79 research outputs found

    Complex Data Imputation by Auto-Encoders and Convolutional Neural Networks—A Case Study on Genome Gap-Filling

    Get PDF
    Missing data imputation has been a hot topic in the past decade, and many state-of-the-art works have been presented to propose novel, interesting solutions that have been applied in a variety of fields. In the past decade, the successful results achieved by deep learning techniques have opened the way to their application for solving difficult problems where human skill is not able to provide a reliable solution. Not surprisingly, some deep learners, mainly exploiting encoder-decoder architectures, have also been designed and applied to the task of missing data imputation. However, most of the proposed imputation techniques have not been designed to tackle \u201ccomplex data\u201d, that is high dimensional data belonging to datasets with huge cardinality and describing complex problems. Precisely, they often need critical parameters to be manually set or exploit complex architecture and/or training phases that make their computational load impracticable. In this paper, after clustering the state-of-the-art imputation techniques into three broad categories, we briefly review the most representative methods and then describe our data imputation proposals, which exploit deep learning techniques specifically designed to handle complex data. Comparative tests on genome sequences show that our deep learning imputers outperform the state-of-the-art KNN-imputation method when filling gaps in human genome sequences

    Confidence-Ranked Reconstruction of Census Microdata from Published Statistics

    Full text link
    A reconstruction attack on a private dataset DD takes as input some publicly accessible information about the dataset and produces a list of candidate elements of DD. We introduce a new class of data reconstruction attacks based on randomized methods for non-convex optimization. We empirically demonstrate that our attacks can not only reconstruct full rows of DD from aggregate query statistics Q(D)∈RmQ(D)\in \mathbb{R}^m, but can do so in a way that reliably ranks reconstructed rows by their odds of appearing in the private data, providing a signature that could be used for prioritizing reconstructed rows for further actions such as identify theft or hate crime. We also design a sequence of baselines for evaluating reconstruction attacks. Our attacks significantly outperform those that are based only on access to a public distribution or population from which the private dataset DD was sampled, demonstrating that they are exploiting information in the aggregate statistics Q(D)Q(D), and not simply the overall structure of the distribution. In other words, the queries Q(D)Q(D) are permitting reconstruction of elements of this dataset, not the distribution from which DD was drawn. These findings are established both on 2010 U.S. decennial Census data and queries and Census-derived American Community Survey datasets. Taken together, our methods and experiments illustrate the risks in releasing numerically precise aggregate statistics of a large dataset, and provide further motivation for the careful application of provably private techniques such as differential privacy

    Instance-Aware Image Completion

    Full text link
    Image completion is a task that aims to fill in the missing region of a masked image with plausible contents. However, existing image completion methods tend to fill in the missing region with the surrounding texture instead of hallucinating a visual instance that is suitable in accordance with the context of the scene. In this work, we propose a novel image completion model, dubbed ImComplete, that hallucinates the missing instance that harmonizes well with - and thus preserves - the original context. ImComplete first adopts a transformer architecture that considers the visible instances and the location of the missing region. Then, ImComplete completes the semantic segmentation masks within the missing region, providing pixel-level semantic and structural guidance. Finally, the image synthesis blocks generate photo-realistic content. We perform a comprehensive evaluation of the results in terms of visual quality (LPIPS and FID) and contextual preservation scores (CLIPscore and object detection accuracy) with COCO-panoptic and Visual Genome datasets. Experimental results show the superiority of ImComplete on various natural images

    Accelerating Finite State Projection through General Purpose Graphics Processing

    Get PDF
    The finite state projection algorithm provides modelers a new way of directly solving the chemical master equation. The algorithm utilizes the matrix exponential function, and so the algorithm’s performance suffers when it is applied to large problems. Other work has been done to reduce the size of the exponentiation through mathematical simplifications, but efficiently exponentiating a large matrix has not been explored. This work explores implementing the finite state projection algorithm on several different high-performance computing platforms as a means of efficiently calculating the matrix exponential function for large systems. This work finds that general purpose graphics processing can accelerate the finite state projection algorithm by several orders of magnitude. Specific biological models and modeling techniques are discussed as a demonstration of the algorithm implemented on a general purpose graphics processor. The results of this work show that general purpose graphics processing will be a key factor in modeling more complex biological systems

    Subsonic sting interference on the aerodynamic characteristics of a family of slanted-base ogive-cylinders

    Get PDF
    Support interference free drag, lift, and pitching moment measurements on a range of slanted base ogive cylinders were made using the NASA Langley 13 inch magnetic suspension and balance system. Typical test Mach numbers were in the range 0.04 to 0.2. Drag results are shown to be in broad agreement with previous tests with this configuration. Measurements were repeated with a dummy sting support installed in the wind tunnel. Significant support interferences were found at all test conditions and are quantified. Further comparison is made between interference free base pressures, obtained using remote telemetry, and sting cavity pressures
    • …
    corecore