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We propose centralized and distributed fusion algorithms for estimation of nonlinear cost function (NCF) in multisensory
mixed continuous-discrete stochastic systems. The NCF represents a nonlinear multivariate functional of state variables. For
polynomial NCFs, we propose a closed-form estimation procedure based on recursive formulas for high-order moments for a
multivariate normal distribution. In general case, the unscented transformation is used for calculation of nonlinear estimates of
a cost functions. To fuse local state estimates, the mixed differential difference equations for error cross-covariance between local
estimates are derived. The subsequent application of the proposed fusion estimators for a multisensory environment demonstrates
their effectiveness.

1. Introduction

Multisensor data fusion is typicallymotivated by reducing the
overall redundant information obtained from different sen-
sors, increasing information gain by using multiple sensors,
increasing the accuracy, and decreasing the uncertainty of
the system. Further, multisensor data fusion can give benefits
such as extended temporal and spatial coverage, reduced
ambiguity, enhanced spatial resolution, and increased dimen-
sionality of themeasurement space.This process has attracted
growing interest for potential applications in many fields
including guidance, robotics, aerospace, target tracking, sig-
nal processing, and control [1–3]. In general, two basic fusion
approaches are commonly used to process measured sensor
data.

If a central processor receives themeasurement data from
all local sensors directly and processes them in real time,
the correlative result is known as the centralized estimation
process. One advantage of the centralized estimation is that it

involves minimal information loss. However, the centralized
estimation approach has several serious drawbacks, including
poor survivability and reliability, as well as heavy communi-
cation and computational burdens.

In practice, especially when sensors are dispersed over a
wide geographic area, there are limitations on the amount of
communications allowed among sensors. Also, sensors are
provided with processing capabilities. In this case, a certain
amount of computation can be performed at the individual
sensors and a compressed version of sensor data can be
transmitted to a fusion center where the received information
is appropriately combined to yield the global inference. The
advantage of the distribution of filters is that the parallel
structures would lead to increase of the input data rates
and make easy fault detection and isolation. However, the
accuracy of the distributed estimators is generally lower than
that of the centralized estimator. Recently, various distributed
and parallel versions of the standard continuous and discrete
Kalman filters have been reported for linear dynamic systems
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within a multisensor environment [1, 2, 4–9]. For nonlinear
dynamic state-space models, different variants of suboptimal
nonlinear filters, such as the unscented Kalman filter, the
extended Kalman filter, and their extensions, are proposed
in order to enhance the performance of the nonlinear
estimation in multisensory environment [10–14].

However, some applications require the estimation fusion
of nonlinear functions of state variables, representing useful
information for system control, for example, a quadratic form
of a state vector, which can be interpreted as a current distance
between targets or as the energy of an object [3]. We refer to
the nonlinear function as the nonlinear cost function (NCF).
Aside from the aforementioned papers, most of the authors
have not focused on the estimation of the NCF, considering
instead only a state estimation. To the best of our knowledge,
there are nomethods reported in the literature for estimation
fusion of NCFs in a multisensory environment.

Therefore, in this paper, the estimation fusion problem of
NCFs of state variables is considered for mixed continuous-
discrete linear systems under a multisensory environment.
The continuous-discrete approach allows system to avoid
discretization by propagating the estimate and error covari-
ance between measurements in continuous time using an
integration routine such as Runge-Kutta. This approach
yields the optimal or suboptimal estimate continuously at
all times, including times between the data arrival instants.
The advantage of the continuous-discrete estimator over the
alternative approaches using system discretization is that, in
the former, it is not necessary for the sample times to be
equally spaced. This means that the cases of irregular and
intermittent measurements are easy to handle.

Therefore, the aim of this paper is to develop fusion esti-
mators for arbitrary NCFs under multisensory environment.
Centralized and decentralized estimation fusion algorithms
for NCFs are proposed and their accuracies are compared.

This paper is organized as follows. Section 2 presents
a statement of the estimation fusion problem for NCFs.
In Section 3, the globally optimal centralized estimator is
derived. In Section 4, we present the main result pertain-
ing to the distributed estimation of NCFs. Here, the key
equations for cross-covariance between the local continuous-
discrete estimators are derived. In Section 5, two computa-
tion procedures for calculation of estimates of NCFs and
cross-covariance are proposed. The procedures are based
on the unscented transformation and recursive formulas for
moments of multivariate normal distributions. In Section 6,
we study the comparative analysis of the proposed fusion
estimators via two theoretical examples. In Section 7, the
efficiency of the fusion estimators is studied for the case of an
unmanned marine prober system. Finally, we conclude our
results in Section 8.

2. Problem Statement

The general continuous-discrete Kalman multisensory
frame-work involves the estimation of the state of a

continuous-time linear dynamic system given discrete
measurements
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We propose centralized and distributed estimation fusion
algorithms for NCFs in the subsequent sections.

3. Global Optimal Solution-Centralized
Estimator

In this section, the best global optimal (in mean-square error
sense) estimation algorithm for an NCF is derived. In the
centralized fusion set-up, a multisensory dynamic system (1)
can be reformulated into a composite form
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where 𝐼
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∈ R𝑛×𝑛 is an identity matrix.

Note that, in the absence of measurement 𝑦
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includes only time update equations (6a).
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in (12) depends on the local covariance 𝑃(𝑖𝑖)
𝑡

= cov(𝑒(𝑖)
𝑡
, 𝑒

(𝑖)

𝑡
),

𝑖 = 1, . . . , 𝐿, determined by the Kalman equations (9a) and
(9b), and the local cross-covariance𝑃(𝑖𝑗)

𝑡
= cov(𝑒(𝑖)

𝑡
, 𝑒

(𝑗)

𝑡
), 𝑖 ̸= 𝑗,

which can be described by the equations

Time update between measurements:

̇

𝑃

(𝑖𝑗)−

𝜏
= 𝐹

𝜏
𝑃

(𝑖𝑗)−

𝜏
+ 𝑃

(𝑖𝑗)−

𝜏
𝐹

𝑇

𝜏
+ 𝐺

𝜏
𝑄

𝜏
𝐺

𝑇

𝜏
, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘

𝑃

(𝑖𝑗)−

𝑡𝑘−1
= 𝑃

(𝑖𝑗)

𝑡𝑘−1
,

(13a)

Measurement update at time 𝜏 = 𝑡

𝑘
:

𝑃

(𝑖𝑗)

𝑡𝑘
= (𝐼

𝑛
− 𝐾

(𝑖)

𝑡𝑘
𝐻

(𝑖)

𝑡𝑘
) 𝑃

(𝑖𝑗)−

𝑡𝑘
(𝐼

𝑛
− 𝐾

(𝑗)

𝑡𝑘
𝐻

(𝑗)

𝑡𝑘
)

𝑇

,

𝑖, 𝑗 = 1, . . . , 𝐿; 𝑖 ̸= 𝑗,

𝑃

(𝑖𝑗)−

0
= 𝑃

0
,

(13b)

where the filter gains𝐾(𝑖)
𝑡𝑘
, 𝑖 = 1, . . . , 𝐿, are determined by (9a)

and (9b).
The derivation of (13a) and (13b) is given in the appendix.

