
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/204509

Please be advised that this information was generated on 2019-07-12 and may be subject to

change.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Radboud Repository

https://core.ac.uk/display/219768637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/204509

Giulio Chiribella, Peter Selinger (Eds.): 15th International

Conference on Quantum Physics and Logic (QPL 2018).

EPTCS 287, 2019, pp. 23–42, doi:10.4204/EPTCS.287.2

c© M. Backens & A. Kissinger

This work is licensed under the

Creative Commons Attribution License.

ZH: A Complete Graphical Calculus for Quantum

Computations Involving Classical Non-linearity

Miriam Backens

Department of Computer Science
University of Oxford

miriam.backens@cs.ox.ac.uk

Aleks Kissinger

Institute for Computing and Information Sciences
Radboud University

aleks@cs.ru.nl

We present a new graphical calculus that is sound and complete for a universal family of quantum

circuits, which can be seen as the natural string-diagrammatic extension of the approximately (real-

valued) universal family of Hadamard+CCZ circuits. The diagrammatic language is generated by

two kinds of nodes: the so-called ‘spider’ associated with the computational basis, as well as a new

arity-N generalisation of the Hadamard gate, which satisfies a variation of the spider fusion law. Un-

like previous graphical calculi, this admits compact encodings of non-linear classical functions. For

example, the AND gate can be depicted as a diagram of just 2 generators, compared to ∼ 25 in the

ZX-calculus. Consequently, N-controlled gates, hypergraph states, Hadamard+Toffoli circuits, and

diagonal circuits at arbitrary levels of the Clifford hierarchy also enjoy encodings with low constant

overhead. This suggests that this calculus will be significantly more convenient for reasoning about

the interplay between classical non-linear behaviour (e.g. in an oracle) and purely quantum opera-

tions. After presenting the calculus, we will prove it is sound and complete for universal quantum

computation by demonstrating the reduction of any diagram to an easily describable normal form.

1 Introduction

Graphical calculi enable reasoning about quantum computation in an intuitive yet rigorous way. Calculi

based on string diagrams are more flexible than circuit-style languages, allowing the description of states

and measurement projections as well as unitary operations in one unified framework. Their rigour is

ensured by the category-theoretical underpinnings [25]. The best-known of these graphical languages

is the ZX-calculus, which was first introduced 10 years ago [6, 7]. It is built around the interactions

of two complementary bases, the computational basis and the Hadamard basis, which are graphically

represented by so-called spiders. A related formalism is the ZW-calculus [14], which is built around the

interactions of generators related to the two different types of three-qubit entangled states: GHZ states

and W states.

Here, we introduce a new graphical language called the ZH-calculus, which roughly follows this

analogy with multipartite entanglement:

ZX-calculus : ZH-calculus :: graph states : hypergraph states

Graph states are the basic resource for the one-way model of measurement-based quantum computa-

tion [22], and have been studied extensively using the ZX-calculus [7, 10, 11, 12]. Hypergraph states

were introduced in [24] as a generalisation of graph states, and have recently gathered some interest

due, for example, to the role they play in quantum search algorithms [23], exponentially-growing Bell

violations [13], and universal measurement-based quantum computation [20].

Like the ZX- and ZW-calculi, the ZH-calculus includes a family of “Z-spiders” associated with

the computational basis. However, its point of departure is the inclusion of “H-boxes”, which are n-

ary generalisations of the Hadamard gate satisfying a variation of the spider fusion law, much like the

http://dx.doi.org/10.4204/EPTCS.287.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

24 The ZH Calculus

one satisfied by W -spiders in the ZW-calculus.1 Whereas Hadamard gates are used to introduce edges

between 2 vertices in a graph state, H-boxes can introduce hyperedges between n vertices in a hypergraph

state. Seen from another perspective, H-boxes are closely related to both n-ary AND gates in classical

logic and to the Hadamard-CCZ family of quantum circuits. As a result, Boolean circuits can be encoded

in the ZH-calculus with low constant overhead. In particular, the linear maps corresponding to classical

AND and NOT gates can be depicted as follows in terms of the ZH calculus:

∧ ∝ ¬ ∝

While the unitary NOT gate has a simple expression in the ZX-calculus, a typical encoding of an

AND gate requires 25 basic generators and non-Clifford phases (cf. [8], §12.1.3.1). Similarly, multiply-

controlled phase gates also have very succinct representations, indicating that the ZH-calculus may be

useful for analysing Hadamard-CCZ circuits (a.k.a. Hadamard-Toffoli circuits [26, 1], cf. forthcom-

ing [5] for connection to ZH), as well as diagonal operators at any level of the Clifford hierarchy [9].

