1,530 research outputs found

    Random Linear Network Coding For Time Division Duplexing: When To Stop Talking And Start Listening

    Full text link
    A new random linear network coding scheme for reliable communications for time division duplexing channels is proposed. The setup assumes a packet erasure channel and that nodes cannot transmit and receive information simultaneously. The sender transmits coded data packets back-to-back before stopping to wait for the receiver to acknowledge (ACK) the number of degrees of freedom, if any, that are required to decode correctly the information. We provide an analysis of this problem to show that there is an optimal number of coded data packets, in terms of mean completion time, to be sent before stopping to listen. This number depends on the latency, probabilities of packet erasure and ACK erasure, and the number of degrees of freedom that the receiver requires to decode the data. This scheme is optimal in terms of the mean time to complete the transmission of a fixed number of data packets. We show that its performance is very close to that of a full duplex system, while transmitting a different number of coded packets can cause large degradation in performance, especially if latency is high. Also, we study the throughput performance of our scheme and compare it to existing half-duplex Go-back-N and Selective Repeat ARQ schemes. Numerical results, obtained for different latencies, show that our scheme has similar performance to the Selective Repeat in most cases and considerable performance gain when latency and packet error probability is high.Comment: 9 pages, 9 figures, Submitted to INFOCOM'0

    Network Coding Over SATCOM: Lessons Learned

    Full text link
    Satellite networks provide unique challenges that can restrict users' quality of service. For example, high packet erasure rates and large latencies can cause significant disruptions to applications such as video streaming or voice-over-IP. Network coding is one promising technique that has been shown to help improve performance, especially in these environments. However, implementing any form of network code can be challenging. This paper will use an example of a generation-based network code and a sliding-window network code to help highlight the benefits and drawbacks of using one over the other. In-order packet delivery delay, as well as network efficiency, will be used as metrics to help differentiate between the two approaches. Furthermore, lessoned learned during the course of our research will be provided in an attempt to help the reader understand when and where network coding provides its benefits.Comment: Accepted to WiSATS 201

    A Mobile Satellite Experiment (MSAT-X) network definition

    Get PDF
    The network architecture development of the Mobile Satellite Experiment (MSAT-X) project for the past few years is described. The results and findings of the network research activities carried out under the MSAT-X project are summarized. A framework is presented upon which the Mobile Satellite Systems (MSSs) operator can design a commercial network. A sample network configuration and its capability are also included under the projected scenario. The Communication Interconnection aspect of the MSAT-X network is discussed. In the MSAT-X network structure two basic protocols are presented: the channel access protocol, and the link connection protocol. The error-control techniques used in the MSAT-X project and the packet structure are also discussed. A description of two testbeds developed for experimentally simulating the channel access protocol and link control protocol, respectively, is presented. A sample network configuration and some future network activities of the MSAT-X project are also presented

    Reliable multicast transport by satellite: a hybrid satellite/terrestrial solution with erasure codes

    Get PDF
    Geostationary satellites are an efficient way to provide a large scale multipoint communication service. In the context of reliable multicast communications, a new hybrid satellite/terrestrial approach is proposed. It aims at reducing the overall communication cost using satellite broadcasting only when enough receivers are present, and terrestrial transmissions otherwise. This approach has been statistically evaluated for a particular cost function and seems interesting. Then since the hybrid approach relies on Forward Error Correction, several practical aspects of MDS codes and LDPC codes are investigated in order to select a code

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol

    Automatic-repeat-request error control schemes

    Get PDF
    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed

    Enabling Realistic Cross-Layer Analysis based on Satellite Physical Layer Traces

    Get PDF
    We present a solution to evaluate the performance of transport protocols as a function of link layer reliability schemes (i.e. ARQ, FEC and Hybrid ARQ) applied to satellite physical layer traces. As modelling such traces is complex and may require approximations, the use of real traces will minimise the potential for erroneous performance evaluations resulting from imperfect models. Our Trace Manager Tool (TMT) produces the corresponding link layer output, which is then used within the ns-2 network simulator via the additionally developed ns-2 interface module. We first present the analytical models for the link layer with bursty erasure packets and for the link layer reliability mechanisms with bursty erasures. Then, we present details of the TMT tool and our validation methodology, demonstrating that the selected performance metrics (recovery delay and throughput efficiency) exhibit a good match between the theoretical results and those obtained with TMT. Finally, we present results showing the impact of different link layer reliability mechanisms on the performance of TCP Cubic transport layer protocol.Comment: 6 pages, 5 figures and 1 table. Submitted at PIMRC 201
    corecore