4.3. Discussion

(1) The local error cross-covariances 𝑃

(𝑖𝑗)

𝑡
, 𝑃

(𝑖𝑗)

𝑧,𝑡
and

weights 𝑎(𝑖)
𝑡

can be precomputed, because they do
not depend on the sensor measurements 𝑦(𝑖)

𝑡𝑘
, 𝑖 =

1, . . . , 𝐿, but only on the noise statistics 𝑄
𝑡
, 𝑅(𝑖)
𝑡𝑘
, the

system matrices 𝐹
𝑡
, 𝐺
𝑡
, 𝐻(𝑖)
𝑡𝑘
, the initial conditions

𝑥

0
, 𝑃
0
, and the NCF 𝑧

𝑡
= 𝑓(𝑥

𝑡
), which are the

part of system models (1) and (2). Thus, once the
measurement schedule has been settled, the real-time
implementation of the distributed estimator requires
only the computation of the local estimates 𝑥(𝑖)

𝑡
, �̂�(𝑖)
𝑡

and the final fusion estimate �̂�fus
𝑡

of an NCF.

(2) The implementation of the distributed estimator
consists of two stages: off-line and on-line. The off-
line stage is more complex than the off-line stage.
This is because it requires the computation of the
local cross-covariance and weights. However, it is not
essential because this stage can be precomputed. The
on-line stage (real-time implementation) requires the
computation of only the local and fusion estimates.
Therefore, the complexity of the on-line stage is not
critical for the distributed estimator. However, to
compute �̂�opt

𝑡
, the centralized estimator requires all

sensor measurements together at each time instant
𝑘 = 1, 2, . . ., whereas the distributed estimator
computes 𝑥(𝑖)

𝑡
and �̂�(𝑖)
𝑡
sequentially.

In the following, we discuss two computational algo-
rithms for evaluation of fusion estimate (10) depending on
the type of NCF.

5. Numerical Calculation of Estimates of
Nonlinear Cost Function

5.1. Multivariate Polynomial Cost Function Recursive Proce-
dure. Let a special NCF (2) represent an arbitrary multivari-
ate polynomial function of the form

𝑧 = 𝑓 (𝑥) = ∑

0≤ℓ1+⋅⋅⋅+ℓ𝑛≤𝑛

𝐷

ℓ1ℓ2⋅⋅⋅ℓ𝑛
𝑥

ℓ1

1
𝑥

ℓ2

2
, . . . , 𝑥

ℓ𝑛

𝑛
,

ℓ

1
, . . . , ℓ

𝑛
≥ 0.

(14)

Then, the local estimate �̂�(𝑖)
𝑡
= E[𝑓(𝑥

𝑡
) | 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
] has a closed-

form solution because conditional expectation E[𝑓(𝑥
𝑡
) |

𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
] and cross-covariance 𝑃

(𝑖𝑗)

𝑧,𝑡
depend on high-order

moments �̂�
ℓ1ℓ2 ⋅⋅⋅ℓ𝑛

≡ E(𝑥ℓ1
1
𝑥

ℓ2

2
, . . . , 𝑥

ℓ𝑛

𝑛
| 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
) or 𝑚

ℓ1ℓ2,...,ℓ𝑛
≡

E(𝑥ℓ1
1
𝑥

ℓ2

2
⋅ ⋅ ⋅ 𝑥

ℓ𝑛

𝑛
) of a multivariate Gaussian distribution,

which can be calculated explicitly in terms of first- and
second-order moments 𝑥(𝑖)

𝑡
= E(𝑥

𝑡
| 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
) and 𝑃(𝑖𝑗)

𝑡
, 𝑖, 𝑗 =

1, . . . , 𝑛, using recursive formulas [17–19]. For example,

𝑚

ℓ1ℓ2 ,...,ℓ𝑛
=

𝑛

∑

𝑖=2

ℓ

𝑖
𝑃

(1𝑖)

𝑡𝑘
𝑚

ℓ1−1,...,ℓ𝑖−1,...,ℓ𝑛

+ (ℓ

1
− 1) 𝑃

(11)

𝑡𝑘
𝑚

ℓ1−2,ℓ2 ,...,ℓ𝑛

(15)

with the first term vanishing when ℓ
1
= 1 [19].

The following example illustrates the closed-form com-
putational procedure.

Consider an arbitrary quadratic cost function

𝑧

𝑡
= 𝑓 (𝑥

𝑡
) = 𝑥

𝑇

𝑡
Ω

𝑡
𝑥

𝑡
, Ω

𝑇

𝑡
= Ω

𝑡
, Ω

𝑡
> 0. (16)

Show that the optimal local estimate �̂�(𝑖)
𝑡

can be calculated
explicitly in terms of a local state estimate and its error
covariance. Using formula E(𝑥𝑇Ω𝑥) = tr[Ω(𝑃 + 𝑚𝑚

𝑇
)],

𝑚 = E(𝑥), 𝑃 = cov(𝑥, 𝑥) [17], we obtain an optimal local
estimate for the quadratic cost function

�̂�

(𝑖)

𝑡
= E (𝑥𝑇

𝑡
Ω

𝑡
𝑥

𝑡
| 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
) = tr {Ω

𝑡
(𝑃

(𝑖𝑖)

𝑡
+ 𝑥

(𝑖)

𝑡
𝑥

(𝑖)
𝑇

𝑡
)} , (17)
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where the local Kalman estimate and error covariance
(𝑥

(𝑖)

𝑡
, 𝑃

(𝑖𝑖)

𝑡
) satisfy (9a) and (9b).

5.2. General Cost Function and Unscented Transformation.
During the last decade, the unscented transformation (UT)
has become a powerful approach for designing computa-
tionally effective algorithms for nonlinear models [10–12, 14,
20]. Following this, the procedure to calculate the best local
estimate of an NCF (conditional mean)

�̂�

(𝑖)

𝑡
= E [𝑓 (𝑥

𝑡
) | 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
] (18)

using the UT can be summarized as follows.
Generate the sigma points {𝑋

𝑠,𝑡
}

2𝑛

𝑠=0
with corresponding

weights {𝑊
𝑠
}

2𝑛

𝑠=0
:

𝑋

(𝑖)

0,𝑡
= 𝑥

(𝑖)

𝑡
, 𝑊

0
=

ℓ

𝑛 + ℓ

,

𝑋

(𝑖)

𝑠,𝑡
= 𝑥

(𝑖)

𝑡
+ [

√

(𝑛 + ℓ) 𝑃

(𝑖𝑖)

𝑡
]

𝑠

, 𝑊

𝑠
=

1

2 (𝑛 + ℓ)

,

𝑠 = 1, . . . , 𝑛,

𝑋

(𝑖)

𝑠+𝑛,𝑡
= 𝑥

(𝑖)

𝑡
− [

√

(𝑛 + ℓ) 𝑃

(𝑖𝑖)

𝑡
]

𝑠

, 𝑊

𝑠+𝑛
=

1

2 (𝑛 + ℓ)

,

(19)

where [√𝑃(𝑖𝑖)
𝑡
]

𝑠
is the 𝑠th column of the matrix square root

of 𝑃(𝑖𝑖)
𝑡

and ℓ is the scaling parameter influencing the spread
of points in the state space and thus the accuracy of the
approximation [20]. Propagate each of these sigma points
through the nonlinear function as

𝜉

(𝑖)

𝑠,𝑡
= 𝑓 (𝑋

(𝑖)

𝑠,𝑡
) , 𝑠 = 0, 1, . . . , 2𝑛 (20)

and the resulting best local estimate of the NCF is given as

�̂�

(𝑖)

𝑡
=

2𝑛

∑

𝑠=0

𝑊

𝑠
𝜉

(𝑖)

𝑠,𝑡
, 𝑖 = 1, . . . , 𝐿. (21)

Similar to (19)–(21), the local cross-covariance 𝑃(𝑖𝑗)
𝑧,𝑡

in (12)
can be calculated based on the UT. But, in a special case of
a polynomial NCF (14), they are calculated for a multivariate
Gaussian distribution of a composite random vector 𝑈𝑇

𝑡
=

[𝑥

𝑇

𝑡
𝑥

(𝑖)
𝑇

𝑡
𝑥

(𝑗)
𝑇

𝑡
] via the recursive formulas (15).

