1,545 research outputs found

    A Survey on Understanding and Representing Privacy Requirements in the Internet-of-Things

    Get PDF
    People are interacting with online systems all the time. In order to use the services being provided, they give consent for their data to be collected. This approach requires too much human effort and is impractical for systems like Internet-of-Things (IoT) where human-device interactions can be large. Ideally, privacy assistants can help humans make privacy decisions while working in collaboration with them. In our work, we focus on the identification and representation of privacy requirements in IoT to help privacy assistants better understand their environment. In recent years, more focus has been on the technical aspects of privacy. However, the dynamic nature of privacy also requires a representation of social aspects (e.g., social trust). In this survey paper, we review the privacy requirements represented in existing IoT ontologies. We discuss how to extend these ontologies with new requirements to better capture privacy, and we introduce case studies to demonstrate the applicability of the novel requirements

    On the Security and Privacy Challenges in Android-based Environments

    Get PDF
    In the last decade, we have faced the rise of mobile devices as a fundamental tool in our everyday life. Currently, there are above 6 billion smartphones, and 72% of them are Android devices. The functionalities of smartphones are enriched by mobile apps through which users can perform operations that in the past have been made possible only on desktop/laptop computing. Besides, users heavily rely on them for storing even the most sensitive information from a privacy point of view. However, apps often do not satisfy all minimum security requirements and can be targeted to indirectly attack other devices managed or connected to them (e.g., IoT nodes) that may perform sensitive operations such as health checks, control a smart car or open a smart lock. This thesis discusses some research activities carried out to enhance the security and privacy of mobile apps by i) proposing novel techniques to detect and mitigate security vulnerabilities and privacy issues, and ii) defining techniques devoted to the security evaluation of apps interacting with complex environments (e.g., mobile-IoT-Cloud). In the first part of this thesis, I focused on the security and privacy of Mobile Apps. Due to the widespread adoption of mobile apps, it is relatively straightforward for researchers or users to quickly retrieve the app that matches their tastes, as Google provides a reliable search engine. However, it is likewise almost impossible to select apps according to a security footprint (e.g., all apps that enforce SSL pinning). To overcome this limitation, I present APPregator, a platform that allows users to select apps according to a specific security footprint. This tool aims to implement state-of-the-art static and dynamic analysis techniques for mobile apps and provide security researchers and analysts with a tool that makes it possible to search for mobile applications under specific functional or security requirements. Regarding the security status of apps, I studied a particular context of mobile apps: hybrid apps composed of web technologies and native technologies (i.e., Java or Kotlin). In this context, I studied a vulnerability that affected only hybrid apps: the Frame Confusion. This vulnerability, despite being discovered several years ago, it is still very widespread. I proposed a methodology implemented in FCDroid that exploits static and dynamic analysis techniques to detect and trigger the vulnerability automatically. The results of an extensive analysis carried out through FCDroid on a set of the most downloaded apps from the Google Play Store prove that 6.63% (i.e., 1637/24675) of hybrid apps are potentially vulnerable to Frame Confusion. A side effect of the analysis I carried out through APPregator was suggesting that very few apps may have a privacy policy, despite Google Play Store imposes some strict rules about it and contained in the Google Play Privacy Guidelines. To empirically verify if that was the case, I proposed a methodology based on the combination of static analysis, dynamic analysis, and machine learning techniques. The proposed methodology verifies whether each app contains a privacy policy compliant with the Google Play Privacy Guidelines, and if the app accesses privacy-sensitive information only upon the acceptance of the policy by the user. I then implemented the methodology in a tool, 3PDroid, and evaluated a number of recent and most downloaded Android apps in the Google Play Store. Experimental results suggest that over 95% of apps access sensitive user privacy information, but only a negligible subset of it (~ 1%) fully complies with the Google Play Privacy Guidelines. Furthermore, the obtained results have also suggested that the user privacy could be put at risk by mobile apps that keep collecting a plethora of information regarding the user's and the device behavior by relying on third-party analytics libraries. However, collecting and using such data raised several privacy concerns, mainly because the end-user - i.e., the actual data owner - is out of the loop in this collection process. The existing privacy-enhanced solutions that emerged in the last years follow an ``all or nothing" approach, leaving to the user the sole option to accept or completely deny access to privacy-related data. To overcome the current state-of-the-art limitations, I proposed a data anonymization methodology, called MobHide, that provides a compromise between the usefulness and privacy of the data collected and gives the user complete control over the sharing process. For evaluating the methodology, I implemented it in a prototype called HideDroid and tested it on 4500 most-used Android apps of the Google Play Store between November 2020 and January 2021. In the second part of this thesis, I extended privacy and security considerations outside the boundary of the single mobile device. In particular, I focused on two scenarios. The first is composed of an IoT device and a mobile app that have a fruitful integration to resolve and perform specific actions. From a security standpoint, this leads to a novel and unprecedented attack surface. To deal with such threats, applying state-of-the-art security analysis techniques on each paradigm can be insufficient. I claimed that novel analysis methodologies able to systematically analyze the ecosystem as a whole must be put forward. To this aim, I introduced the idea of APPIoTTe, a novel approach to the security testing of Mobile-IoT hybrid ecosystems, as well as some notes on its implementation working on Android (Mobile) and Android Things (IoT) applications. The second scenario is composed of an IoT device widespread in the Smart Home environment: the Smart Speaker. Smart speakers are used to retrieving information, interacting with other devices, and commanding various IoT nodes. To this aim, smart speakers typically take advantage of cloud architectures: vocal commands of the user are sampled, sent through the Internet to be processed, and transmitted back for local execution, e.g., to activate an IoT device. Unfortunately, even if privacy and security are enforced through state-of-the-art encryption mechanisms, the features of the encrypted traffic, such as the throughput, the size of protocol data units, or the IP addresses, can leak critical information about the users' habits. In this perspective, I showcase this kind of risk by exploiting machine learning techniques to develop black-box models to classify traffic and implement privacy leaking attacks automatically

