inalámbricos son actualmente una de las tecnologías más avanzadas y una revolución en la detección de información remota y en las aplicaciones de recogida. Las perspectivas de aplicación en el sistema inteligente de transporte son muy amplias. Con este fin se ha desarrollado un programa de localización de objetivos y recuento utilizando una red de sensores binarios. Esto permite que el sensor necesite mucha menos energía durante la transmisión de información y que los dispositivos sean más independientes con el fin de tener un mejor control de tráfico. La aplicación se centra en la eficacia de la colaboración de los sensores en el seguimiento más que en los protocolos de comunicación utilizados por los nodos sensores. Las operaciones de salida y retorno en las vacaciones son un buen ejemplo de por qué es necesario llevar la cuenta de los coches en las carreteras. Para ello se ha desarrollado una simulación en Matlab con el objetivo localizar objetivos y contarlos con una red de sensores binarios. Dicho programa se podría implementar en el sensor que Libelium, la empresa creadora del sensor que se examinara concienzudamente, ha desarrollado. Esto permitiría que el aparato necesitase mucha menos energía durante la transmisión de información y los dispositivos sean más independientes. Los prometedores resultados obtenidos indican que los sensores de proximidad binarios pueden formar la base de una arquitectura robusta para la vigilancia de áreas amplias y para el seguimiento de objetivos. Cuando el movimiento de dichos objetivos es suficientemente suave, no tiene cambios bruscos de trayectoria, el algoritmo ClusterTrack proporciona un rendimiento excelente en términos de identificación y seguimiento de trayectorias los objetos designados como blancos. Este algoritmo podría, por supuesto, ser utilizado para numerosas aplicaciones y se podría seguir esta línea de trabajo para futuras investigaciones. No es sorprendente que las redes de sensores de binarios de proximidad hayan atraído mucha atención últimamente ya que, a pesar de la información mínima de un sensor de proximidad binario proporciona, las redes de este tipo pueden realizar un seguimiento de todo tipo de objetivos con la precisión suficiente. Abstract The increasing interest in wireless sensor networks can be promptly understood simply by thinking about what they essentially are: a large number of small sensing self-powered nodes which gather information or detect special events and communicate in a wireless fashion, with the end goal of handing their processed data to a base station. The sensor nodes are densely deployed inside the phenomenon, they deploy random and have cooperative capabilities. Usually these devices are small and inexpensive, so that they can be produced and deployed in large numbers, and so their resources in terms of energy, memory, computational speed and bandwidth are severely constrained. Sensing, processing and communication are three key elements whose combination in one tiny device gives rise to a vast number of applications. Sensor networks provide endless opportunities, but at the same time pose formidable challenges, such as the fact that energy is a scarce and usually non-renewable resource. However, recent advances in low power Very Large Scale Integration, embedded computing, communication hardware, and in general, the convergence of computing and communications, are making this emerging technology a reality. Likewise, advances in nanotechnology and Micro Electro-Mechanical Systems are pushing toward networks of tiny distributed sensors and actuators. There are different sensors such as pressure, accelerometer, camera, thermal, and microphone. They monitor conditions at different locations, such as temperature, humidity, vehicular movement, lightning condition, pressure, soil makeup, noise levels, the presence or absence of certain kinds of objects, mechanical stress levels on attached objects, the current characteristics such as speed, direction and size of an object, etc. The state of Wireless Sensor Networks will be checked and the most famous protocols reviewed. As Radio Frequency Identification (RFID) is becoming extremely present and important nowadays, it will be examined as well. RFID has a crucial role to play in business and for individuals alike going forward. The impact of ‘wireless’ identification is exerting strong pressures in RFID technology and services research and development, standards development, security compliance and privacy, and many more. The economic value is proven in some countries while others are just on the verge of planning or in pilot stages, but the wider spread of usage has yet to take hold or unfold through the modernisation of business models and applications. Possible applications of sensor networks are of interest to the most diverse fields. Environmental monitoring, warfare, child education, surveillance, micro-surgery, and agriculture are only a few examples. Some real hardware applications in the United States of America will be checked as it is probably the country that has investigated most in this area. Universities like Berkeley, UCLA (University of California, Los Angeles) Harvard and enterprises such as Intel are leading those investigations. But not just USA has been using and investigating wireless sensor networks. University of Southampton e.g. is to develop technology to monitor glacier behaviour using sensor networks contributing to fundamental research in glaciology and wireless sensor networks. Coalesenses GmbH (Germany) and ETH Zurich are working in applying wireless sensor networks in many different areas too. A Spanish solution will be the one examined more thoroughly for being innovative, adaptable and multipurpose. This study of the sensor has been focused mainly to traffic applications but it cannot be forgotten the more than 50 different application compilation that has been published by this specific sensor’s firm. Currently there are many vehicle surveillance technologies including loop sensors, video cameras, image sensors, infrared sensors, microwave radar, GPS, etc. The performance is acceptable but not sufficient because of their limited coverage and expensive costs of implementation and maintenance, specially the last one. They have defects such as: line-ofsight, low exactness, depending on environment and weather, cannot perform no-stop work whether daytime or night, high costs for installation and maintenance, etc. Consequently, in actual traffic applications the received data is insufficient or bad in terms of real-time owed to detector quantity and cost. With the increase of vehicle in urban road networks, the vehicle detection technologies are confronted with new requirements. Wireless sensor network is the state of the art technology and a revolution in remote information sensing and collection applications. It has broad prospect of application in intelligent transportation system. An application for target tracking and counting using a network of binary sensors has been developed. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices in order to have a better traffic control. The application is focused on the efficacy of collaborative tracking rather than on the communication protocols used by the sensor nodes. Holiday crowds are a good case in which it is necessary to keep count of the cars on the roads. To this end a Matlab simulation has been produced for target tracking and counting using a network of binary sensors that e.g. could be implemented in Libelium’s solution. Libelium is the enterprise that has developed the sensor that will be deeply examined. This would allow the appliance to spend much less energy when transmitting information and to make more independent devices. The promising results obtained indicate that binary proximity sensors can form the basis for a robust architecture for wide area surveillance and tracking. When the target paths are smooth enough ClusterTrack particle filter algorithm gives excellent performance in terms of identifying and tracking different target trajectories. This algorithm could, of course, be used for different applications and that could be done in future researches. It is not surprising that binary proximity sensor networks have attracted a lot of attention lately. Despite the minimal information a binary proximity sensor provides, networks of these sensing modalities can track all kinds of different targets classes accurate enough

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    corecore