The best way to gain some insight into the proposed
centralized and distributed estimators is to look at some the-
oretical examples. The comparison analysis of the proposed
estimators will be demonstrated in the next section.

6. Theoretical Comparison of Estimators

6.1. Example 1: Estimation of Power of a Constant Scalar
Unknown. Consider a simple example of an application of
the obtained results. We estimate the quadratic cost function
𝑧 = 𝜃

2 of a random constant 𝜃 ∼ N(0, 𝜎2
𝜃
), given two multiple

discrete sensor measurements 𝑦(1)
𝑡𝑘

and 𝑦(2)
𝑡𝑘

of 𝜃 corrupted by

uncorrelated Gaussian white noises. The mixed continuous-
discrete model describing this situation is

System: �̇�

𝑡
= 0, 𝑡 ≥ 0, 𝑥

0
≡ 𝜃 ∼ N (0, 𝜎

2

𝜃
) ,

Sensor 1: 𝑦

(1)

𝑡𝑘
= 𝑥

𝑡𝑘
+ 𝑤

(1)

𝑡𝑘
, 𝑤

(1)

𝑡𝑘
∼ N (0, 𝑟

1
) ,

Sensor 2: 𝑦

(2)

𝑡𝑘
= 𝑥

𝑡𝑘
+ 𝑤

(2)

𝑡𝑘
, 𝑤

(2)

𝑡𝑘
∼ N (0, 𝑟

2
) .

(22)

Here, we derive precise equations for the MSEs for the
proposed fusion estimators and demonstrate a comparative
analysis.

6.1.1. Centralized Optimal Estimate of Quadratic Cost Func-
tion, �̂�opt

𝑡
. Using (17) atΩ

𝑡
= 1, the global optimal estimate of

the quadratic cost function takes the form

�̂�

opt
𝜏

= E (𝜃2 | 𝑦
[𝑡1 :𝑡𝑘]

)

= ∫ 𝜃

2N (

̂

𝜃

CF
𝜏
, 𝑃

CF
𝜏
) 𝑑𝜃 = 𝑃

CF
𝜏

+ (

̂

𝜃

CF
𝜏
)

2

,

(23)

where ̂𝜃CF
𝜏

≡ 𝑥

CF
𝜏

= E(𝑥
𝜏
| 𝑦

[𝑡1 :𝑡𝑘]
) is the best global MMSE

estimate of an unknown state 𝑥
𝑡
= 𝜃 based on the overall

sensor measurements 𝑦
[𝑡1 :𝑡𝑘]

= {𝑦

(1)

[𝑡1 :𝑡𝑘]
, 𝑦

(2)

[𝑡1 :𝑡𝑘]
} and 𝑃

CF
𝜏

=

E[(𝜃 − ̂

𝜃

CF
𝜏
)

2

] is its error variance. Using the continuous-
discrete Kalman filter equations (6a) and (6b), we get

Time update between measurements:

̇

̂

𝜃

CF−

𝜏
= 0, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

̂

𝜃

CF−
𝑡𝑘−1

=

̂

𝜃

CF
𝑡𝑘−1

,

̇

𝑃

CF−
𝜏

= 0, 𝑃

CF−
𝑡𝑘−1

= 𝑃

CF
𝑡𝑘−1

,

(24a)

Measurement update at time 𝜏 = 𝑡

𝑘
:

̂

𝜃

CF
𝑡𝑘

=

̂

𝜃

CF−
𝑡𝑘

+ 𝐾

(1)

𝑡𝑘
(𝑦

(1)

𝑡𝑘
−

̂

𝜃

CF−
𝑡𝑘

) + 𝐾

(2)

𝑡𝑘
(𝑦

(2)

𝑡𝑘
−

̂

𝜃

CF−
𝑡𝑘

) ,

̂

𝜃

CF−
0

= 0,

𝐾

(1)

𝑡𝑘
=

𝑟

2
𝑃

CF−
𝑡𝑘

𝑟

1
𝑟

2
+ (𝑟

1
+ 𝑟

2
) 𝑃

CF−
𝑡𝑘

,

𝐾

(2)

𝑡𝑘
=

𝑟

1
𝑃

CF−
𝑡𝑘

𝑟

1
𝑟

2
+ (𝑟

1
+ 𝑟

2
) 𝑃

CF−
𝑡𝑘

,

𝑃

CF
𝑡𝑘

= (1 − 𝐾

(1)

𝑡𝑘
− 𝐾

(2)

𝑡𝑘
) 𝑃

CF−
𝑡𝑘

, 𝑃

CF−
0

= 𝜎

2

𝜃
.

(24b)

Using induction, we obtain the exact formula for the MSE

𝑃

CF
𝜏

= E [(𝜃 − ̂

𝜃

CF
𝜏
)

2

] = {

𝑃

CF
𝑡𝑘−1

, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘
,

𝑃

CF
𝑡𝑘
, 𝜏 = 𝑡

𝑘
,

where

𝑃

CF
𝑡𝑘

=

𝑟𝜎

2

𝜃

𝑟 + 𝑘𝜎

2

𝜃

, 𝑟 =

𝑟

1
𝑟

2

𝑟

1
+ 𝑟

2

, 𝑘 = 0, 1, 2, . . . .

(25)
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The estimation accuracy between the unknown power 𝑧 = 𝜃

2

and its global fusion estimate

�̂�

opt
𝜏

=

{

{

{

𝑃

CF
𝑡𝑘−1

+ (

̂

𝜃

CF
𝑡𝑘−1

)

2

, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘

𝑃

CF
𝑡𝑘

+ (

̂

𝜃

CF
𝑡𝑘
)

2

, 𝜏 = 𝑡

𝑘
,

(26)

also can be measured in terms of the MSE 𝑃

opt
𝜏

= E[(𝜃2−
�̂�

opt
𝜏
)

2

]. We have

𝑃

opt
𝜏

= E [(𝜃2 − 𝑃CF
𝜏

− (

̂

𝜃

CF
𝜏
))

2

]

= E (𝜃4) + (𝑃CF
𝜏
)

2

+ E [(̂𝜃CF
𝜏
)

4

] − 2𝑃

CF
𝜏
E (𝜃2)

− 2E [𝜃2(̂𝜃CF
𝜏
)

2

] + 2𝑃

CF
𝜏
E [(̂𝜃CF
𝜏
)

2

] ,

𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
.

