14,455 research outputs found

    A new graphical calculus of proofs

    Full text link
    We offer a simple graphical representation for proofs of intuitionistic logic, which is inspired by proof nets and interaction nets (two formalisms originating in linear logic). This graphical calculus of proofs inherits good features from each, but is not constrained by them. By the Curry-Howard isomorphism, the representation applies equally to the lambda calculus, offering an alternative diagrammatic representation of functional computations.Comment: In Proceedings TERMGRAPH 2011, arXiv:1102.226

    Expansion Trees with Cut

    Full text link
    Herbrand's theorem is one of the most fundamental insights in logic. From the syntactic point of view it suggests a compact representation of proofs in classical first- and higher-order logic by recording the information which instances have been chosen for which quantifiers, known in the literature as expansion trees. Such a representation is inherently analytic and hence corresponds to a cut-free sequent calculus proof. Recently several extensions of such proof representations to proofs with cut have been proposed. These extensions are based on graphical formalisms similar to proof nets and are limited to prenex formulas. In this paper we present a new approach that directly extends expansion trees by cuts and covers also non-prenex formulas. We describe a cut-elimination procedure for our expansion trees with cut that is based on the natural reduction steps. We prove that it is weakly normalizing using methods from the epsilon-calculus

    ZH: A Complete Graphical Calculus for Quantum Computations Involving Classical Non-linearity

    Get PDF
    We present a new graphical calculus that is sound and complete for a universal family of quantum circuits, which can be seen as the natural string-diagrammatic extension of the approximately (real-valued) universal family of Hadamard+CCZ circuits. The diagrammatic language is generated by two kinds of nodes: the so-called 'spider' associated with the computational basis, as well as a new arity-N generalisation of the Hadamard gate, which satisfies a variation of the spider fusion law. Unlike previous graphical calculi, this admits compact encodings of non-linear classical functions. For example, the AND gate can be depicted as a diagram of just 2 generators, compared to ~25 in the ZX-calculus. Consequently, N-controlled gates, hypergraph states, Hadamard+Toffoli circuits, and diagonal circuits at arbitrary levels of the Clifford hierarchy also enjoy encodings with low constant overhead. This suggests that this calculus will be significantly more convenient for reasoning about the interplay between classical non-linear behaviour (e.g. in an oracle) and purely quantum operations. After presenting the calculus, we will prove it is sound and complete for universal quantum computation by demonstrating the reduction of any diagram to an easily describable normal form.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    A complete graphical calculus for Spekkens' toy bit theory

    Get PDF
    While quantum theory cannot be described by a local hidden variable model, it is nevertheless possible to construct such models that exhibit features commonly associated with quantum mechanics. These models are also used to explore the question of {\psi}-ontic versus {\psi}-epistemic theories for quantum mechanics. Spekkens' toy theory is one such model. It arises from classical probabilistic mechanics via a limit on the knowledge an observer may have about the state of a system. The toy theory for the simplest possible underlying system closely resembles stabilizer quantum mechanics, a fragment of quantum theory which is efficiently classically simulable but also non-local. Further analysis of the similarities and differences between those two theories can thus yield new insights into what distinguishes quantum theory from classical theories, and {\psi}-ontic from {\psi}-epistemic theories. In this paper, we develop a graphical language for Spekkens' toy theory. Graphical languages offer intuitive and rigorous formalisms for the analysis of quantum mechanics and similar theories. To compare quantum mechanics and a toy model, it is useful to have similar formalisms for both. We show that our language fully describes Spekkens' toy theory and in particular, that it is complete: meaning any equality that can be derived using other formalisms can also be derived entirely graphically. Our language is inspired by a similar graphical language for quantum mechanics called the ZX-calculus. Thus Spekkens' toy bit theory and stabilizer quantum mechanics can be analysed and compared using analogous graphical formalisms.Comment: Major revisions for v2. 22+7 page

    Advanced Proof Viewing in ProofTool

    Full text link
    Sequent calculus is widely used for formalizing proofs. However, due to the proliferation of data, understanding the proofs of even simple mathematical arguments soon becomes impossible. Graphical user interfaces help in this matter, but since they normally utilize Gentzen's original notation, some of the problems persist. In this paper, we introduce a number of criteria for proof visualization which we have found out to be crucial for analyzing proofs. We then evaluate recent developments in tree visualization with regard to these criteria and propose the Sunburst Tree layout as a complement to the traditional tree structure. This layout constructs inferences as concentric circle arcs around the root inference, allowing the user to focus on the proof's structural content. Finally, we describe its integration into ProofTool and explain how it interacts with the Gentzen layout.Comment: In Proceedings UITP 2014, arXiv:1410.785
    • …
    corecore