Our main theorem is the ZH-calculus is complete with respect to its standard interpretation as ma-

trices. That is, if two ZH-diagrams describe the same matrices, then they are provably equal using the

rules of the ZH-calculus. Perhaps one of the most appealing features of the calculus is the simplicity of

this completeness proof. The core of the proof (section 3) fits on 4 pages, where only especially intricate

lemmas—which appear in Appendix B—were done within the proof assistant Quantomatic [19]. This is

due to two main factors. The first is the extensive use of !-box notation [18], which gives an elegant way

to reason about diagrams which have arbitrarily-large fan-out-type behaviour. The second is a unique

normal form for the ZH-calculus, which expresses any matrix as a Schur product – i.e. entrywise product

– of elementary matrices with the property that all but one entry of each matrix is 1. This multiplicative

construction contrasts with the additive construction of the normal form in the ZW-calculus [14], which

arises as a sum of elementary matrices with the property that all but one entry of each matrix is 0. For

example the normal form of the diagram corresponding to the matrix
(

a b
c d

)

is effectively constructed as

follows, where the left-hand side represents the approach in the ZH-calculus with ∗ denoting entrywise

multiplication, and the right-hand side represents the approach in the ZW-calculus:
(

a 1

1 1

)

∗
(

1 b

1 1

)

∗
(

1 1

c 1

)

∗
(

1 1

1 d

)

=

(

a b

c d

)

=

(

a 0

0 0

)

+

(

0 b

0 0

)

+

(

0 0

c 0

)

+

(

0 0

0 d

)

.

Unlike the completeness proofs for universal versions of the ZX-calculus [16, 21], which make use of

the ZW-completeness proof via suitable translations between the two respective languages, our proofs

of soundness, completeness, and universality are self-contained and don’t rely on encoding into another

calculus.

The paper is structured as follows. The generators and relations of the ZH-calculus are introduced

in Section 2 and the calculus is proved to be universal and sound. The completeness proof is given in

Section 3. In section 4 we survey two potential applications and comment on future work. Omitted proofs

and a link to the Quantomatic project used to prove Lemmas B.1 and B.3 are given in the appendix.

2 Definition of the ZH-calculus

The ZH-calculus is a graphical language expressing operations as string diagrams. These are diagrams

consisting of dots or boxes, connected by wires. Wires are also allowed to have one or two “dangling”

1Despite satisfying a similar variation of the spider fusion rule, this generalisation of the Hadamard node is different from

that employed in the original version of the Y-calculus [17, Definition 2 of Version 1].

M. Backens & A. Kissinger 25

ends, which are not connected to a dot or box: these represent inputs of the diagram if oriented towards

the bottom, outputs of the diagram if oriented to the top.

2.1 The generators and their interpretation

The diagrams of the ZH-calculus are generated by Z-spiders, which are represented as white dots, and

H-boxes, which are represented as white boxes labelled with a complex number a. These generators are

interpreted as follows, where J·K denotes the map from diagrams to matrices.

u
wwv

. . .

. . .

n

m

}
��~ := |0〉⊗n〈0|⊗m + |1〉⊗n〈1|⊗m

u
wwwv

. . .

a

. . .

n

m

}
���~ := ∑ai1...im j1... jn | j1 . . . jn〉〈i1 . . . im|

The sum in the second equation is over all i1, . . . , im, j1, . . . , jn ∈ {0,1}, i.e. an H-box represents a matrix

all but one of whose entries are equal to 1. A label of −1 is usually left out and the box is then drawn

smaller, e.g. := −1 . Straight and curved wires have the following interpretations:

J | K := |0〉〈0|+ |1〉〈1| J K := |00〉+ |11〉 J K := 〈00|+ 〈11|.

The juxtaposition of two diagrams is interpreted as the tensor product of the corresponding matrices

and the sequential composition of two diagrams is interpreted as the matrix product of the corresponding

matrices:

t
. . .
D1
. . .

. . .
D2
. . .

|
:=

t
. . .
D1
. . .

|
⊗

t
. . .
D2
. . .

|
u
wwwv

D2

. . .

. . .

D1
. . .

}
���~ :=

t
. . .
D2
. . .

|
◦
t

. . .
D1
. . .

|

The statements of the relations of the ZH-calculus will be simplified by introducing two derived

generators, called grey spiders and NOT, respectively.

:=

. . .

. . .

. . .

. . .

n

m

n

m

1
2

(1)

¬ := 1
2

(2)

With these definitions, acts on computational basis states as XOR and ¬ acts as NOT:

r z
= |0〉〈00|+ |0〉〈11|+ |1〉〈01|+ |1〉〈10|

r
¬

z
= |0〉〈1|+ |1〉〈0|.

26 The ZH Calculus

There is an evident encoding of the generators of the ZX-calculus into ZH given by the following

translation:

. . .

α
. . .

n

m

7→
. . .
n

. . .
m

eiα
H

1√
2

7→
. . .

α
. . .

n

m

:=

. . .

m

α

n

. . .

HH

H H

Since it is well-known that the ZX-calculus is universal for representing arbitrary linear maps C2m→C
2n

,

the following is immediate:

Proposition 2.1. Any linear map C
2m → C

2n

can be expressed using the generators of the ZH-calculus.

We will also give a normal form in Section 3 which directly implies universality of the ZH-calculus,

without going via ZX.

2.2 The relations, and soundness

The rules of the ZH-calculus are given in Figure 1. We furthermore add one meta rule, often stated as

“only topology matters”. That is, two diagrams are considered equivalent if one can be deformed into

the other. Furthermore, the Z-spiders and H-boxes are assumed to be symmetric and undirected: i.e. two

inputs or outputs of the same generator can be swapped without changing the interpretation, and an input

can be “bent” around to become an output, or conversely. Graphically:

=
...

... ...

...

...

...

...

...

= =
...

...

=
...

...

a==

...

a

...

a

... ...

...

...

...

...

...

= aa

...... ...

=

Proposition 2.2. The ZH-calculus is sound.