(27)

Using the orthogonality property of the unbiased estimate
̂

𝜃

CF
𝜏

and the formulas for the fourth-order moments of a
bivariate Gaussian random vector [𝜃 ̂

𝜃

CF
𝜏
]

𝑇

,

E (𝜃4) = 3(𝜎

2

𝜃
)

2

, E [(̂𝜃CF
𝜏
)

4

] = 3[Var (̂𝜃CF
𝜏
)]

2

,

E [𝜃2(̂𝜃CF
𝜏
)

2

] = 𝜎

2

𝜃
Var (̂𝜃CF

𝜏
) + 2[cov (𝜃, ̂𝜃CF

𝜏
)]

2

,

where

Var (̂𝜃CF
𝜏
) = cov (𝜃, ̂𝜃CF

𝜏
) = 𝜎

2

𝜃
− 𝑃

CF
𝜏
,

(28)

we obtain

𝑃

opt
𝜏

= 2𝑃

CF
𝜏

(2𝜎

2

𝜃
− 𝑃

CF
𝜏
) , 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
. (29)

Taking into account (25), we get the exact MMSE for the
centralized estimator; that is,

𝑃

opt
𝜏

= E [(𝜃2 − �̂�CF
𝜏
)

2

] = {

𝑃

opt
𝑡𝑘−1

, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘
,

𝑃

opt
𝑡𝑘
, 𝜏 = 𝑡

𝑘
,

where

𝑃

opt
𝑡𝑘

=2𝑃

CF
𝑡𝑘

(2𝜎

2

𝜃
− 𝑃

CF
𝑡𝑘
)=

2𝑟𝜎

4

𝜃
(𝑟 + 2𝑘𝜎

2

𝜃
)

(𝑟 + 𝑘𝜎

2

𝜃
)

, 𝑟=

𝑟

1
𝑟

2

𝑟

1
+𝑟

2

,

𝑘 = 0, 1, 2, . . . .

(30)

Together with the centralized estimator (26), we apply the
distributed estimator developed in Section 4.

6.1.2. Distributed Fusion Estimate, �̂�fus
𝑡
. Using (9a) and (9b)

and (13a) and (13b), the local estimates ̂𝜃(𝑖)
𝜏

= E(𝑥
𝜏
| 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
),

error variances 𝑃(𝑖𝑖)
𝜏

= E(𝑒(𝑖)
2

𝜏
), and cross-covariance 𝑃(12)

𝜏
=

E(𝑒(1)
𝜏
𝑒

(2)

𝜏
), 𝑒(𝑖)
𝜏

= 𝜃 −

̂

𝜃

(𝑖)

𝜏
, 𝑖 = 1, 2, are described by the

following equations:

Time update between measurements:

̇

̂

𝜃

(𝑖)
−

𝜏
= 0, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

̂

𝜃

(𝑖)
−

𝑡𝑘−1
=

̂

𝜃

(𝑖)

𝑡𝑘−1
,

̇

𝑃

(𝑖𝑖)
−

𝜏
= 0 , 𝑃

(𝑖𝑖)
−

𝑡𝑘−1
= 𝑃

(𝑖𝑖)

𝑡𝑘−1
, 𝑖 = 1, 2,

̇

𝑃

(12)−

𝜏
= 0, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
, 𝑃

(12)−

𝑡𝑘−1
= 𝑃

(12)

𝑡𝑘−1
,

(31a)

Measurement update at time 𝜏 = 𝑡

𝑘
:

̂

𝜃

(𝑖)

𝑡𝑘
=

̂

𝜃

(𝑖)−

𝑡𝑘
+ 𝐾

(𝑖)

𝑡𝑘
(𝑦

(𝑖)

𝑡𝑘
−

̂

𝜃

(𝑖)−

𝑡𝑘
) ,

̂

𝜃

(𝑖)−

0
= 0,

𝐾

(𝑖)

𝑡𝑘
=

𝑃

(𝑖𝑖)−

𝑡𝑘

𝑟

𝑖
+ 𝑃

(𝑖𝑖)−

𝑡𝑘

,

𝑃

(𝑖𝑖)

𝑡𝑘
= (1 − 𝐾

(𝑖)

𝑡𝑘
) 𝑃

(𝑖𝑖)−

𝑡𝑘
, 𝑃

(𝑖𝑖)

0
= 𝜎

2

𝜃
,

𝑃

(12)

𝑡𝑘
= (1 − 𝐾

(1)

𝑡𝑘
) (1 − 𝐾

(2)

𝑡𝑘
) 𝑃

(12)−

𝑡𝑘
, 𝑃

(12)

0
= 𝜎

2

𝜃
.

(31b)

The solution of (31a) and (31b) is given by

𝑃

(𝑖𝑖)

𝜏
=

{

{

{

𝑃

(𝑖𝑖)

𝑡𝑘−1
, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘

𝑃

(𝑖𝑖)

𝑡𝑘
, 𝜏 = 𝑡

𝑘

𝑃

(12)

𝜏
=

{

{

{

𝑃

(12)

𝑡𝑘−1
, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘

𝑃

(12)

𝑡𝑘
, 𝜏 = 𝑡

𝑘
,

where

𝑃

(𝑖𝑖)

𝑡𝑘
=

𝑟

𝑖
𝜎

2

𝜃

𝑟

𝑖
+ 𝑘𝜎

2

𝜃

, 𝑖 = 1, 2,

𝑃

(12)

𝑡𝑘
=

𝑟

1
𝑟

2
𝜎

2

𝜃

(𝑟

1
+ 𝑘𝜎

2

𝜃
) (𝑟

2
+ 𝑘𝜎

2

𝜃
)

, 𝑘 = 0, 1, 2, . . . .

(32)

Next, using formula (10), one can obtain two local estimates
for the quadratic cost as �̂�(𝑖)

𝜏
= 𝑃

(𝑖𝑖)

𝜏
+(

̂

𝜃

(𝑖)

𝜏
)

2

, 𝑖 = 1, 2, where ̂𝜃(1)
𝜏

and ̂𝜃(2)
𝜏

are calculated by (31a) and (31b). In the second stage,
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using fusion formulas (11) and (12), we obtain the distributed
fusion estimate

�̂�

fus
𝜏

= 𝑎

(1)

𝜏
�̂�

(1)

𝑡𝑘
+ 𝑎

(2)

𝜏
�̂�

(2)

𝜏
, 𝑎

(1)

𝜏
+ 𝑎

(2)

𝜏
= 1,

𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

where

𝑎

(1)

𝜏
=

𝑃

(22)

𝑧,𝜏
− 𝑃

(12)

𝑧,𝜏

𝑃

(11)

𝑧,𝜏 − 2𝑃

(12)

𝑧,𝜏 + 𝑃

(22)

𝑧,𝜏

,

𝑎

(2)

𝜏
=

𝑃

(11)

𝑧,𝜏
− 𝑃

(12)

𝑧,𝜏

𝑃

(11)

𝑧,𝜏 − 2𝑃

(12)

𝑧,𝜏 + 𝑃

(22)

𝑧,𝜏

,

𝑃

(𝑖𝑗)

𝑧,𝜏
=cov (𝑒(𝑖)

𝑧,𝜏
, 𝑒

(𝑗)

𝑧,𝜏
) , 𝑒

(𝑖)

𝑧,𝜏
= 𝜃

2
− �̂�

(𝑖)

𝜏
, 𝑖, 𝑗=1, 2.