    Adaptation of the human nervous system for self-aware secure mobile and IoT systems

    Get PDF
    IT systems have been deployed across several domains, such as hospitals and industries, for the management of information and operations. These systems will soon be ubiquitous in every field due to the transition towards the Internet of Things (IoT). The IoT brings devices with sensory functions into IT systems through the process of internetworking. The sensory functions of IoT enable them to generate and process information automatically, either without human contribution or having the least human interaction possible aside from the information and operations management tasks. Security is crucial as it prevents system exploitation. Security has been employed after system implementation, and has rarely been considered as a part of the system. In this dissertation, a novel solution based on a biological approach is presented to embed security as an inalienable part of the system. The proposed solution, in the form of a prototype of the system, is based on the functions of the human nervous system (HNS) in protecting its host from the impacts caused by external or internal changes. The contributions of this work are the derivation of a new system architecture from HNS functionalities and experiments that prove the implementation feasibility and efficiency of the proposed HNS-based architecture through prototype development and evaluation. The first contribution of this work is the adaptation of human nervous system functions to propose a new architecture for IT systems security. The major organs and functions of the HNS are investigated and critical areas are identified for the adaptation process. Several individual system components with similar functions to the HNS are created and grouped to form individual subsystems. The relationship between these components is established in a similar way as in the HNS, resulting in a new system architecture that includes security as a core component. The adapted HNS-based system architecture is employed in two the experiments prove its implementation capability, enhancement of security, and overall system operations. The second contribution is the implementation of the proposed HNS-based security solution in the IoT test-bed. A temperature-monitoring application with an intrusion detection system (IDS) based on the proposed HNS architecture is implemented as part of the test-bed experiment. Contiki OS is used for implementation, and the 6LoWPAN stack is modified during the development process. The application, together with the IDS, has a brain subsystem (BrSS), a spinal cord subsystem (SCSS), and other functions similar to the HNS whose names are changed. The HNS functions are shared between an edge router and resource-constrained devices (RCDs) during implementation. The experiment is evaluated in both test-bed and simulation environments. Zolertia Z1 nodes are used to form a 6LoWPAN network, and an edge router is created by combining Pandaboard and Z1 node for a test-bed setup. Two networks with different numbers of sensor nodes are used as simulation environments in the Cooja simulator. The third contribution of this dissertation is the implementation of the proposed HNS-based architecture in the mobile platform. In this phase, the Android operating system (OS) is selected for experimentation, and the proposed HNS-based architecture is specifically tailored for Android. A context-based dynamically reconfigurable access control system (CoDRA) is developed based on the principles of the refined HNS architecture. CoDRA is implemented through customization of Android OS and evaluated under real-time usage conditions in test-bed environments. During the evaluation, the implemented prototype mimicked the nature of the HNS in securing the application under threat with negligible resource requirements and solved the problems in existing approaches by embedding security within the system. Furthermore, the results of the experiments highlighted the retention of HNS functions after refinement for different IT application areas, especially the IoT, due to its resource-constrained nature, and the implementable capability of our proposed HNS architecture.