Proof. It is straightforward to check the symmetry properties for each generator and all of the rules in

Figure 1 by concrete calculation. Soundness of the meta rule “only the topology matters” follows by

considering the string diagrams as morphisms in a compact closed category [25].

2.3 !-box notation

Many of the calculations in this paper are greatly simplified by the use of !-box notation [18]. A !-box

(pronounced “bang box”) in a string diagram represents a part of the diagram that is able to fan out

arbitrarily. That is, the contents of a !-box, along with any wires into or out of the !-box, can be copied

n times for any non-negative integer n. For example, the !-box diagram below represents the following

family of (concrete) string diagrams, one for each n:

←→
{

, , , , . . .

}

All of the resulting string diagrams are well-defined because all of our generators can have arbitrary

arities. We can also use !-boxes in diagram equations, as long as each !-box on the LHS has a corre-

sponding !-box on the RHS, and the inputs/outputs in each !-box match. Such a rule represents a family

of equations where each pair of corresponding !-boxes is replicated n times:

1
= ←→

{

1 = ,
1

= ,
1

= , . . .

}

M. Backens & A. Kissinger 27

(ZS1)

. . .

. . .

m

n

. . .

n

m

. . .

= (HS1)

. . .

a

. . .

m

n

. . .

n

m

. . .

a
= 2

(ZS2) == (HS2) = 2

(BA1)

. . .

. . .

m

n

. . .

n

m

. . .

= (BA2)

. . .

. . .

m

n

. . .

n

m

. . .

=

(M)

a b

=
ab

(U)
1

=

(A) a b
=

a+b
2

¬

2 (I)
a a

=
¬

a

(O) =¬2 ¬

Figure 1: The rules of the ZH-calculus. Throughout, m,n are nonnegative integers and a,b are arbitrary

complex numbers. The right-hand sides of both bialgebra rules (BA1) and (BA2) are complete bipartite

graphs on (m + n) vertices, with an additional input or output for each vertex. The horizontal edges

in equation (O) are well-defined because only the topology matters and we do not need to distinguish

between inputs and outputs of generators. n.b. the rules (M), (A), (U), (I), and (O) are pronounced

multiply, average, unit, intro, and ortho, respectively.

28 The ZH Calculus

Note the dashed box on the right-hand side of the first equation denotes an empty diagram.

With this notation, the definition of grey spiders (1) becomes

:= 1
2

(3)

Additionally, the rules (ZS1), (HS1), (BA1), and (BA2) from Figure 1 become

(ZS1) = (HS1)
a

a= 2 (BA1) = (BA2) =

Using the rules in this form makes it straightforward to prove !-box generalisations of the rules (M), (U),

(A), and (I).

Lemma 2.3. The ZH-calculus satisfies the following rules:

(M!)

a b

=
ab

(U!)
1

= (A!)

¬

=
a+b

2

2ba (I!)
a a

=
¬

a

This lemma is proved in Appendix A. At this point, it is worth highlighting the special cases of (M!) and

(U!) where the !-box is expanded 0 times:

ba ab= =1

These rules enable us to multiply scalars at will, and in particular eliminate scalars by multiplying by the

inverse. From hence forth, we will use this fact without further comment during our proofs.

In this paper, we use a mild, but very useful, extension of the usual !-box notation, which allows

!-boxes to be indexed by a the elements of a finite set. For example, indexing over the finite set B2 :=
{00,01,10,11}, we can write expressions such as:

a~b

~b ∈ B
2

:= a00 a01 a10 a11

This extends to equations in the obvious way:

a~b

~b ∈ B2

a~b

~b ∈ B2

=

:=

=

a01a00 a11a10
a01a00 a10 a11

M. Backens & A. Kissinger 29

where we require corresponding !-boxes on the LHS and RHS to be indexed by the same finite set. Note

that inputs and outputs of a copy associated with the index x ∈ X on the LHS are matched with inputs

and outputs of the same copy on the RHS.

We recover the behaviour of normal, un-labelled !-boxes by interpreting a !-box without a label as

being indexed by an arbitrary finite set, e.g.

= ←→ =

x ∈ X

y ∈Y y ∈Y

x ∈ X

(for any finite sets X and Y)

3 Completeness

We show that the ZH-calculus is complete by demonstrating the existence of a unique normal form for

ZH-diagrams. It is first worth noting that, because we can turn inputs into outputs arbitrarily (cf. the

beginning of section 2.2), it suffices to consider diagrams which have only outputs. We call these states.

Concretely, these are interpreted as column vectors (i.e. kets).

For states ψ ,φ , let ψ ∗φ be the Schur product of ψ and φ obtained by plugging the i-th output of ψ

and φ into , for each i:

ψ φ
ψ∗φ
· · ·

:= · · · · · ·

· · ·

It follows from (ZS1) that ∗ is associative and commutative, so we can write k-fold Schur products

ψ1 ∗ψ2 ∗ . . . ∗ψk without ambiguity. For any finite set J with |J| = k, let ∏ j∈J ψ j be the k-fold Schur

product.

Let Bn be the set of all n-bitstrings. For any~b := b1 . . .bn ∈ Bn, define the indexing map ι~b as follows:

ι~b = ~b

. . .

. . .
=

(

¬
)1−b1

. . .
(

¬
)1−bn

. (4)

Then normal forms are given by the following 2n-fold Schur products:

∏
~b∈Bn

(

ι~b ◦Hn(a~b)
)

(5)

where Hn(a~b) is the arity-n H-box (considered as a state) labelled by an arbitrary complex number a~b.

