1,964 research outputs found

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Lifelong Federated Reinforcement Learning: A Learning Architecture for Navigation in Cloud Robotic Systems

    Full text link
    This paper was motivated by the problem of how to make robots fuse and transfer their experience so that they can effectively use prior knowledge and quickly adapt to new environments. To address the problem, we present a learning architecture for navigation in cloud robotic systems: Lifelong Federated Reinforcement Learning (LFRL). In the work, We propose a knowledge fusion algorithm for upgrading a shared model deployed on the cloud. Then, effective transfer learning methods in LFRL are introduced. LFRL is consistent with human cognitive science and fits well in cloud robotic systems. Experiments show that LFRL greatly improves the efficiency of reinforcement learning for robot navigation. The cloud robotic system deployment also shows that LFRL is capable of fusing prior knowledge. In addition, we release a cloud robotic navigation-learning website based on LFRL

    AN INTELLIGENT NAVIGATION SYSTEM FOR AN AUTONOMOUS UNDERWATER VEHICLE

    Get PDF
    The work in this thesis concerns with the development of a novel multisensor data fusion (MSDF) technique, which combines synergistically Kalman filtering, fuzzy logic and genetic algorithm approaches, aimed to enhance the accuracy of an autonomous underwater vehicle (AUV) navigation system, formed by an integration of global positioning system and inertial navigation system (GPS/INS). The Kalman filter has been a popular method for integrating the data produced by the GPS and INS to provide optimal estimates of AUVs position and attitude. In this thesis, a sequential use of a linear Kalman filter and extended Kalman filter is proposed. The former is used to fuse the data from a variety of INS sensors whose output is used as an input to the later where integration with GPS data takes place. The use of an adaptation scheme based on fuzzy logic approaches to cope with the divergence problem caused by the insufficiently known a priori filter statistics is also explored. The choice of fuzzy membership functions for the adaptation scheme is first carried out using a heuristic approach. Single objective and multiobjective genetic algorithm techniques are then used to optimize the parameters of the membership functions with respect to a certain performance criteria in order to improve the overall accuracy of the integrated navigation system. Results are presented that show that the proposed algorithms can provide a significant improvement in the overall navigation performance of an autonomous underwater vehicle navigation. The proposed technique is known to be the first method used in relation to AUV navigation technology and is thus considered as a major contribution thereof.J&S Marine Ltd., Qinetiq, Subsea 7 and South West Water PL

    Multi-source Information Fusion Technology and Its Engineering Application

    Get PDF
    With the continuous development of information technology in recent years, information fusion technology, which originated from military applications, plays an important role in various fields. In addition, the rapidly increasing amount of data and the changing lifestyles of people in the information age are affecting the development of information fusion technology. More experts and scholars have focused their attention on the research of image or audio and video fusion or distributed fusion technology. This article summarizes the origin and development of information fusion technology and typical algorithms, as well as the future development trends and challenges of information fusion technology

    Algorithms for sensor validation and multisensor fusion

    Get PDF
    Existing techniques for sensor validation and sensor fusion are often based on analytical sensor models. Such models can be arbitrarily complex and consequently Gaussian distributions are often assumed, generally with a detrimental effect on overall system performance. A holistic approach has therefore been adopted in order to develop two novel and complementary approaches to sensor validation and fusion based on empirical data. The first uses the Nadaraya-Watson kernel estimator to provide competitive sensor fusion. The new algorithm is shown to reliably detect and compensate for bias errors, spike errors, hardover faults, drift faults and erratic operation, affecting up to three of the five sensors in the array. The inherent smoothing action of the kernel estimator provides effective noise cancellation and the fused result is more accurate than the single 'best sensor'. A Genetic Algorithm has been used to optimise the Nadaraya-Watson fuser design. The second approach uses analytical redundancy to provide the on-line sensor status output μH∈[0,1], where μH=1 indicates the sensor output is valid and μH=0 when the sensor has failed. This fuzzy measure is derived from change detection parameters based on spectral analysis of the sensor output signal. The validation scheme can reliably detect a wide range of sensor fault conditions. An appropriate context dependent fusion operator can then be used to perform competitive, cooperative or complementary sensor fusion, with a status output from the fuser providing a useful qualitative indication of the status of the sensors used to derive the fused result. The operation of both schemes is illustrated using data obtained from an array of thick film metal oxide pH sensor electrodes. An ideal pH electrode will sense only the activity of hydrogen ions, however the selectivity of the metal oxide device is worse than the conventional glass electrode. The use of sensor fusion can therefore reduce measurement uncertainty by combining readings from multiple pH sensors having complementary responses. The array can be conveniently fabricated by screen printing sensors using different metal oxides onto a single substrate

    Centralized, distributed and sequential fusion estimation from uncertain outputs with correlation between sensor noises and signal

    Get PDF
    This paper focuses on the least-squares linear fusion filter design for discrete-time stochastic signals from multisensor measurements perturbed not only by additive noise, but also by different uncertainties that can be comprehensively modeled by random parameter matrices. The additive noises from the different sensors are assumed to be cross-correlated at the same time step and correlated with the signal at the same and subsequent time steps. A covariancebased approach is used to derive easily implementable recursive filtering algorithms under the centralized, distributed and sequential fusion architectures. Although centralized and sequential estimators both have the same accuracy, the evaluation of their computational complexity reveals that the sequential filter can provide a significant reduction of computational cost over the centralized one. The accuracy of the proposed fusion filters is explored by a simulation example, where observation matrices with random parameters are used to describe different kinds of sensor uncertainties.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER [grant number MTM2017- 84199-P]

    Multisensor Estimation Fusion of Nonlinear Cost Functions in Mixed Continuous-Discrete Stochastic Systems

    Get PDF
    We propose centralized and distributed fusion algorithms for estimation of nonlinear cost function (NCF) in multisensory mixed continuous-discrete stochastic systems. The NCF represents a nonlinear multivariate functional of state variables. For polynomial NCFs, we propose a closed-form estimation procedure based on recursive formulas for high-order moments for a multivariate normal distribution. In general case, the unscented transformation is used for calculation of nonlinear estimates of a cost functions. To fuse local state estimates, the mixed differential difference equations for error cross-covariance between local estimates are derived. The subsequent application of the proposed fusion estimators for a multisensory environment demonstrates their effectiveness
    corecore