(33)

Calculating the cross-covariance 𝑃(𝑖𝑗)
𝑧,𝜏

based on the formulas
for high-order moments of a Gaussian distribution (28), we
get

𝑃

(𝑖𝑖)

𝑧,𝜏
= E [(𝜃2 − �̂�(𝑖)

𝜏
)

2

] = 2𝑃

(𝑖𝑖)

𝜏
(2𝜎

2

𝜃
− 𝑃

(𝑖𝑖)

𝜏
) , 𝑖 = 1, 2,

𝑃

(12)

𝑧,𝜏
= E [(𝜃2 − �̂�(1)

𝜏
) (𝜃

2
− �̂�

(2)

𝜏
)] = 2𝑃

(12)

𝜏

+ 4 (𝜎

2

𝜃
𝑃

(12)

𝜏
− 𝑃

(11)

𝜏
𝑃

(12)

𝜏
− 𝑃

(22)

𝜏
𝑃

(12)

𝜏
+ 𝑃

(11)

𝜏
𝑃

(22)

𝜏
) .

(34)

Finally, the overall MSE 𝑃

fus
𝜏

= E[(𝜃2 − �̂�fus
𝜏
)

2

] for the fusion
estimate �̂�fus

𝜏
can be evaluated as

𝑃

fus
𝜏

= E [(𝜃2 − �̂�fus
𝜏
)

2

] =

{

{

{

𝑃

fus
𝑡𝑘−1

, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘
,

𝑃

fus
𝑡𝑘
, 𝜏 = 𝑡

𝑘
,

where

𝑃

fus
𝑡𝑘

= (𝑎

(1)

𝑡𝑘
)

2

𝑃

(11)

𝑧,𝑡𝑘
+ (𝑎

(2)

𝑡𝑘
)

2

𝑃

(22)

𝑧,𝑡𝑘
+ 2𝑎

(1)

𝑡𝑘
𝑎

(2)

𝑡𝑘
𝑃

(12)

𝑧,𝑡𝑘
,

𝑘 = 0, 1, 2, . . . .

(35)

Here, the scalar weights 𝑎(1)
𝑡𝑘

and 𝑎

(2)

𝑡𝑘
and cross-covariance

𝑃

(𝑖𝑗)

𝑧,𝑡𝑘
, 𝑖, 𝑗 = 1, 2, are determined by (32)–(34) at 𝜏 = 𝑡

𝑘
,

𝑘 = 1, 2, . . ..

6.1.3. Comparative Analysis of Centralized and Distributed
Estimators. The MSE is an important value that can be
used to reflect the accuracy of NCF estimation. The exact
MSEs 𝑃

opt
𝑡

and 𝑃

fus
𝑡

are illustrated in Figure 1 for 𝜎

2

𝜃
=

1, 𝑟
1

= 2, 𝑟
2

= 3. Not surprisingly, Figure 1 illustrates
that the centralized estimator exhibits a performance that
is completely superior to the distributed estimator; that is,
𝑃

opt
𝑡

< 𝑃

fus
𝑡

. From Figure 1, we also observe that the difference
between two fusion estimators is negligible for steady-state
regimes 𝑘 ≫ 1. Thus, for the example, application of the
distributed estimator can produce good results in real-time
processing requirements.

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P . . .

P . . .

Figure 1: MSEs of fusion estimators for quadratic cost function 𝑧 =
𝜃

2.

6.2. Example 2: Estimation of Power of a Scalar Signal. Let the
scalar signal 𝑥

𝑡
with two sensors be described by

�̇�

𝑡
= 𝑎𝑥

𝑡
+ V
𝑡
, 𝑎 < 0, 𝑡 ∈ [0, 𝑇

𝑘
] ,

𝑦

(𝑖)

𝑡𝑘
= 𝑥

(𝑖)

𝑡𝑘
+ 𝑤

(𝑖)

𝑡𝑘
, 𝑖 = 1, 2,

(36)

where V
𝑡
is zero-mean white Gaussian noise with intensity

𝑞 and 𝑤

(1)

𝑡𝑘
∼ N(0, 𝑟

1
) and 𝑤

(2)

𝑡𝑘
∼ N(0, 𝑟

2
) are uncorrelated

white Gaussian sequences. Let 𝑥
0
∼ N(𝑥

0
, 𝜎

2

0
), and an NCF

represents power of the signal; that is, 𝑧
𝑡
= 𝑓(𝑥

𝑡
) = 𝑥

2

𝑡
.

In a similar way as in Example 1, we can derive equations
for MSEs for the proposed estimators.

6.2.1. Centralized Optimal Estimate of Quadratic Cost Func-
tion, �̂�opt

𝑡
. The global MMSE fusion estimate of the power of

signal takes the form

�̂�

opt
𝜏

= E (𝑥2
𝜏
| 𝑦

[𝑡1 :𝑡𝑘]
)

= ∫𝑥

2N (𝑥

CF
𝜏
, 𝑃

CF
𝜏
) 𝑑𝑥 = 𝑃

CF
𝜏

+ (𝑥

CF
𝜏
)

2

,

𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

(37)

where the estimate 𝑥

CF
𝜏

and its error variance 𝑃

CF
𝜏

are
described by the continuous-discrete Kalman filter equations
(6a) and (6b)

Time update between measurements:

̇

�̂�

CF−

𝜏
= 𝑎𝑥

CF−
𝜏

, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
, 𝑥

CF−
𝑡𝑘−1

= 𝑥

CF
𝑡𝑘−1

,

̇

𝑃

CF−
𝜏

= 2𝑎𝑃

CF−
𝜏

+ 𝑞 , 𝑃

CF−
𝑡𝑘−1

= 𝑃

CF
𝑡𝑘−1

,

(38a)
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Measurement update at time 𝜏 = 𝑡

𝑘
:

𝑥

CF
𝑡𝑘

= 𝑥

CF−
𝑡𝑘

+ 𝐾

(1)

𝑡𝑘
(𝑦

(1)

𝑡𝑘
− 𝑥

CF−
𝑡𝑘

) + 𝐾

(2)

𝑡𝑘
(𝑦

(2)

𝑡𝑘
− 𝑥

CF−
𝑡𝑘

) ,

𝑥

CF−
0

= 𝑥

0
,

𝐾

(1)

𝑡𝑘
=

𝑟

2
𝑃

CF−
𝑡𝑘

𝑟

1
𝑟

2
+ (𝑟

1
+ 𝑟

2
) 𝑃

CF−
𝑡𝑘

,

𝐾

(2)

𝑡𝑘
=

𝑟

1
𝑃

CF−
𝑡𝑘

𝑟

1
𝑟

2
+ (𝑟

1
+ 𝑟

2
) 𝑃

CF−
𝑡𝑘

,

𝑃

CF
𝑡𝑘

= (1 − 𝐾

(1)

𝑡𝑘
− 𝐾

(2)

𝑡𝑘
) 𝑃

CF−
𝑡𝑘

, 𝑃

CF−
0

= 𝜎

2

0
.