A normal form diagram can be seen as a collection of n spiders, fanning out to 2n H-boxes, each with

a distinct configuration of NOT’s corresponding to the 2n bitstrings in B
n. Diagrammatically, normal

forms are:

a~b

~b

. . .

~b ∈ Bn

. . .

. . .

:=

a0...0

0 . . .0 0 . . .01

a0...01

1 . . .1

a1...1

. . .

. . .

. . .

.

. . .

. . .

. . .

30 The ZH Calculus

Theorem 3.1. Normal forms are unique. In particular:

t

∏
~b∈Bn

(

ι~b ◦Hn(a~b)
)

|
= ∑

~b∈Bn

a~b|~b〉. (6)

Proof. The map ι~b is a permutation that acts on computational basis elements as |~c〉 7→ |~c⊕~b⊕~1〉. In

particular, it sends the basis element |~1〉 to~b. Hence ι~b ◦Hn(a~b) is a vector with a~b in the~b-th component

and 1 everywhere else. The Schur product of all such vectors indeed gives the RHS of (6).

Since equation (6) gives us a means of constructing any vector in C
2n

, Theorem 3.1 can also be seen

as a proof of universality of the ZH calculus, independent of the encoding into ZX we gave in section 2.1.

We now prove 2 lemmas which will assist in manipulating normal forms:

Lemma 3.2. The NOT operator copies through white spiders:

¬
=

¬

Proof. Starting from the left-hand side,

¬
= 1

2
1
2

= =
1
2

=
1
2

=
¬1

2

=1
2

(2) (BA1) (HS2) (3) (BA2) (2)

Lemma 3.3. The ι~b operator copies through white spiders, i.e. for any~b ∈ B
n:

~b

. . .

. . .
.

. . .
~b

. . .
. . .

. . .
~b
. . .

=
. . .

Proof. This follows immediately from Lemma 3.2 via the definition of ι~b (4).

Lemma 3.4. The ZH-calculus enables the computation of the Schur product of two maps of the form

ι~b ◦Hn(x) and ι~b ◦Hn(y) for any~b ∈ B
n and x,y ∈ C:

.
~b

yx

~b
.

. . .

=

. . .

. . .

xy

~b

Proof. Apply Lemma 3.3, followed by (M!).

We will now show that normal form diagrams, when combined in various ways, can also be put

into normal form. Let NF

. . .
denote an arbitrary normal-form diagram. It is straightforward to see

that permuting the outputs of a normal-form diagram merely interchanges the bits in the coefficients a~b.

Hence, normal forms are preserved under permutations of outputs. Furthermore:

M. Backens & A. Kissinger 31

Proposition 3.5. A diagram consisting of a normal form diagram juxtaposed with can be brought into

normal form using the rules of the ZH-calculus:

NF

.
NF ′

=

n n+1

Proof. Starting from the left-hand side, which we expand using the indexed !-box notation,

~b
. . .

(ZS1)

a~b

=

. . .
~b ∈ B

n

. . .

. . .
~b ∈ B

n

a~b

~b

. . .
~b ∈ B

n

=
~b(I!)

a~b

¬
a~b

. . .

~b ∈ B
n

=
3.3

~b
. . .

. . .
~b

a~b a~b

. . .
¬

. . .

.(4)

a~b

(ZS1)
. . .

.
a~b

~b0 ~b1
=

~b ∈ B
n

. . .

The last diagram is a normal form diagram with n+1 outputs, i.e. the desired result.

Proposition 3.6. The Schur product of two normal form diagrams can be brought into normal form using

the rules of the ZH-calculus.

.
NF2NF1

. . .
= . . .

NF ′

Proof. This follows from (ZS1) and Lemma 3.4.

Corollary 3.7. The tensor product of two normal form diagrams can be brought into normal form using

the rules of the ZH-calculus.

Proof. A tensor product can be expressed as

.

NF2NF1

= . . .

NF1

.

NF2

. . .
.

n m
n m

m n

(ZS1)

(ZS2)

The diagram NF1 and the leftmost m copies of can be combined into one normal-form diagram with

(n+m) outputs by successive applications of Proposition 3.5. Similarly, the rightmost n copies of

and NF2 can be combined into one normal-form diagram with (n+m) outputs. The desired result then

follows by Proposition 3.6.

Remark 3.8. Note that a single scalar H-box is a normal form diagram. Corollary 3.7 thus implies that a

diagram consisting of a normal form diagram juxtaposed with a scalar H-box can be brought into normal

form. In the following proofs, we will therefore ignore scalars for simplicity: they can be added back in

and then incorporated to the normal form without problems.

We are now ready to prove the most difficult case, which is contraction. The majority of the work

goes into proving Lemma B.3, which we call the Disconnect Lemma. It uses the (O) rule to disconnect

the 2n-legged -spider arising from a contraction of a normal form into 2n−1 separate cups. It was

proven with the help of the graphical proof assistant Quantomatic. Details and full proof are given in

Appendix B.

32 The ZH Calculus

Proposition 3.9. The diagram resulting from applying to an output of a normal form diagram can be

brought into normal form:

. . .

NF

= . . .

NF ′

Proof. Starting from an arbitrary normal form, with a plugged into the right most output, we have:

. . .

. . .
a~b

~b

. . .