--- IT-järjestelmiä hyödynnetään tiedon ja toimintojen hallinnassa useilla aloilla, kuten sairaaloissa ja teollisuudessa. Siirtyminen kohti esineiden Internetiä (Internet of Things, IoT) tuo tällaiset laitteet yhä kiinteämmäksi osaksi jokapäiväistä elämää. IT-järjestelmiin liitettyjen IoT-laitteiden sensoritoiminnot mahdollistavat tiedon automaattisen havainnoinnin ja käsittelyn osana suurempaa järjestelmää jopa täysin ilman ihmisen myötävaikutusta, poislukien mahdolliset ylläpito- ja hallintatoimenpiteet. Turvallisuus on ratkaisevan tärkeää IT-järjestelmien luvattoman käytön estämiseksi. Valitettavan usein järjestelmäsuunnittelussa turvallisuus ei ole osana ydinsuunnitteluprosessia, vaan otetaan huomioon vasta käyttöönoton jälkeen. Tässä väitöskirjassa esitellään uudenlainen biologiseen lähestymistapaan perustuva ratkaisu, jolla turvallisuus voidaan sisällyttää erottamattomaksi osaksi järjestelmää. Ehdotettu prototyyppiratkaisu perustuu ihmisen hermoston toimintaan tilanteessa, jossa se suojelee isäntäänsä ulkoisten tai sisäisten muutosten vaikutuksilta. Tämän työn keskeiset tulokset ovat uuden järjestelmäarkkitehtuurin johtaminen ihmisen hermoston toimintaperiaatteesta sekä tällaisen järjestelmän toteutettavuuden ja tehokkuuden arviointi kokeellisen prototyypin kehittämisen ja toiminnan arvioinnin avulla. Tämän väitöskirjan ensimmäinen kontribuutio on ihmisen hermoston toimintoihin perustuva IT-järjestelmäarkkitehtuuri. Tutkimuksessa arvioidaan ihmisen hermoston toimintaa ja tunnistetaan keskeiset toiminnot ja toiminnallisuudet, jotka mall-innetaan osaksi kehitettävää järjestelmää luomalla näitä vastaavat järjestelmäkomponentit. Nä-istä kootaan toiminnallisuudeltaan hermostoa vastaavat osajärjestelmät, joiden keskinäinen toiminta mallintaa ihmisen hermoston toimintaa. Näin luodaan arkkitehtuuri, jonka keskeisenä komponenttina on turvallisuus. Tämän pohjalta toteutetaan kaksi prototyyppijärjestelmää, joiden avulla arvioidaan arkkitehtuurin toteutuskelpoisuutta, turvallisuutta sekä toimintakykyä. Toinen kontribuutio on esitetyn hermostopohjaisen turvallisuusratkaisun toteuttaminen IoT-testialustalla. Kehitettyyn arkkitehtuuriin perustuva ja tunkeutumisen estojärjestelmän (intrusion detection system, IDS) sisältävä lämpötilan seurantasovellus toteutetaan käyttäen Contiki OS -käytöjärjestelmää. 6LoWPAN protokollapinoa muokataan tarpeen mukaan kehitysprosessin aikana. IDS:n lisäksi sovellukseen kuuluu aivo-osajärjestelmä (Brain subsystem, BrSS), selkäydinosajärjestelmä (Spinal cord subsystem, SCSS), sekä muita hermoston kaltaisia toimintoja. Nämä toiminnot jaetaan reunareitittimen ja resurssirajoitteisten laitteiden kesken. Tuloksia arvioidaan sekä simulaatioiden että testialustan tulosten perusteella. Testialustaa varten 6LoWPAN verkon toteutukseen valittiin Zolertia Z1 ja reunareititin on toteutettu Pandaboardin ja Z1:n yhdistelmällä. Cooja-simulaattorissa käytettiin mallinnukseen ymp-äristönä kahta erillistä ja erikokoisuta sensoriverkkoa. Kolmas tämän väitöskirjan kontribuutio on kehitetyn hermostopohjaisen arkkitehtuurin toteuttaminen mobiilialustassa. Toteutuksen alustaksi valitaan Android-käyttöjärjestelmä, ja kehitetty arkkitehtuuri räätälöidään Androidille. Tuloksena on kontekstipohjainen dynaamisesti uudelleen konfiguroitava pääsynvalvontajärjestelmä (context-based dynamically reconfigurable access control system, CoDRA). CoDRA toteutetaan mukauttamalla Androidin käyttöjärjestelmää ja toteutuksen toimivuutta arvioidaan reaaliaikaisissa käyttöolosuhteissa testialustaympäristöissä. Toteutusta arvioitaessa havaittiin, että kehitetty prototyyppi jäljitteli ihmishermoston toimintaa kohdesovelluksen suojaamisessa, suoriutui tehtävästään vähäisillä resurssivaatimuksilla ja onnistui sisällyttämään turvallisuuden järjestelmän ydintoimintoihin. Tulokset osoittivat, että tämän tyyppinen järjestelmä on toteutettavissa sekä sen, että järjestelmän hermostonkaltainen toiminnallisuus säilyy siirryttäessä sovellusalueelta toiselle, erityisesti resursseiltaan rajoittuneissa IoT-järjestelmissä

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Policy-driven Security Management for Gateway-Oriented Reconfigurable Ecosystems

    Get PDF
    abstract: With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices. This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.Dissertation/ThesisMasters Thesis Computer Science 201

    Technology Roadmap for Standards of Healthcare Data Cyber Security: Influence of Public Policy on Consumer Healthcare Cyber Security Protections

    Get PDF
    From the dot com boom to now the Internet of Things (IoT) and Machine Learning era, the evolving digital world that people live in has brought new challenges for protecting personal data and information. IoT devices, smart phones, numerous apps, and more, constantly collect personal health data with many positive intentions. However, the recent overturning of Roe vs. Wade by the United States Supreme Court has generated concerns in particular on who and how personal health data can be used by both governments and private companies with unintended consequences for users. Cyber security and regulations for protecting personal health data is more important than ever before. Through both a literature review and then the creation of a technology policy based road map, this paper establishes a methodology to answer the following research question: How will cyber security technology evolve with the influence of public policy in order to better protect consumer healthcare data privacy rights
    corecore