(38b)

Solving (38a) and (38b) for the error variance, we get

𝑃

CF−
𝜏

= (𝑃

CF
𝑡𝑘−1

+

𝑞

2𝑎

) 𝑒

2𝑎(𝜏−𝑡𝑘−1)
−

𝑞

2𝑎

, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

𝑃

CF
𝑡𝑘

=

𝑟

1
𝑟

2
𝑃

CF−
𝑡𝑘

𝑟

1
𝑟

2
+ (𝑟

1
+ 𝑟

2
) 𝑃

CF−
𝑡𝑘

, 𝑘 = 0, 1, . . . ; 𝑃

CF−
0

= 𝜎

2

0
.

(39)

To find the overall MSE 𝑃

opt
𝜏

= E[(𝑥2
𝜏
− �̂�

opt
𝜏
)

2

], we use the
same way as in the derivation of formula (29). We obtain

𝑃

opt
𝜏

= 2𝑃

CF
𝜏

(2𝛼

2,𝜏
− 𝑃

CF
𝜏
) , 𝛼

2,𝜏
= E (𝑥2

𝜏
) ,

𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

(40)

where the second-ordermoment of the signal𝛼
2,𝜏

satisfies the
Lyapunov equation

�̇�

2,𝜏
= 2𝑎𝛼

2,𝜏
+ 𝑞, 𝜏 ≥ 0, 𝛼

2,0
= E (𝑥2

0
) = 𝜎

2

0
+ 𝑥

2

0
. (41)

Finally, using relation (40) between 𝑃CF
𝜏

and 𝑃opt
𝜏

, we get

𝑃

opt
𝜏

= {

2𝑃

CF
𝜏

(2𝛼

2,𝜏
− 𝑃

CF
𝜏
) , 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘
,

2𝑃

CF
𝑡𝑘

(2𝛼

2,𝑡𝑘
− 𝑃

CF
𝑡𝑘
) , 𝜏 = 𝑡

𝑘
,

(42)

where

𝛼

2,𝜏
= (𝛼

2,0
+

𝑞

2𝑎

) 𝑒

2𝑎𝜏
−

𝑞

2𝑎

, 𝜏 ≥ 0. (43)

Together with centralized estimator (37), we apply the dis-
tributed estimator.

6.2.2. Distributed Fusion Estimate, �̂�fus
𝑡
. The distributed

fusion equations for the example follow the same
basic pattern as in Section 6.1.2. The local estimates
𝑥

(𝑖)

𝜏
= E(𝑥

𝑡
| 𝑦

(𝑖)

[𝑡1 :𝑡𝑘]
), corresponding error variances

𝑃

(𝑖𝑖)

𝜏
= E(𝑒(𝑖)

2

𝑡
), and cross-covariance 𝑃(12)

𝜏
= E(𝑒(1)

𝜏
𝑒

(2)

𝜏
) are

described by the following:

Time update between measurements:

̇

�̂�

(𝑖)
−

𝜏
= 𝑎𝑥

(𝑖)−

𝜏
, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
, 𝑥

(𝑖)
−

𝑡𝑘−1
= 𝑥

(𝑖)

𝑡𝑘−1
,

̇

𝑃

(𝑖𝑖)
−

𝜏
= 2𝑎𝑃

(𝑖𝑖)−

𝜏
+ 𝑞, 𝑃

(𝑖𝑖)
−

𝑡𝑘−1
= 𝑃

(𝑖𝑖)

𝑡𝑘−1
, 𝑖 = 1, 2,

̇

𝑃

(12)−

𝜏
= 2𝑎𝑃

(12)−

𝜏
+ 𝑞, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
, 𝑃

(12)−

𝑡𝑘−1
= 𝑃

(12)

𝑡𝑘−1
,

(44a)
Measurement update at time 𝜏 = 𝑡

𝑘
:

𝑥

(𝑖)

𝑡𝑘
= 𝑥

(𝑖)−

𝑡𝑘
+ 𝐾

(𝑖)

𝑡𝑘
(𝑦

(𝑖)

𝑡𝑘
− 𝑥

(𝑖)−

𝑡𝑘
) , 𝑥

(𝑖)−

0
= 𝑥

0
,

𝐾

(𝑖)

𝑡𝑘
=

𝑃

(𝑖𝑖)−

𝑡𝑘

𝑟

𝑖
+ 𝑃

(𝑖𝑖)−

𝑡𝑘

,

𝑃

(𝑖𝑖)

𝑡𝑘
= (1 − 𝐾

(𝑖)

𝑡𝑘
) 𝑃

(𝑖𝑖)−

𝑡𝑘
, 𝑃

(𝑖𝑖)−

0
= 𝜎

2

0
,

𝑃

(12)

𝑡𝑘
= (1 − 𝐾

(1)

𝑡𝑘
) (1 − 𝐾

(2)

𝑡𝑘
) 𝑃

(12)−

𝑡𝑘
, 𝑃

(12)−

0
= 𝜎

2

0
.

(44b)

The solution of (44a) and (44b) is given by

𝑃

(𝑖𝑖)

𝜏
= {

𝑃

(𝑖𝑖)

𝜏
, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘

𝑃

(𝑖𝑖)

𝑡𝑘
, 𝜏 = 𝑡

𝑘

𝑃

(12)

𝜏
= {

𝑃

(12)

𝜏
, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘

𝑃

(12)

𝑡𝑘
, 𝜏 = 𝑡

𝑘
,

where

𝑃

(𝑖𝑖)

𝜏
= (𝑃

(𝑖𝑖)

𝑡𝑘−1
+

𝑞

2𝑎

) 𝑒

2𝑎(𝜏−𝑡𝑘−1)
−

𝑞

2𝑎

, 𝑃

(𝑖𝑖)

𝑡𝑘
=

𝑟

𝑖
𝜎

2

0

𝑟

𝑖
+ 𝑘𝜎

2

0

,

𝑖 = 1, 2,

𝑃

(12)

𝜏
= (𝑃

(12)

𝑡𝑘−1
+

𝑞

2𝑎

) 𝑒

2𝑎(𝜏−𝑡𝑘−1)
−

𝑞

2𝑎

,

𝑃

(12)

𝑡𝑘
=

𝑟

1
𝑟

2
𝜎

2

𝜃

(𝑟

1
+ 𝑘𝜎

2

𝜃
) (𝑟

2
+ 𝑘𝜎

2

𝜃
)

,

𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘
, 𝑖 = 1, 2; 𝑘 = 0, 1, 2, . . . .