~b ∈ Bn

=

a~b0

~b0

~b ∈ Bn−1

. . .

. . .

. . .

~b1

. . .

a~b1

. . .

. . .

.

. . .

~b ∈ Bn−1

. . .

a~b1
a~b0

~b
=

¬ ~b

~b ∈ Bn−1

.
a~b0

a~b1

~b ~b

. . .

.

¬

=

Then, we can apply Lemma B.3:

= . . .

. . .

¬

. . .

~b

a~b0

~b

a~b1

. . .

~b ∈ Bn−1

. . .

=

¬

. . .

a~b0
a~b1

~b

. . .

~b ∈ Bn−1

. . .

. . .

a~b0
+a~b1

2

~b ∈ Bn−1

. . .

. . .
=

~b

~b ∈ Bn−1

.
a~b0

a~b1

~b ~b

. . .

.

¬

=· · · (ZS1) 3.3 (A!)

The final diagram is in normal form, which completes the proof.

Our strategy will now be to show that any diagram can be decomposed into H-boxes, combined via

the operations of extension, convolution, and contraction. This will give us a completeness proof, thanks

to the following proposition.

Lemma 3.10. Any H-box can be brought into normal form using the rules of the ZH-calculus.

Proof. The matrix of an H-box Hn(a) has 1’s in every entry but the very last one. Hence, to bring

an H-box into normal form, we just need to introduce ‘dummy’ 1’s for every other matrix entry. We

demonstrate the principle using a binary H-box but the argument is analogous for any other arity:

a =
a a

=

a

=
¬ ¬ ¬ ¬ ¬¬

=
¬ ¬

a1 1 1

(ZS2) (ZS1) 3.2 (U!)

To simplify the decomposition of diagrams into H-boxes, we prove a few corollaries.

Corollary 3.11. The diagram of a single cup can be brought into normal form:

=
NF

M. Backens & A. Kissinger 33

Proof. We can rewrite the cup as a pair of H-boxes using (HS2). This can then be written in terms of

extension, convolution, and contraction as follows:

= 1
2

= 1
2

(HS2)

Hence, we can apply Lemma 3.10 and Propositions 3.5, 3.6, and 3.9 to get a normal form.

Corollary 3.12. The diagram resulting from applying to a pair of outputs of a normal form diagram

can be brought into normal form.
. . .

NF

= . . .

NF ′
(7)

Proof. Applying a to a pair of outputs has the same result as convolving with a cup, then contracting

one of the outputs. That is, we can decompose (7) as follows:

= . . .

NF
. . .

. . .

. . .

NF

then apply Corollary 3.11 and Propositions 3.5, 3.6, and 3.9.

Corollary 3.13. Applying a cap to a normal form diagram results in another normal form diagram:

. . .

NF

= . . .

NF ′

Proof. Since the cap can be decomposed as ◦ , the result follows immediately from Corollary 3.12

and Proposition 3.9.

Thanks to Corollaries 3.7 and 3.13, we are able to turn any diagram of normal forms into a normal

form. It only remains to show that the generators of the ZH-calculus can themselves be made into normal

forms. We have already shown the result for H-boxes, so we only need the following.

Lemma 3.14. Any Z-spider can be brought into normal form using the rules of the ZH-calculus.

Proof. We can turn into an H-box using (U) and then bring it into normal form via Lemma 3.10. By

(ZS1), = , which can be brought into normal form using (U), Lemma 3.10, and Corollaries 3.7 and

3.13. This covers the cases of Z-spiders with 0 or 1 incident wires.

We can decompose any Z-spider with n ≥ 2 incident wires as a tensor product of (n−1) cups, with

each cup -ed with its neighbours:

= · · ·· · · (ZS1)

If n = 2, no are needed and the equality is by (ZS2) instead of (ZS1). In either case, the diagram can

be brought into normal form by applying Corollaries 3.7, 3.11, and 3.12.

Theorem 3.15. The ZH-calculus is complete: for any ZH diagrams D1 and D2, if JD1K = JD2K then D1

is convertible into D2 using the rules of the ZH-calculus.

34 The ZH Calculus

Proof. By Theorem 3.1, it suffices to show that any ZH diagram can be brought into normal form.

Lemmas 3.10 and 3.14 suffice to turn any generator into normal form. Corollary 3.7 lets us turn any tensor

product of generators into a normal form and Corollary 3.13 lets us normalise any arbitrary wiring.

4 Applications and future work

We will now briefly survey some of the potential applications for the ZH-calculus. We begin with the

simple observation that n-ary H-boxes let us generalise the usual string diagrammatic description the

controlled-Z gate (as in e.g. the ZX calculus) to an n-controlled-Z gate:

∧Z = ∧nZ = · · ·

Using the decomposition of controlled-Z gates above, a representation of graph states as ZX-diagrams

was given in [10], which in turn gave a fully diagrammatic derivation of the local complementation

law for graph states [10] and a new procedure for extracting circuits from certain computations in the

one-way model [11]. Passing from ∧Z to ∧nZ gives an analogous representation for hypergraph states:

:= :=

Indeed this was the original motivation for considering H-boxes of arbitrary arity. Using a method

analogous to proofs in Appendix A, we can routinely introduce !-boxes to known rules involving graph

states (e.g. local complementation and feed-forward rules) to generalise them to hypergraph states. For

example, introducing !-boxes to the local complementation rule enables complementing hyperedges of

arbitrary arity overlapping on a single vertex:

i

i

i

i

i

=

i

i

i

i

i

=

This potentially gives a powerful new language and set of techniques for working with hypergraph states.

