44 research outputs found

    IP Restoration vs. WDM Protection: Is There an Optimal choice?

    Get PDF

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Maximizing Restorable Throughput in MPLS Networks

    Get PDF

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Link failure protection and restoration in WDM optical networks

    Get PDF
    In a wavelength-division-multiplexing (WDM) optical network, the failure of fiber links may cause the failure of multiple optical channels, thereby leading to large data loss. Therefore the survivable WDM optical networks where the affected traffic under link failure can be restored, have been a matter of much concern. On the other hand, network operators want options that are more than just survivable, but more flexible and more efficient in the use of capacity. In this thesis, we propose our cost-effective approaches to survive link failures in WDM optical networks. Dynamic establishment of restorable connections in WDM networks is an important problem that has received much study. Existing algorithms use either path-based method or link-based method to protect a dynamic connection; the former suffers slow restoration speed while the latter requires complicated online backup path computation. We propose a new dynamic restorable connection establishment algorithm using p-cycle protection. For a given connection request, our algorithm first computes a working path and then computes a set of p-cycles to protect the links on the working path so that the connection can survive any single link failure. The key advantage of the proposed algorithm over the link-based method is that it enables faster failure restoration while requires much simpler online computation for connection establishment. Tree-based schemes offer several advantages such as scalability, failure impact restriction and distributed processing. We present a new tree-based link protection scheme to improve the hierarchical protection tree (p-tree) scheme [31] for single link failure in mesh networks, which achieves 100% restorability in an arbitrary 2-connected network. To minimize the total spare capacity for single link failure protection, an integer linear programming (ILP) formulation is provided. We also develop a fast double-link failure restoration scheme by message signaling to take advantage of the scalable and distributed processing capability of tree structure

    On Signaling-Free Failure Dependent Restoration in All-Optical Mesh Networks

    Get PDF
    Failure dependent protection (FDP) is known to achieve optimal capacity efficiency among all types of protection, at the expense of longer recovery time and more complicated signaling overhead. This particularly hinders the usage of FDP in all-optical mesh networks. As a remedy, the paper investigates a new restoration framework that enables all-optical fault management and device configuration via state-of-the-art failure localization techniques, such that the FDP restoration process. It can be implemented without relying on any control plane signaling. With the proposed restoration framework, a novel spare capacity allocation problem is defined, and is further analyzed on circulant topologies for any single link failure, aiming to gain a solid understanding of the problem. By allowing reuse of monitoring resources for restoration capacity, we are particularly interested in the monitoring resource hidden property where less or even no monitoring resources are consumed as more working traffic is in place. To deal with general topologies, we introduce a novel heuristic approach to the proposed spare capacity allocation problem, which comprises a generic FDP survivable routing scheme followed by a novel monitoring resource allocation method. Extensive simulation is conducted to examine the proposed scheme and verify the proposed restoration framework

    Survivability issues in WDM optical networks

    Get PDF
    WDM optical networks make it possible for the bandwidth of transport networks to reach a level on which any failures would cause tremendous data loss and affect a lot of users. Thus, survivability issues of WDM optical networks have attracted a lot of research work. Within the scope of this dissertation, two categories of problems are studied, one is survivable mapping from IP topology to WDM topology, the other is p-cycle protection schemes in WDM networks.;Survivable mapping problem can be described as routing IP links on the WDM topology such that the IP topology stays connected under any single link failure in the WDM topology. This problem has been proved to be NP-complete [1]. At first, this dissertation provides a heuristic algorithm to compute approximated solutions for input IP/WDM topologies as an approach to ease the hardness of it. Then, it examines the problem with a different view, to augment the IP topology so that a survivable mapping can be easily computed. This new perspective leads to an extended survivable mapping problem that is originally proposed and analyzed in this dissertation. In addition, this dissertation also presents some interesting open problems for the survivable mapping problem as future work.;Various protection schemes in WDM networks have been explored. This dissertation focuses on methods based on the p-cycle technology. p-Cycle protection inherits the merit of fast restoration from the link-based protection technology while yielding higher efficiency on spare capacity usage [2]. In this dissertation, we first propose an efficient heuristic algorithm that generates a small subset of candidate cycles that guarantee 100% restorability and help to achieve an efficient design. Then, we adapt p-cycle design to accommodate the protection of the failure of a shared risk link group (SRLG). At last, we discuss the problem of establishing survivable connections for dynamic traffic demands using flow p-cycle

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated
    corecore