(45)

Next, two local estimates for the power of signal 𝑧
𝑡
= 𝑥

2

𝑡
take

the form �̂�

(𝑖)

𝜏
= 𝑃

(𝑖𝑖)

𝜏
+ (𝑥

(𝑖)

𝜏
)

2

, 𝑖 = 1, 2. Combining �̂�(1)
𝜏

and �̂�(2)
𝜏

based on (11), we obtain the distributed fusion estimate

�̂�

fus
𝜏

= 𝑎

(1)

𝜏
�̂�

(1)

𝑡𝑘
+ 𝑎

(2)

𝜏
�̂�

(2)

𝜏
, 𝑎

(1)

𝜏
+ 𝑎

(2)

𝜏
= 1,

𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,
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where

𝑎

(1)

𝜏
=

𝑃

(22)

𝑧,𝜏
− 𝑃

(12)

𝑧,𝜏

𝑃

(11)

𝑧,𝜏 − 2𝑃

(12)

𝑧,𝜏 + 𝑃

(22)

𝑧,𝜏

,

𝑎

(2)

𝜏
=

𝑃

(11)

𝑧,𝜏
− 𝑃

(12)

𝑧,𝜏

𝑃

(11)

𝑧,𝜏 − 2𝑃

(12)

𝑧,𝜏 + 𝑃

(22)

𝑧,𝜏

,

(46)

with the covariance 𝑃(𝑖𝑗)
𝑧,𝜏

which is calculated as

𝑃

(𝑖𝑖)

𝑧,𝜏
= E [(𝑥2

𝜏
− �̂�

(𝑖)

𝜏
)

2

] = 4𝑆

𝑡
𝑃

(𝑖𝑖)

𝜏
− 2𝑃

(𝑖𝑖)
2

𝜏
+ 4𝑚

2

𝜏
𝑃

(𝑖𝑖)

𝜏
,

𝑖 = 1, 2,

𝑃

(12)

𝑧,𝜏
= E [(𝑥2

𝜏
− �̂�

(1)

𝜏
) (𝑥

2

𝜏
− �̂�

(2)

𝜏
)]

= 4𝑚

2

𝜏
𝑃

(12)

𝜏
+ 2𝑃

(12)
2

𝜏
+ 4𝑃

(11)

𝜏
𝑃

(22)

𝜏

+ 4𝑃

(12)

𝜏
(𝑆

𝜏
− 𝑃

(11)

𝜏
− 𝑃

(22)

𝜏
) ,

𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

where

𝑚

𝜏
= E (𝑥

𝜏
) = 𝑚

𝑡𝑘−1
𝑒

𝑎(𝜏−𝑡𝑘−1)
, 𝑘 = 1, 2, . . . ; 𝑚

0
= 𝑥

0
,

𝑆

𝜏
= Var (𝑥

𝜏
) = (𝑆

𝑡𝑘−1
+

𝑞

2𝑎

) 𝑒

2𝑎(𝜏−𝑡𝑘−1)
−

𝑞

2𝑎

,

𝑆

0
= 𝜎

2

0
.

(47)

Finally, the overall MSE 𝑃

fus
𝜏

of the fusion estimate �̂�fus
𝜏

is
evaluated as

𝑃

fus
𝜏

= E [(𝑥2
𝜏
− �̂�

fus
𝜏
)

2

] = {

𝑃

fus
𝜏
, 𝑡

𝑘−1
≤ 𝜏 < 𝑡

𝑘
,

𝑃

fus
𝑡𝑘
, 𝜏 = 𝑡

𝑘
,

where

𝑃

fus
𝜏

= (𝑎

(1)

𝜏
)

2

𝑃

(11)

𝑧,𝜏
+ (𝑎

(2)

𝜏
)

2

𝑃

(22)

𝑧,𝜏
+ 2𝑎

(1)

𝜏
𝑎

(2)

𝜏
𝑃

(12)

𝑧,𝜏
.

(48)

Here, the weights 𝑎(𝑖)
𝜏

and cross-covariance 𝑃(𝑖𝑗)
𝑧,𝜏

are deter-
mined by (46) and (47), respectively.

6.2.3. Comparative Analysis of Centralized and Distributed
Estimators. The model parameters are subjected to 𝑎 = −2,
𝑞 = 10, 𝑟

1
= 0.2, 𝑟

2
= 0.3, 𝑥

0
∼ N(1, 1), 𝑡

𝑘
− 𝑡

𝑘−1
= 0.1,

𝑘 = 1, 2, . . . , 20. Figure 2 illustrates the MSEs of the power of
signals𝑃opt

𝑡
and𝑃fus
𝑡

. Aswe can see in Figure 2, the centralized
estimator �̂�opt

𝑡
is better than the distributed one �̂�fus

𝑡
; that is,

𝑃

opt
𝑡

< 𝑃

fus
𝑡

. However, the difference between 𝑃opt
𝑡

and 𝑃fus
𝑡

is
negligible. The relative error Δ

𝑡
= |(𝑃

fus
𝑡

− 𝑃

opt
𝑡
)/𝑃

opt
𝑡
|100%

within the observation period 𝑡
𝑘
∈ [0; 2] is about 6%. For this

reason, the distributed estimator for NCFs is suitable for real
implementation in multisensory systems.

Optimal
Fusion

0

0.5

1

1.5

2

2.5

0 0.2 2.20.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2: MSEs of fusion estimators for power of signal 𝑧
𝑡
= 𝑥

2

𝑡
.

7. Application of Fusion Algorithms

A comparative experimental analysis of the proposed esti-
mators is considered for the motion of unmanned marine
prober (UMP). In a marine inspection environment, UMP
systems are often considered because they offer the benefits
of convenience and human safety.

Assume a scenario in which the UMP detected an oil-
tanker accident, fromwhich oil has spread out on a surface of
the water without the influence of wind. As an initial action,
the UMP estimates the length of a contour of the oil spread
(Figure 3).

To control the size of a surface, the UMP needs to
compute the distance from the oil tanker 𝑑

𝑡
at every time

instance representing an NCF

𝑑

𝑡
= 𝑓 (𝑥

𝑡
) =

√
𝑥

2

1,𝑡
+ 𝑥

2

2,𝑡
, 𝑥

𝑡
= [𝑥

1,𝑡
𝑥

2,𝑡
]

𝑇

,
(49)

where 𝑥
1,𝑡

and 𝑥
2,𝑡

are coordinates of UMP.
Here, we verify the proposed fusion estimators using a

linearized model of UMP [3]:

�̇�

1,𝑡
= 𝑥

1,𝑡
− 2𝑥

2,𝑡
+ V
1,𝑡
,

�̇�

2,𝑡
= 𝑥

1,𝑡
− 𝑥

2,𝑡
+ V
2,𝑡
,

(50)

where V(1)
𝑡

and V(2)
𝑡

are uncorrelated zero-mean white Gaus-
sian noises with intensities 𝑞

1
= 𝑞

2
= 0.1, 𝑡 ∈ [0; 3], 𝑥

1,0
∼

N(20; 0.2), and 𝑥
2,0

∼ N(0; 0.2).
Next, with the help of systemic sensors such as ultrasonic

sensors, sonar, radar, or GPS, the UMP measures the relative
coordinates 𝑥

1,𝑡
and 𝑥

2,𝑡
from the oil tanker, respectively.

Then, the measurement model for the UMP is given by

𝑦

(1)

𝑡
= 𝑥

1,𝑡
+ 𝑤

(1)

𝑡
, 𝑦

(2)

𝑡
= 𝑥

2,𝑡
+ 𝑤

(2)

𝑡
,

(51)

where 𝑤(1)
𝑡

and 𝑤(2)
𝑡

are uncorrelated zero-mean white Gaus-
sian sequences with intensities 𝑟

1
= 𝑟

2
= 0.1.

Since the NCF is nonlinear, we apply the UT to calculate
the local estimates �̂�(𝑖)

𝑡
and fusion estimates �̂�opt

𝑡
and �̂�

fus
𝑡
.