Exploring these techniques, and the relationship to known rules for manipulating hypergraph states is a

topic of future work.

In another direction, if we consider diagrams whose H-boxes are labelled by a fixed root of unity

ω := exp(iπ/2m), we obtain an encoding for unitary gates described by arbitrary phase polynomials [2],

i.e. gates of the form Uφ |~b〉= ωφ(~b)|~b〉 for some polynomial φ(~b) over n boolean variables. These have

a simple graphical representation, where Z-spiders represent variables and ω-labelled H-boxes represent

M. Backens & A. Kissinger 35

terms in the phase polynomial. For example:

ω=

ω

ω

Uφ

b1

b2

b3

b4

where φ(~b) = b1b2 +b1b2b3 +b3b4

One can then straightforwardly show basic properties of these unitaries (e.g. composition, commutation,

and replacement of non-linear AND terms by linear XOR terms) using the rules of the ZH-calculus.

The phase polynomial formalism for m = 2 has been used extensively in studying optimisation problems

for Clifford+T circuits [3, 2, 4, 15], and it was recently shown that all diagonal gates in the Clifford

hierarchy are of the form Uφ , where the level of the hierarchy depends on m and the degree of φ [9].

Gaining access to this phase polynomial structure diagrammatically could therefore yield new methods

for quantum circuit optimisation and/or fault tolerant computation through automated diagram rewriting

in tools like Quantomatic.

Acknowledgements. The authors would like to thank Simon Perdrix and Mariami Gachechiladze for the

fruitful conversations in which the foundations of the ZH-calculus were developed. We are also grateful

to Niel de Beaudrap for interesting discussions about applications of the ZH-calculus and to Sal Wolffs

for careful reading of our proofs (and pointing out a major omission in Corollary 3.12).

The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement

no. 334828 (Backens) and 320571 (Kissinger). The paper reflects only the authors’ views and not the

views of the ERC or the European Commission. The European Union is not liable for any use that may

be made of the information contained therein.

References

[1] Dorit Aharonov (2003): A simple proof that Toffoli and Hadamard are quantum universal. arXiv:quant-ph/

0301040.

[2] M. Amy, D. Maslov & M. Mosca (2014): Polynomial-Time T-Depth Optimization of Clifford+T Circuits

Via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

33(10), pp. 1476–1489, doi:10.1109/TCAD.2014.2341953.

[3] M. Amy, D. Maslov, M. Mosca & M. Roetteler (2013): A Meet-in-the-Middle Algorithm for Fast Synthesis

of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 32(6), pp. 818–830, doi:10.1109/TCAD.2013.2244643.

[4] M. Amy & M. Mosca (2016): T-count optimization and Reed-Muller codes. arXiv:1601.07363.

[5] Niel de Beaudrap: A toy theory of tensor networks for exact quantum algorithms. To appear.

[6] B. Coecke & R. Duncan (2008): Interacting quantum observables. In: Proceedings of the 37th Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,

doi:10.1007/978-3-540-70583-3_25.

[7] B. Coecke & R. Duncan (2011): Interacting quantum observables: categorical algebra and diagrammat-

ics. New Journal of Physics 13, p. 043016, doi:10.1088/1367-2630/13/4/043016. arXiv:quant-ph/

09064725.

http://arxiv.org/abs/quant-ph/0301040
http://arxiv.org/abs/quant-ph/0301040
http://dx.doi.org/10.1109/TCAD.2014.2341953
http://dx.doi.org/10.1109/TCAD.2013.2244643
http://arxiv.org/abs/1601.07363
http://dx.doi.org/10.1007/978-3-540-70583-3_25
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://arxiv.org/abs/quant-ph/09064725
http://arxiv.org/abs/quant-ph/09064725

36 The ZH Calculus

[8] B. Coecke & A. Kissinger (2017): Picturing Quantum Processes: A First Course in Quantum Theory and

Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.

[9] Shawn X. Cui, Daniel Gottesman & Anirudh Krishna (2017): Diagonal gates in the Clifford hierarchy. Phys.

Rev. A 95, p. 012329, doi:10.1103/PhysRevA.95.012329.

[10] R. Duncan & S. Perdrix (2009): Graph states and the necessity of Euler decomposition. Mathematical Theory

and Computational Practice, pp. 167–177, doi:10.1007/978-3-642-03073-4_18.

[11] R. Duncan & S. Perdrix (2010): Rewriting measurement-based quantum computations with generalised

flow. In: Proceedings of ICALP, Lecture Notes in Computer Science, Springer, pp. 285–296, doi:10.1007/

978-3-642-14162-1_24.

[12] Ross Duncan (2013): A graphical approach to measurement-based quantum computing. In Chris Heunen,

Mehrnoosh Sadrzadeh & Edward Grefenstette, editors: Quantum Physics and Linguistics, OUP, doi:10.

1093/acprof:oso/9780199646296.003.0003. arXiv:1203.6242 [quant-ph].

[13] Mariami Gachechiladze, Costantino Budroni & Otfried Gühne (2016): Extreme violation of local realism in

quantum hypergraph states. Physical Review Letters 116(7), p. 070401, doi:10.1103/PhysRevLett.116.

070401.

