223 research outputs found

    Image encryption based on elliptic curve cryptosystem

    Get PDF
    Image encryption based on elliptic curve cryptosystem and reducing its complexity is still being actively researched. Generating matrix for encryption algorithm secret key together with Hilbert matrix will be involved in this study. For a first case we will need not to compute the inverse matrix for the decryption processing cause the matrix that be generated in encryption step was self invertible matrix. While for the second case, computing the inverse matrix will be required. Peak signal to noise ratio (PSNR), and unified average changing intensity (UACI) will be used to assess which case is more efficiency to encryption the grayscale image

    Assessment of encryption and decryption schemes for secure data transmission in healthcare systems

    Get PDF
    Abstract: In the biomedical research community, transmitting a patient medical record via wireless means to an administrative centre or other medical centres is increasingly common. However, due to the open nature of wireless media, the security of such a system is a major concern, so, it is desirable to have a reliable security scheme. Amidst the numerous methods used to secure medical data, encryption schemes are becoming more popular due to their performance and relative simplicity. In this study, the performance of some data encryption and decryption schemes used to secure medical data is evaluated. These schemes are Blowfish, DES, AES, RC4, RSA, ECC, CBE, MTLM and CEC. The performance of these schemes was assessed through their execution time, throughput, average data rate and information entropy. For this performance assessment, some medical data were used for this task. The results showed that the performance of CBE, MTLM and CEC was better. CBE and MTLM offer a secure way to encrypt data with a significant reduction in the execution time. Moreover, if some of these schemes were combined to form a hybrid system, an enhancement in the security of medical data over wireless communication networks is guaranteed

    Asymmetric image encryption scheme based on Massey Omura scheme

    Get PDF
    Asymmetric image encryption schemes have shown high resistance against modern cryptanalysis. Massey Omura scheme is one of the popular asymmetric key cryptosystems based on the hard mathematical problem which is discrete logarithm problem. This system is more secure and efficient since there is no exchange of keys during the protocols of encryption and decryption. Thus, this work tried to use this fact to propose a secure asymmetric image encryption scheme. In this scheme the sender and receiver agree on public parameters, then the scheme begin deal with image using Massey Omura scheme to encrypt it by the sender and then decrypted it by the receiver. The proposed scheme tested using peak signal to noise ratio, and unified average changing intensity to prove that it is fast and has high security

    A novel symmetric image cryptosystem resistant to noise perturbation based on S8 elliptic curve S-boxes and chaotic maps

    Get PDF
    The recent decade has seen a tremendous escalation of multimedia and its applications. These modern applications demand diverse security requirements and innovative security platforms. In this manuscript, we proposed an algorithm for image encryption applications. The core structure of this algorithm relies on confusion and diffusion operations. The confusion is mainly done through the application of the elliptic curve and S8 symmetric group. The proposed work incorporates three distinct chaotic maps. A detailed investigation is presented to analyze the behavior of chaos for secure communication. The chaotic sequences are then accordingly applied to the proposed algorithm. The modular approach followed in the design framework and integration of chaotic maps into the system makes the algorithm viable for a variety of image encryption applications. The resiliency of the algorithm can further be enhanced by increasing the number of rounds and S-boxes deployed. The statistical findings and simulation results imply that the algorithm is resistant to various attacks. Moreover, the algorithm satisfies all major performance and quality metrics. The encryption scheme can also resist channel noise as well as noise-induced by a malicious user. The decryption is successfully done for noisy data with minor distortions. The overall results determine that the proposed algorithm contains good cryptographic properties and low computational complexity makes it viable to low profile applications

    An efficient and secure RSA--like cryptosystem exploiting R\'edei rational functions over conics

    Full text link
    We define an isomorphism between the group of points of a conic and the set of integers modulo a prime equipped with a non-standard product. This product can be efficiently evaluated through the use of R\'edei rational functions. We then exploit the isomorphism to construct a novel RSA-like scheme. We compare our scheme with classic RSA and with RSA-like schemes based on the cubic or conic equation. The decryption operation of the proposed scheme turns to be two times faster than RSA, and involves the lowest number of modular inversions with respect to other RSA-like schemes based on curves. Our solution offers the same security as RSA in a one-to-one communication and more security in broadcast applications.Comment: 18 pages, 1 figur

    Iot Based Alzheimer’s Disease Diagnosis Model for Providing Security Using Light Weight Hybrid Cryptography

    Get PDF
    Security in the Internet of things (IoT) is a broad yet active research area that focuses on securing the sensitive data being circulated in the network. The data involved in the IoT network comes from various organizations, hospitals, etc., that require a higher range of security from attacks and breaches. The common solution for security attacks is using traditional cryptographic algorithms that can protect the content through encryption and decryption operations. The existing solutions are suffering from major drawbacks, including computational complexities, time and space complexities, slower encryption, etc. Therefore, to overcome such drawbacks, this paper introduces an efficient light weight cryptographic mechanism to secure the images of Alzheimer’s disease (AD) being transmitted in the network. The mechanism involves major stages such as edge detection, key generation, encryption, and decryption. In the case of edge detection, the edge maps are detected using the Prewitt edge detection technique. Then the hybrid elliptic curve cryptography (HECC) algorithm is proposed to encrypt and secure the images being transmitted in the network. For encryption, the HECC algorithm combines blowfish with the elliptic curve algorithm to attain a higher range of security. Another significant advantage of the proposed method is selecting the ideal private key, which is achieved using the enhanced seagull optimization (ESO) algorithm. The proposed work has been tested in the Python tool, and the performance is evaluated with the Alzheimer’s dataset, and the outcomes proved its efficacy over the compared methods
    • …
    corecore