The time update differential equations were solved by the
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Oil tanker

X2

X1

dt2

dt1

(X1,t2
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, X2,t1

)
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Figure 3: Estimation of size of oil spread contour.
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=
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.

Runge-Kutta scheme of the fourth order with the integration
step Δ𝑡 = 0.01. To compare the MSEs 𝑃

opt
𝑡

and 𝑃

fus
𝑡

,
the Monte-Carlo method with 1000 runs was performed.
Figure 4 illustrates the time histories of theMSEs for the both
estimators.

As in Figure 4, the centralized estimate �̂�opt
𝑡

has the best
performance due to the lowest value of the MSE 𝑃

opt
𝑡

<

𝑃

fus
𝑡

. As a result, we can confirm that we have verified that
the decentralized estimator is more suitable for distributed
processing in a multisensory environment.

8. Conclusion

In this paper, we derive a new centralized and decentralized
estimator for nonlinear cost functions in mixed multisen-
sor continuous-discrete stochastic systems. Computational
approaches to their designing in practice are offered. Particu-
lar emphasis is given to a closed-form recursive procedure for

a polynomial cost functions.The estimation accuracies of the
proposed estimators are studied. In general, the centralized
fusion estimator is considered as the most accurate, but, by
the results of simulations with theoretical and real examples,
the decentralized estimator demonstrates a reasonable accu-
racy. Furthermore, due to inherent drawbacks of centralized
processing, the decentralized estimator may be more prefer-
able in multisensory environment.

During the last decades, there has been extensive interest
in the study of a class of physical systems modeled by hybrid
system dynamics known as Markovian jump systems [21–
23]. As a generalization of the obtained results for mixed
continuous-discrete stochastic systems, we would like to
point out that it is possible to extend the main results to
Markovian jump systems.

Appendix

The derivation of the equation for cross-covariance (13a) and
cross-covariance (13b) is given as follows.

The Kalman equations (1) and (9a) and (9b) yield the
linear differential difference equations for the local error 𝑒(𝑖)

𝜏
=

𝑥

𝜏
− 𝑥

(𝑖)

𝜏

̇𝑒

(𝑖)−

𝜏
= �̇�

𝜏
−

̇

�̂�

(𝑖)

𝜏
= 𝐹

𝜏
𝑒

(𝑖)−

𝜏
+ 𝐺

𝜏
V
𝜏
, 𝑡

𝑘−1
≤ 𝜏 ≤ 𝑡

𝑘
,

𝑒

(𝑖)

𝑡𝑘
= 𝑥

𝑡𝑘
− 𝑥

(𝑖)

𝑡𝑘

= 𝑥

𝑡𝑘
− 𝑥

(𝑖)−

𝑡𝑘
− 𝐾

(𝑖)

𝑡𝑘
[𝐻

(𝑖)

𝑡𝑘
𝑥

𝑡𝑘
+ 𝑤

(𝑖)

𝑡𝑘
− 𝐻

(𝑖)

𝑡𝑘
𝑥

(𝑖)−

𝑡𝑘
]

= (𝐼

𝑛
− 𝐾

(𝑖)

𝑡𝑘
𝐻

(𝑖)

𝑡𝑘
) 𝑒

(𝑖)−

𝑡𝑘
− 𝐾

(𝑖)

𝑡𝑘
𝑤

(𝑖)

𝑡𝑘
,

𝑒

(𝑖)−

𝑡𝑘
= 𝑥

𝑡𝑘
− 𝑥

(𝑖)−

𝑡𝑘
.

(A.1)
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Consequently,

̇

𝑃

(𝑖𝑗)−

𝜏
=

𝑑

𝑑𝜏

E [𝑒(𝑖)−
𝜏

(𝑒

(𝑗)−

𝜏
)

𝑇

] = 𝐹

𝜏
E [𝑒(𝑖)−
𝜏

(𝑒

(𝑗)−

𝜏
)

𝑇

]

+ E [𝑒(𝑖)−
𝜏

(𝑒

(𝑗)−

𝜏
)

𝑇

] 𝐹

𝑇

𝜏
+ 𝐺

𝜏
𝑄

𝜏
𝐺

𝑇

𝜏

= 𝐹

𝜏
𝑃

(𝑖𝑗)−

𝜏
+ 𝑃

(𝑖𝑗)−

𝜏
𝐹

𝑇

𝜏
+ 𝐺

𝜏
𝑄

𝜏
𝐺

𝑇

𝜏
,

(A.2)

𝑃

(𝑖𝑗)

𝑡𝑘
= E [𝑒(𝑖)

𝑡𝑘
(𝑒

(𝑗)

𝑡𝑘
)

𝑇

]

= E {[(𝐼
𝑛
− 𝐾

(𝑖)

𝑡𝑘
𝐻

(𝑖)

𝑡𝑘
) 𝑒

(𝑖)−

𝑡𝑘
− 𝐾

(𝑖)

𝑡𝑘
𝑤

(𝑖)

𝑡𝑘
]

×[(𝐼

𝑛
− 𝐾

(𝑗)

𝑡𝑘
𝐻

(𝑗)

𝑡𝑘
) 𝑒

(𝑗)−

𝑡𝑘
− 𝐾

(𝑗)

𝑡𝑘
𝑤

(𝑗)

𝑡𝑘
]

𝑇

}

= (𝐼

𝑛
− 𝐾

(𝑖)

𝑡𝑘
𝐻

(𝑖)

𝑡𝑘
)E [𝑒(𝑖)−

𝑡𝑘
(𝑒

(𝑗)−

𝑡𝑘
)

𝑇

] (𝐼

𝑛
− 𝐾

(𝑗)

𝑡𝑘
𝐻

(𝑗)

𝑡𝑘
)

𝑇

− (𝐼

𝑛
− 𝐾

(𝑖)

𝑡𝑘
𝐻

(𝑖)

𝑡𝑘
)E (𝑒(𝑖)−

𝑡𝑘
𝑤

(𝑗)
𝑇

𝑡𝑘
)𝐾

(𝑗)
𝑇

𝑡𝑘

− 𝐾

(𝑖)

𝑡𝑘
E [𝑤(𝑖)
𝑡𝑘
(𝑒

(𝑗)−

𝑡𝑘
)

𝑇

] (𝐼

𝑛
− 𝐾

(𝑗)

𝑡𝑘
𝐻

(𝑗)

𝑡𝑘
)

𝑇

+ 𝐾

(𝑖)

𝑡𝑘
E (𝑤(𝑖)
𝑡𝑘
𝑤

(𝑗)
𝑇

𝑡𝑘
)𝐾

(𝑗)
𝑇

𝑡𝑘
, 𝑖 ̸= 𝑗.

(A.3)

Taking into account that 𝑒(𝑖)−
𝑡𝑘

and 𝑒

(𝑗)−

𝑡𝑘
do not depend on

measurements𝑦(𝑗)
𝑡𝑘

and𝑦(𝑖)
𝑡𝑘
, respectively, andwhite noises𝑤(𝑖)

𝑡𝑘

and𝑤(𝑗)
𝑡𝑘

are uncorrelated at 𝑖 ̸= 𝑗, (A.3) yields linear recursive
(13a) and (13b) for 𝑃(𝑖𝑗)

𝑡𝑘
.

This completes the derivation of (13a) and (13b).
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