[14] Amar Hadzihasanovic: The algebra of entanglement and the geometry of composition. PhD thesis, University

of Oxford. arXiv:1709.08086.

[15] Luke E Heyfron & Earl T Campbell (2018): An efficient quantum compiler that reduces T count. Quantum

Science and Technology 4(1), p. 015004, doi:10.1088/2058-9565/aad604.

[16] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A Complete Axiomatisation of the ZX-Calculus

for Clifford+T Quantum Mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 559–568, doi:10.1145/3209108.3209131.

[17] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): Y-Calculus: A Language for Real Matrices

Derived from the ZX-Calculus. Electronic Proceedings in Theoretical Computer Science 266, pp. 23–57,

doi:10.4204/EPTCS.266.2. Version 1 at arXiv:1702.00934v1.

[18] Aleks Kissinger, Alex Merry & Matvey Soloviev (2014): Pattern graph rewrite systems. Electronic Proceed-

ings in Theoretical Computer Science 143, pp. 54–66, doi:10.4204/EPTCS.143.5.

[19] Aleks Kissinger & Vladimir Zamdzhiev (2015): Quantomatic: A proof assistant for diagrammatic rea-

soning. In: International Conference on Automated Deduction, Springer, pp. 326–336, doi:10.1007/

978-3-319-21401-6_22.

[20] Jacob Miller & Akimasa Miyake (2016): Hierarchy of universal entanglement in 2D measurement-based

quantum computation. Npj Quantum Information 12(16036), doi:10.1038/npjqi.2016.36.

[21] Kang Feng Ng & Quanlong Wang (2017): A universal completion of the ZX-calculus. arXiv:1706.09877.

[22] R. Raussendorf, D.E. Browne & H.J. Briegel (2003): Measurement-based quantum computation on cluster

states. Physical Review A 68(2), p. 22312, doi:10.1103/PhysRevA.68.022312.

[23] M Rossi, D Bruß & C Macchiavello (2014): Hypergraph states in Grover’s quantum search algorithm.

Physica Scripta 2014(T160), p. 014036, doi:10.1088/0031-8949/2014/T160/014036.

[24] Matteo Rossi, M Huber, D Bruß & C Macchiavello (2013): Quantum hypergraph states. New Journal of

Physics 15(11), p. 113022, doi:10.1088/1367-2630/15/11/113022.

[25] P. Selinger (2007): Dagger compact closed categories and completely positive maps. Electronic Notes in

Theoretical Computer Science 170, pp. 139–163, doi:10.1016/j.entcs.2006.12.018.

[26] Yaoyun Shi (2003): Both Toffoli and controlled-NOT Need Little Help to Do Universal Quantum Computing.

Quantum Info. Comput. 3(1), pp. 84–92.

http://dx.doi.org/10.1017/9781316219317
http://dx.doi.org/10.1103/PhysRevA.95.012329
http://dx.doi.org/10.1007/978-3-642-03073-4_18
http://dx.doi.org/10.1007/978-3-642-14162-1_24
http://dx.doi.org/10.1007/978-3-642-14162-1_24
http://dx.doi.org/10.1093/acprof:oso/9780199646296.003.0003
http://dx.doi.org/10.1093/acprof:oso/9780199646296.003.0003
http://arxiv.org/abs/1203.6242
http://dx.doi.org/10.1103/PhysRevLett.116.070401
http://dx.doi.org/10.1103/PhysRevLett.116.070401
http://arxiv.org/abs/1709.08086
http://dx.doi.org/10.1088/2058-9565/aad604
http://dx.doi.org/10.1145/3209108.3209131
http://dx.doi.org/10.4204/EPTCS.266.2
http://arxiv.org/abs/1702.00934v1
http://dx.doi.org/10.4204/EPTCS.143.5
http://dx.doi.org/10.1007/978-3-319-21401-6_22
http://dx.doi.org/10.1007/978-3-319-21401-6_22
http://dx.doi.org/10.1038/npjqi.2016.36
http://arxiv.org/abs/1706.09877
http://dx.doi.org/10.1103/PhysRevA.68.022312
http://dx.doi.org/10.1088/0031-8949/2014/T160/014036
http://dx.doi.org/10.1088/1367-2630/15/11/113022
http://dx.doi.org/10.1016/j.entcs.2006.12.018

M. Backens & A. Kissinger 37

A Proofs of the !-box versions of basic rules

The following Lemma will be useful for the later results.

Lemma A.1. The scalar H-box with phase 2 and the scalar H-box with phase 1
2

are inverses of each

other.

1
2 2 =

Proof. Starting from the left-hand side, we have

1
2 2 = 2

1
2

= 1
2

= = =
(BA1) (HS2) (3) (BA2) (BA1)

Lemma A.2. The following !-box generalisation of (M) holds in the ZH-calculus.

a b

=
ab

Proof. Starting from the left-hand side, we have

a b

=

a b

=

ba

1
2

1
2

1
2

1
2

b

1
2

=

1
2

a

1
2

a b

=

2

21
2

1
2

A.1 (BA2) (3)(HS1)

b

1
2

1
2 a

1
2

1
2

=

a b

1
2

=

ab
ab

==
2

2 ab

1
2

2
=

(HS2) A.1 (M) (HS1) A.1

Lemma A.3. The phase-1 H-box of any arity decomposes:

1
=

Proof. Again, starting from the left-hand side,

1
=

1

= =1
2

1
2

=
(HS1) (U) (3) (BA2)A.1

=
1

1
2 2

As we noted at the end of Section 2.3, Lemmas A.2 and A.3 allow us to combine and cancel scalars

at will. We will do this for the remainder of the proofs.

Lemma A.4. The following !-box generalisation of (A) holds in the ZH-calculus.

38 The ZH Calculus

¬

=
a+b

2

2ba

Proof. Starting from the left-hand side,

¬
a b

=

¬
ba

¬

=

a b a

¬

=

b

=
a+b

2
a+b

2

= 2
(HS1)

1
4

1
4

(3)

1
2

(BA2) (HS2) (A) (HS1)

(ZS2)

Lemma A.5. The introduction rule (I) holds for H boxes with arbitrarily many inputs:

a a
=

¬

a

Proof. As usual, we start from the left-hand side:

=
a

a
1
2

1
2

=

¬

aa

¬

a a
= 1

4

¬

a

1
4

a
=

¬

a= a
(HS1) (I)

(HS2)

(3) (BA2) (HS1)

Combining Lemmas A.2–A.5 gives a proof of Lemma 2.3.

B Proof of the disconnect lemma

The proof of the disconnect lemma was produced with the aid of Quantomatic. In particular, Lemmas B.1

and B.3 are exported from the Quantomatic derivations disconnect-4 and gen-disconnect-4 in the

zh project, available here:

https://github.com/Quantomatic/sample-projects/tree/qpl2018

It should be viewable in the latest version of Quantomatic. However, for the sake of posterity, the version

of Quantomatic.jar used to make this project has also been uploaded here:

https://github.com/Quantomatic/sample-projects/releases/tag/qpl2018

https://github.com/Quantomatic/sample-projects/tree/qpl2018
https://github.com/Quantomatic/sample-projects/releases/tag/qpl2018

M. Backens & A. Kissinger 39

Lemma B.1. ¬ ¬ = ¬ ¬

Proof.
¬ ¬ 3.2

=

¬

=

¬

(ZS1)
=

¬
(BA2)
=

¬

(BA2)
=

¬

(O)
=

¬

(BA2)
=

¬

(BA2)
=

¬

(ZS1)
=

¬

(ZS1)
=

¬

=

¬

3.2
=

¬¬

Lemma B.2.

¬

¬ ¬

¬
=

¬

¬

¬

¬

Proof. We begin by decomposing the bottom two ¬ nodes on the left-hand side using (2). Then:

40 The ZH Calculus

¬ ¬ (BA2)
=

¬ ¬ 3.2
=

¬¬
¬ (ZS1)

= ¬¬
¬ B.1

=

¬
¬¬

(ZS1)
=

¬
¬ ¬ (ZS1)

=

¬
¬ ¬ 3.2

=
¬¬ (BA2)

=

¬¬

This yields the desired result after reintroducing the ¬ nodes via (2).

M. Backens & A. Kissinger 41

Lemma B.3.

. . .

~b ∈ Bn−1

¬

. . .
a~b1

. . .
a~b0

~b ~b

. =

. . .

~b ∈ Bn−1

¬

. . .
a~b1

. . .
a~b0

~b ~b

. (8)

Proof. First, note that we can split the set Bn−1 into two pieces, based on whether the most significant

bit is 0 or 1:

B
n−1 = {0~b | Bn−2}⊎{1~b | Bn−2}

Hence, the LHS can be equivalently written as:

¬
a

0~b0

0~b

. . .

. . .
0~b
. . .

a
0~b1

~b ∈ Bn−2

¬

. . .
a

1~b1

. . .
a

1~b0

1~b 1~b

. (HS1)

=

¬
a

0~b0

~b

. . .

. . .
¬ ~b

. . .
a

0~b1

¬

~b ∈ Bn−2

¬

. . .
a

1~b1

. . .
a

1~b0

~b ~b

.

We can then apply Lemma B.2 to split the bottom spider in two:

· · · B.2

=

¬
a

0~b0

~b

. . .

. . .
¬ ~b

. . .
a

0~b1

¬

~b ∈ B
n−2

¬

. . .
a

1~b1

. . .
a

1~b0

~b ~b

. (HS1)

=

¬
a

0~b0

0~b

. . .

. . .
0~b
. . .

a
0~b1

~b ∈ B
n−2

¬

. . .
a

1~b1

. . .
a

1~b0

1~b 1~b

.

We can then split the !-box into two parts, indexed over the same set to obtain:

¬
a

0~b0

0~b

. . .

. . .
0~b
. . .

a
0~b1

~b ∈ Bn−2

¬

. . .
a

1~b1

. . .
a

1~b0

1~b 1~b

.
~b ∈ Bn−2

42 The ZH Calculus

We now have two copies of a graph which is very similar to the LHS of (8), but for one fewer bit. We can

thus repeat the process above to split each of the two spiders using the second bit of the bitstring, then

the third, and so on, until -spiders only connect pairs of H-spiders that disagree on the least significant

bit. Replacing 2-legged -spiders with cups, we obtain the RHS of (8).

	1 Introduction
	2 Definition of the ZH-calculus
	2.1 The generators and their interpretation
	2.2 The relations, and soundness
	2.3 !-box notation

	3 Completeness
	4 Applications and future work
	A Proofs of the !-box versions of basic rules
	B Proof of the disconnect lemma

